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Calculation of density matrices in the formation of positronium
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We study single collisions between spin-polarized positron beams and targets that result in the production
of positronium and target ions. We consider unpolarized as well as polarized targets with 0, 1, and 2 unpaired
electrons. First, we use angular momentum coupling to calculate the spin scattering matrices in all three cases.
Then, for some targets, we define an angle β between the polarization vectors of the positron beam and the target,
and calculate density matrices whose elements are functions of β. Finally, from the density matrices, we obtain
the probabilities of forming para- and ortho-positronium atoms for specific spins of the target ions. We present
ratios of para- to ortho-positronium yields as well as total positronium annihilation rates.
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I. INTRODUCTION

In this work, we study collisions between spin-polarized
positrons and atomic or molecular targets in each of which
only two outgoing species are produced, a positronium atom
and a target ion. The initial system consists of a purely
electronic part (the target) interacting with a part containing
no electrons (the positron beam). Specifically, we consider the
collision of the positron beam from three types of targets: (i) a
singlet with no unpaired electrons and a total unpaired-electron
spin of 0, (ii) a doublet with one unpaired electron and a
total unpaired-electron spin of 1

2 , and (iii) a triplet, with two
unpaired electrons and a total unpaired-electron spin of 1.
During the interaction, one electron from the target combines
with the positron to form positronium. Both para-positronium,
with a total spin of 0, and ortho-positronium, with a total spin
of 1, are produced along with target ions with spins of 0, 1

2 ,
1, or 3

2 . With the assumption that spin-dependent interaction
terms in the Hamiltonian are negligible, the total spin of the
unpaired electron(s) of the target, the spin of the positron,
the total spin of the electron(s)-positron system, and the total
spin magnetic quantum number are conserved. First, we use
angular momentum coupling techniques to calculate the spin
scattering matrices for each of the three types of targets. Then,
we construct spin density matrices for describing the initial
(positron-target) systems as well as the final (positronium-ion)
systems, which consist of mixed-spin states. Density matrices
are particularly useful in the description of systems containing
mixed-spin states because their elements can be used to
obtain the probability of the system being in a specific spin
state. We construct the spin density matrices from Pauli
spin matrices, and polarization vectors and tensors, using
techniques described in Refs. [1–3].

Positrons obtained from a nuclear decay are longitudinally
polarized with speeds close to that of the speed of light, while
the energy of the positron beam used in the collisions is a few
electron volts. In the laboratory frame, the polarization vector
of an electrostatically guided beam remains constant, although
the propagation direction given by the momentum vector can
be changed. The degree to which the positron spin is aligned
with the initial momentum is given by the polarization pp.
Slow polarized positron beams with values of pp ranging from
0.5 to 0.8 have been available for some time [4]. In our work,
we define an angle β between the polarization vectors of the
positron beam and the target, such that, for positrons with

polarization pp, the components of the positron beam parallel
and perpendicular to the direction of the target polarization
vector are given by ppcosβ and ppsinβ. We note (i) that β = 0
for the singlet, (ii) that for an unpolarized target, when the spin
of the outgoing target ion is detected, β is the angle between
the polarization vector of the positron beam and the axis of the
spin detector, and (iii) that β cannot be defined for unpolarized
targets without detection of the spin of the outgoing ion. The
elements of the spin density matrices will therefore contain
functions of β and pp.

From the spin density matrices, we calculate the prob-
abilities for forming both types of positronium, just after
the collision at time t = 0, for specific spins of the target
ions. The two types of positronium are distinguished by their
lifetimes and the number of photons emitted when they decay;
para-positronium decays with the emission of two photons
and has a lifetime of 1

8 ns [5] while ortho-positronium decays
with the emission of three photons and has a lifetime of
142 ns [6–8]. We present three types of results: (i) the total
positronium annihilation rates at t = 0, (ii) the ratios of para-to
ortho-positronium yields at t = 0, and (iii) para-positronium
and ortho-positronium yields as functions of time. We consider
unpolarized as well as polarized targets and look at special
cases for which β = 0◦, 90◦, or 180◦.

We introduced β in an earlier work and used angular
momentum coupling as well as density-matrix techniques to
study positronium formation in the collisions of polarized
positron beams with molecular oxygen targets [9]. Molecular
oxygen is an example of a triplet, and therefore the density-
matrix equations given in Ref. [9] are identical to those for
the triplet case presented in this work. However, in the present
study, we have calculated the scattering matrices using Racah
coefficients, as shown in the following. This enables us to
present a more general formalism with several possibilities of
the target spin (whereas in Ref. [9], the scattering matrices
were calculated using Clebsch-Gordan coefficients only for a
target spin of 1). Furthermore, in this work, we have explained
our method in more detail and extended it to include singlet
targets, as well as unpolarized doublet and polarized doublet
targets. Since the degree of polarization pp is controlled by
the experimenter, we have presented our results for arbitrary
values of pp. We have also calculated annihilation rates and
yields for all the targets for pp = 0.5 (whereas in Ref. [9],
the ratios of the para-positronium to ortho-positronium yields
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were calculated only for pp = 1), as well as additional results
for a triplet target.

In our method, described in the following, we obtain
scattering-matrix elements from vector coupling coefficients
using techniques similar to those in Refs. [3,10,11], in which
numerous results are presented for elastic scattering, exci-
tation, and ionization processes involving polarized electrons
[10,11]. We construct density matrices using formalism similar
to Refs. [3,12,13] for positron collisions with targets of spin
0, 1

2 , and 1. In Ref. [12], the excitation of light atoms such
as sodium and lithium as well as heavier atoms such as
mercury due to impact with unpolarized or polarized electrons
is studied. Explicit spin-dependent forces are neglected in the
study of collisions with light atoms, while reduced density
matrices of the scattered electrons are constructed to get
polarization information for heavier atoms [12]. In Ref. [13],
the effect of beam polarization on the scattering cross section
is discussed in general, and scattering matrices and density
matrices are calculated in the scattering of an electron by
targets of spin 1

2 and spin 1. In Ref. [14], the effect of spin
dependence is studied in the scattering of polarized electrons
by two-electron atoms. Ratios of the scattered to incident beam
polarizations are compared for processes in which explicit
spin-dependent forces can be neglected (electron exchange in
the excitation of helium) and those in which spin-dependent
forces cannot be neglected (electron-spin reversal in the
excitation of mercury) [14]. The role of polarization in nuclear
scattering and reaction processes has been extensively studied
in Ref. [15]. Calculations of cross sections, density matrices,
and polarization components of particles are performed for
processes in which the polarizations of one or both particles
in the initial or final states are known [15]. Since we assume
that spin-dependent forces are negligible, our method may not
be applicable in the study of heavy atoms or in determining
left-right asymmetries in the cross section as discussed in
Refs. [13–15]. We impose the conservation of four spin
quantum numbers and calculate the probabilities of both
outgoing particles (positronium atom and target ion) being
in a specific spin state.

II. METHOD

In this section we describe the general framework for the
construction of the spin density matrices for the outgoing ion-
positronium system ρout from the spin density matrices for the
incoming target-positron system ρ in and the spin scattering
matrices M as follows:

ρout = MρinM†. (1)

We express the three reactions under consideration as
e + p → i + d, where e represents the target with 0, 1, or 2
unpaired electrons, p represents the positron, i represents the
target ion with one unpaired electron less than the target, and d
represents both types of positronium. We begin by constructing
the spin scattering matrices whose matrix elements are the
amplitudes for the transition from a particular state of e and
p to a particular state of i and d. As the two initial species
e and p approach and interact, an intermediate state develops
in which particle transfer can occur. After the particle transfer
has taken place, the intermediate state decays into the outgoing

species i and d which recede from the interaction site. It is
important to note that in the evolution of the system from e
and p to i and d, the quantum numbers representing the total
electron spin Se of the atomic target, the positron spin Sp, the
total spin St , as well as the magnetic quantum numbers Mt

are all conserved. With the assumption of a spin-independent
Hamiltonian where states with different values of Se can
have different interelectronic Coulomb interactions via the
Pauli principle, we define a scattering amplitude f Se which
is independent of Sp, St , and Mt as follows:

f Se = 〈[SeSp]StMt |M̂|[SeSp]StMt 〉 . (2)

The coupled state 〈[SeSp]StMt | can be obtained from coupling
the quantum numbers Se and Sp through Clebsch-Gordan
coefficients. Keeping this in mind, we express the spin
scattering matrix in terms of the scattering amplitude and the
intermediate state as follows:

〈SiMi |〈SdMd |M̂|SeMe〉|SpMp〉
= 〈SiMi |〈SdMd |

∑
StMt

|[SeSp]StMt 〉f Se

×〈[SeSp]StMt ||SeMe〉|SpMp〉. (3)

The rows represent the final states of the target ion and
positronium, while the columns represent the initial states of
the target and the positron. The states are labeled with the spin
and magnetic quantum numbers in each case.

First, the states of the incoming species are coupled as
follows:

|SeMe〉|SpMp〉 =
∑
StMt

〈SeMeSpMp|StMt 〉|[SeSp]StMt 〉. (4)

Then, after particle transfer has occurred, the intermediate state
evolves into a coupled state of the outgoing species i and d.
This relation is obtained by the U coefficients as follows:

|[SeSp]StMt 〉 =
∑
Sd

U

(
Si

1

2
StSp; SeSd

)
|[SiSd ]StMt 〉. (5)

We note that the U coefficients of Jahn are related to the stan-
dard Racah coefficients through U = √

(2Se + 1)(2Sd + 1)W ,
where W is the standard Racah coefficient [16]. Finally, the
outgoing state is uncoupled as follows:

|[SiSd ]StMt 〉 =
∑
MiMd

〈SiMiSdMd |StMt 〉|SiMi〉|SdMd〉. (6)

When the positron beam collides with a singlet, the spin
assignments for the particles are Se = 0, Sp = 1

2 , Si = 1
2 , and

Sd = 0, 1. In the collision with a doublet with Se = 1
2 , the

outgoing target ion can be in the Si = 0 or in the Si = 1 state,
whereas for the triplet target with spin Se = 1, the outgoing
target ion can be in the Si = 1

2 or in the Si = 3
2 state. We use

these spin assignments along with all the possible magnetic
quantum numbers Me, Mp, Mi , and Md in Eqs. (3)–(6) to obtain
the spin scattering matrices 〈SiMi |〈SdMd | M̂|SeMe 〉|SpMp 〉,
shown in Table I, for all three types of targets.

We now write down the individual spin density matrices
for each of the three targets as well as the positron beam,
using techniques from Ref. [3], after defining ε1 and ε2 as unit
matrices of rank 2, E1 as a unit matrix of rank 3, σx and σ z as
Pauli spin matrices, Sx , Sy , and Sz as spin matrices of rank 3,
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TABLE I. Spin scattering matrices 〈SiMi | 〈SdMd | M̂|SeMe 〉|SpMp〉 for the reactions e + p →i + d. The columns are labeled with the
initial-state basis vectors |SeMe〉|SpMp〉, where e represents a singlet with Se = 0, a doublet with Se = 1

2 , or a triplet with Se = 1, and p
represents the positron with Sp = 1

2 . The rows are labeled with the final-state basis vectors 〈SiMi | 〈SdMd |, where i represents the singlet ion
with Si = 1

2 , the doublet ion with Si = 0 or Si = 1, or the triplet ion with Si = 1
2 or Si = 3

2 , and d represents positronium.

Singlet |00〉| 1
2

1
2 〉 |00〉| 1

2 − 1
2 〉

〈 1
2

1
2 |〈00| − 1

2 f 0

〈 1
2 − 1

2 |〈00| − 1
2 f 0

〈 1
2

1
2 |〈10| 1

2 f 0

〈 1
2

1
2 |〈1 − 1|

√
1
2 f 0

〈 1
2 − 1

2 |〈11| −
√

1
2 f 0

〈 1
2 − 1

2 |〈10| − 1
2 f 0

Doublet | 1
2

1
2 〉| 1

2
1
2 〉 | 1

2
1
2 〉| 1

2 − 1
2 〉 | 1

2 − 1
2 〉| 1

2
1
2 〉 | 1

2 − 1
2 〉| 1

2 − 1
2 〉

〈00|〈00|
√

1
2 f

1
2 −

√
1
2 f

1
2

〈00|〈11| f
1
2

〈00|〈10|
√

1
2 f

1
2

√
1
2 f

1
2

〈00|〈1 − 1| f
1
2

〈11|〈00| −
√

1
3 f

1
2

〈10|〈00| −
√

1
6 f

1
2 −

√
1
6 f

1
2

〈1 − 1|〈00| −
√

1
3 f

1
2

〈11|〈10|
√

1
3 f

1
2

〈11|〈1 − 1|
√

2
3 f

1
2

〈10|〈11| −
√

1
3 f

1
2

〈10|〈10| −
√

1
6 f

1
2

√
1
6 f

1
2

〈10|〈1 − 1|
√

1
3 f

1
2

〈1 − 1|〈11| −
√

2
3 f

1
2

〈1 − 1|〈10| −
√

1
3 f

1
2

Triplet |11〉| 1
2

1
2 〉 |11〉| 1

2 − 1
2 〉 |10〉| 1

2
1
2 〉 |10〉| 1

2 − 1
2 〉 |1 − 1〉| 1

2
1
2 〉 |1 − 1〉| 1

2 − 1
2 〉

〈 1
2

1
2 |〈00|

√
1
2 f 1 − 1

2 f 1

〈 1
2 − 1

2 |〈00| 1
2 f 1 −

√
1
2 f 1

〈 1
2

1
2 |〈11| f 1

〈 1
2

1
2 |〈10|

√
1
2 f 1 1

2 f 1

〈 1
2

1
2 |〈1 − 1|

√
1
2 f 1

〈 1
2 − 1

2 |〈11|
√

1
2 f 1

〈 1
2 − 1

2 |〈10| 1
2 f 1

√
1
2 f 1

〈 1
2 − 1

2 |〈1 − 1| f 1

〈 3
2

3
2 |〈00| −

√
3
8 f 1

〈 3
2

1
2 |〈00| −

√
1
8 f 1 − 1

2 f 1

〈 3
2 − 1

2 |〈00| − 1
2 f 1 −

√
1
8 f 1

〈 3
2 − 3

2 |〈00| −
√

3
8 f 1

〈 3
2

3
2 |〈10|

√
3
8 f 1
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TABLE I. (Continued.)

Triplet |11〉| 1
2

1
2 〉 |11〉| 1

2 − 1
2 〉 |10〉| 1

2
1
2 〉 |10〉| 1

2 − 1
2 〉 |1 − 1〉| 1

2
1
2 〉 |1 − 1〉| 1

2 − 1
2 〉

〈 3
2

3
2 |〈1 − 1|

√
3
4 f 1

〈 3
2

1
2 |〈11| − 1

2 f 1

〈 3
2

1
2 |〈10| −

√
1
8 f 1 1

2 f 1

〈 3
2

1
2 |〈1 − 1|

√
1
2 f 1

〈 3
2 − 1

2 |〈11| −
√

1
2 f 1

〈 3
2 − 1

2 |〈10| − 1
2 f 1

√
1
8 f 1

〈 3
2 − 1

2 |〈1 − 1| 1
2 f 1

〈 3
2 − 3

2 |〈11| −
√

3
4 f 1

〈 3
2 − 3

2 |〈10| −
√

3
8 f 1

and setting Szz = 3S2
z − �S · �S. The simplest case is for the

singlet with

ρin = 1. (7)

For the doublet with a pure z component of polarization,

ρin = 1
2 (ε1 + Pzσz), (8)

with Pz = tr(ρ in σ z) = ±1, while for an unpolarized target
Pz = 0. For the triplet with pure z components for both vector
and tensor polarizations,

ρin = 1
3

(
E1 + 3

2PzSz + 1
2PzzSzz

)
, (9)

with Pz = tr(ρ inSz) and Pzz = tr(ρ inSzz). For Pz = ±1, Pzz = 1,
for Pz = 0, Pzz = −2, and for the unpolarized target
Pz = Pzz = 0. For the positron with polarization pp

ρin = 1
2 (ε2 + ppcosβσz + ppsinβσx), (10)

with components parallel and perpendicular to the direction of
the target polarization vector given by ppcosβ = tr(ρ in σ z) and
ppsinβ = tr(ρ in σx).

The spin density matrices for any target-positron system can
now be obtained by taking direct products of the individual
target and positron spin density matrices. For the singlet-
positron system, with β = 0,

ρin = 1
2 (ε2 + ppσz), (11)

for the doublet-positron system, using Eqs. (8) and (10), we
get

ρin = 1
4 [(ε1 × ε2) + ppcosβ(ε1 × σz) + ppsinβ(ε1 × σx)

+Pz(σz × ε2) + Pzppcosβ(σz × σz)

+Pzppsinβ(σz × σx)], (12)

and for the triplet-positron system, using Eqs. (9) and (10), we
get

ρin = 1
6

[
(E1 × ε2) + ppcosβ(E1 × σz) + ppsinβ(E1 × σx)

+ 3
2Pz(Sz × ε2) + 3

2Pzppcosβ(Sz × σz)

+ 3
2Pzppsinβ(Sz × σx) + 1

2Pzz(Szz × ε2)

+ 1
2Pzzppcosβ(Szz × σz) + 1

2Pzzppsinβ(Szz × σx)
]
.

(13)

The matrix elements of the outgoing density matrix given by
Eq. (1) are obtained as follows:

〈SiMi |〈SdMd |ρout|SiM
′′
i 〉|SdM

′′
d 〉

= 〈SiMi |〈SdMd |M̂|SeMe〉|SpMp〉
× 〈SeMe|〈SpMp|ρin|SeM

′′
e 〉|SpM ′′

p〉
× 〈SeM

′′
e |〈SpM ′′

p|M̂†|SiM
′′
i 〉|SdM

′′
d 〉. (14)

We define projection operators P (para,ion) and P (ortho,ion),
which pick out the para-positronium and ortho-positronium
states formed coincident with a particular ion state. Specifi-
cally, 〈SiMi | 〈SdMd | ρoutP (para,ion)|Si M ′′

i 〉|Sd M ′′
d 〉 is nonzero

only when Sd =Md = 0 for a specific Si and Mi , while
〈SiMi | 〈SdMd | ρoutP (ortho,ion)|Si M ′′

i 〉|Sd M ′′
d 〉 is nonzero only

when Sd = 1 for a specific Si and Mi . Using the projection
operators and Eq. (14), we get

〈SiMi |〈00|ρoutP (para,ion)|SiMi〉|00〉
=

∑
MeMp

∑
M ′′

e M ′′
p

〈SiMi |〈00|M̂|SeMe〉|SpMp〉

× 〈SeMe|〈SpMp|ρin|SeM
′′
e 〉|SpM ′′

p〉
× 〈SeM

′′
e |〈SpM ′′

p|M̂†|SiMi〉|00〉 (15)

and

〈SiMi |〈1Md |ρoutP (ortho,ion)|SiMi〉|1Md〉
=

∑
Md

∑
MeMp

∑
M ′′

e M ′′
p

〈SiMi |〈1Md |M̂|SeMe〉|SpMp〉

× 〈SeMe|〈SpMp|ρin|SeM
′′
e 〉|SpM ′′

p〉
× 〈SeM

′′
e |〈SpM ′′

p|M̂†|SiMi〉|1Md〉. (16)

We compute the outgoing density matrices for the singlet,
doublet, and triplet targets using Eq. (15) and Eq. (16) with
the incoming density matrices given in Eqs. (11), (12), and
(13), respectively. From the elements of the outgoing spin
density matrices, we calculate the probabilities of forming
para-positronium or ortho-positronium for a specific spin state
of the outgoing target ion. We also calculate the probabilities
for cases where the ion spins are not detected, by summing
over Si and Mi in Eqs. (15) and (16).
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TABLE II. The para-positronium yields just after the collision at t = 0, labeled Npara (0), and the ortho-positronium yields just after the
collision at t = 0, labeled Northo (0), for reactions in which a positron beam collides with a singlet, an unpolarized doublet, a polarized doublet
with Me = ± 1

2 , an unpolarized triplet, or a polarized triplet with Me = ±1 or 0, to form para-positronium with Sd = 0 or ortho-positronium with
Sd = 1. The outgoing singlet ion is in the Si = 1

2 state, the outgoing doublet ion can be in the Si = 0 or Si = 1 state, and the outgoing triplet ion can
be in the Si = 1

2 or in the Si = 3
2 state. A factor of |f Se |2 multiplies each term, with Se = 0, 1

2 , and 1 for the singlet, doublet, and triplet, respectively.

Npara (0) Northo (0)

Singlet

Mi = ± 1
2

1
8 (1 ± pp) 1

8 (3 ∓ pp)

Si, Mi undetected 1
4

3
4

Unpolarized Doublet

Si = 0 Mi = 0 1
4

3
4

Si = 1 Mi = ± 1 1
12 (1 ± pp cos β) 1

12 (3 ∓ pp cos β)
Si = 1 Mi = 0 1

12
1
4

Polarized Doublet

Me = ± 1
2 Si = 0 Mi = 0 1

4 (1 ∓ pp cos β) 1
4 (3 ± pp cos β)

Me = ± 1
2 Si = 0 Mi undetected 1

4 (1 ∓ pp cos β) 1
4 (3 ± pp cos β)

Me = + 1
2 Si = 1 Mi = +1 1

6 (1 + pp cos β) 1
6 (3 −pp cos β)

Me = + 1
2 Si = 1 Mi = 0 1

12 (1 −pp cos β) 1
12 (3 + pp cos β)

Me = + 1
2 Si = 1 Mi = −1 0 0

Me = − 1
2 Si = 1 Mi = +1 0 0

Me = − 1
2 Si = 1 Mi = 0 1

12 (1 + pp cos β) 1
12 (3 −pp cos β)

Me = − 1
2 Si = 1 Mi = −1 1

6 (1 −pp cos β) 1
6 (3 + pp cos β)

Me = ± 1
2 Si = 1 Mi undetected 1

12 (3 ± pp cos β) 1
12 (9 ∓ pp cos β)

Me = ± 1
2 Si,Mi undetected 1

6 (3 ∓ pp cos β) 1
6 (9 ± pp cos β)

Unpolarized Triplet

Si = 1
2 Mi = ± 1

2
1
24 (3 ∓ pp cos β) 1

24 (9 ± pp cos β)

Si = 3
2 Mi = ± 3

2
1
16 (1 ± pp cos β) 1

16 (3 ∓ pp cos β)

Si = 3
2 Mi = ± 1

2
1
48 (3 ± pp cos β) 1

48 (9 ∓ pp cos β)

Polarized Triplet

Me = +1 Si = 1
2 Mi = + 1

2
1
4 (1 – pp cos β) 1

4 (3 + pp cos β)

Me = +1 Si = 1
2 Mi = – 1

2 0 0

Me = +1 Si = 1
2 Mi undetected 1

4 (1 – pp cos β) 1
4 (3 + pp cos β)

Me = +1 Si = 3
2 Mi = + 3

2
3

16 (1 + pp cos β) 3
16 (3 – pp cos β)

Me = +1 Si = 3
2 Mi = + 1

2
1

16 (1 – pp cos β) 1
16 (3 + pp cos β)

Me = +1 Si = 3
2 Mi = – 1

2 0 0

Me = +1 Si = 3
2 Mi = – 3

2 0 0

Me = +1 Si = 3
2 Mi undetected 1

8 (2 + pp cos β) 1
8 (6 – pp cos β)

Me = 0 Si = 1
2 Mi = ± 1

2
1
8 (1 ± pp cos β) 1

8 (3 ∓ pp cos β)

Me = 0 Si = 1
2 Mi undetected 1

4
3
4

Me = 0 Si = 3
2 Mi = ± 3

2 0 0

Me = 0 Si = 3
2 Mi = ± 1

2
1
8 (1 ± pp cos β) 1

8 (3 ∓ pp cos β)

Me = 0 Si = 3
2 Mi undetected 1

4
3
4

Me = – 1 Si = 1
2 Mi =+ 1

2 0 0

Me = – 1 Si = 1
2 Mi = – 1

2
1
4 (1 + pp cos β) 1

4 (3 – pp cos β)

Me = – 1 Si = 1
2 Mi undetected 1

4 (1 + pp cos β) 1
4 (3 – pp cos β)

Me = – 1 Si = 3
2 Mi =+ 3

2 0 0

Me = – 1 Si = 3
2 Mi =+ 1

2 0 0

Me = – 1 Si = 3
2 Mi = – 1

2
1

16 (1 + pp cos β) 1
16 (3 – pp cos β)

Me = – 1 Si = 3
2 Mi = – 3

2
3

16 (1 – pp cos β) 3
16 (3 + pp cos β)

Me = – 1 Si = 3
2 Mi undetected 1

8 (2 – pp cos β) 1
8 (6 + pp cos β)

Me = +1 Si, Mi undetected 1
8 (4 – pp cos β) 1

8 (12 + pp cos β)

Me = 0 Si, Mi undetected 1
2

3
2

Me = – 1 Si, Mi undetected 1
8 (4 +pp cos β) 1

8 (12 – pp cos β)
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III. RESULTS

We define the time just after the collision as t = 0, and we
consider the probabilities of forming para-positronium just af-
ter the collision, labeled Npara(0)/Ntotal(0), and the probabilities
of forming ortho-positronium just after the collision, labeled
Northo(0)/Ntotal(0). We calculate Npara (0) and Northo (0) from the
outgoing spin density matrices, and we present them in Table II
for all three types of targets. The values for Npara (0) and
Northo (0) include a scattering amplitude factor |f Se |2, with
Se = 0, 1

2 , and 1 for the singlet, doublet, and triplet, respec-
tively. With the number of outgoing ion states n equal to 1 for
the singlet (Si = 1

2 ) and 2 for both the doublet (Si = 0 or 1) and
the triplet (Si = 1

2 or 3
2 ), we define

Ntotal(0) = n|f Se |2. (17)

First we use the probabilities to calculate the to-
tal positronium annihilation rate at t = 0, defined as
λpara [Npara(0)/Ntotal(0)] + λortho[Northo(0)/Ntotal(0)], with the
para-positronium annihilation rate λpara equal to 8 ns−1 and the
ortho-positronium annihilation rate λortho equal to 1

142 ns−1. For
example, from Table II, for the singlet with ion spin Mi = ± 1

2 ,

Npara(0)/Ntotal(0) = 1
8 (1 ± pp) (18)

and

Northo(0)/Ntotal(0) = 1
8 (3 ∓ pp). (19)

Without detection of the ion spins, the total probability, which
is the sum of Npara(0)/Ntotal(0) and Northo(0)/Ntotal(0), equals 1
as expected.

Second, we present the ratios of para- to ortho-positronium
yields at t = 0, given as Npara(0)/Northo(0). For example, from
Table II, for the doublet with target spin Me = ± 1

2 and ion
spins Si = 0, Mi = 0,

Npara(0)/Northo(0) = (1 ∓ ppcosβ)/(3 ± ppcosβ). (20)

In Fig. 1 (see also Table III), we present the ratios
Npara(0)/Northo(0) for all three targets, using the values from
Table II with pp = 0.5. Curves 1A and 1B represent the case of
the doublet in Eq. (20). We consider the variation in the ratios
of the para- to ortho-positronium yields as β ranges from 0◦ to
180◦. The ratios vary from 0 to 1 for all the curves except curve
2, which is constant at 1

3 . In some cases, the ratios for forming
one type of spin state are greater than those for the other.
For example, for a polarized doublet target with spin Me = 1

2 ,
0 < β < 90◦, and no detection of the Mi spin, the ratio for
forming the Si = 1 state (curve 3A) is greater than that for
forming the Si = 0 state (curve 1B).

Finally, we consider the para-positronium and ortho-
positronium yields as functions of time for the special case
when β = 90◦. The yields Npara (t) and Northo (t), at time t > 0,
obtained from the decay law for each type of positronium, are
given by

Npara(t) = Npara(0)e−λparat (21)

TABLE III. Properties of curves labeled 1A to 5B appearing in Fig. 1. The values are obtained
from Table II with pp = 0.5. See Table II for curve details.

1A unpolarized doublet, Si = 1, Mi = 1
polarized doublet, target spin Me = 1

2 , Si = 1, Mi = 1
polarized doublet, target spin Me = − 1

2 , Si = 0, Mi undetected or 0, or Si = 1, Mi = 0
unpolarized triplet, Si = 3

2 , Mi = 3
2

polarized triplet, target spin Me = 1, Si = 3
2 , Mi = 3

2
polarized triplet, target spin Me = 0, Si = 1

2 , Mi = 1
2 , or Si = 3

2 , Mi = 1
2

polarized triplet, target spin Me = −1, Si = 1
2 , Mi undetected or − 1

2 , or Si = 3
2 , Mi = − 1

2
1B unpolarized doublet, Si = 1, Mi = −1

polarized doublet, target spin Me = 1
2 , Si = 0, Mi undetected or 0, or Si = 1, Mi = 0

polarized doublet, target spin Me = − 1
2 , Si = 1, Mi = −1

unpolarized triplet, Si = 3
2 , Mi = − 3

2
polarized triplet, target spin Me = 1, Si = 1

2 , Mi undetected or 1
2 , or Si = 3

2 , Mi = 1
2

polarized triplet, target spin Me = 0, Si = 1
2 , Mi = − 1

2 , or Si = 3
2 , Mi = − 1

2
polarized triplet, target spin Me = −1, Si = 3

2 , Mi = − 3
2

2 unpolarized doublet, Si = 0, Mi = 0, Si = 1, Mi = 0
polarized triplet, target spin Me = 0, Si = 1

2 , Mi undetected, or Si = 3
2 , Mi undetected

polarized triplet, target spin Me = 0, Si , Mi undetected
3A polarized doublet, target spin Me = 1

2 , Si = 1, Mi undetected
polarized doublet, target spin Me = − 1

2 , Si , Mi undetected
unpolarized triplet, Si = 1

2 , Mi = − 1
2 , or Si = 3

2 , Mi = 1
2

3B polarized doublet, target spin Me = − 1
2 , Si = 1, Mi undetected

polarized doublet, target spin Me = 1
2 , Si , Mi undetected

unpolarized triplet, Si = 1
2 , Mi = 1

2 , or Si = 3
2 , Mi = − 1

2
4A polarized triplet, target spin Me = 1, Si = 3

2 , Mi undetected
4B polarized triplet, target spin Me = −1, Si = 3

2 , Mi undetected
5A polarized triplet, target spin Me = −1, Si , Mi undetected
5B polarized triplet, target spin Me = 1, Si , Mi undetected
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FIG. 1. The ratios Npara(0)/Northo(0) for the unpolarized and
polarized doublet and the unpolarized and polarized triplet. The
values are obtained from Table II with pp = 0.5. The curves labeled
1A–5B represent the cases given in Table III.

and

Northo(t) = Northo(0)e−λorthot . (22)

We represent the values of Npara (0) and Northo (0) from
Table II for the doublet and triplet targets as (integer)

48 |f Se |2
and (integer)

16 |f Se |2, respectively. For the doublet, integer = 4,
8, 12, or 24, and for the triplet, integer = 3, 6, 9, 12, or 24.
Equations (21) and (22) can now be recast so that ln[Npara (0)]
and ln[Northo (0)] become intercepts in straight-line equations
of the form

ln Npara(t) = ln

(
(integer)

48
|f Se |2

)
− λparat (23)

and

ln Northo(t) = ln

(
(integer)

16
|f Se |2

)
− λorthot. (24)

As noted earlier, para- and ortho-positronium differ in their
spin (0 for para and 1 for ortho), types of decay (two-photon
for para and three-photon for ortho), and annihilation rates
(8 ns−1 for para and 1

142 ns−1 for ortho). These differences
are manifested in Eqs. (18)–(20), (23), and (24) and provide a
specific experimental tool for the detection of the spins of the
final states.

IV. CONCLUSION

We have described a method to calculate ratios of para-
to ortho-positronium yields as well as probabilities for the
formation of para- and ortho-positronium in coincidence with
a target ion, in the collision of a polarized positron beam with
three types of targets. We have considered unpolarized and
polarized targets and all possible ion spin states. We have given
the ratios and probabilities as functions of the angle β. We have
presented the ratios of para-positronium to ortho-positronium
yields as well as total positronium annihilation rates, at t = 0,

as functions of β. We have also presented the para-positronium
and ortho-positronium yields as functions of time, for fixed β.

Some of the spin structures considered in the electron
scattering and nuclear physics processes in Refs. [10–15] are
similar to those in our work. The techniques that we adopted
from Ref. [3] have also been used in Refs. [10–15] for polarized
electron-atom scattering and in nuclear processes involving
polarized proton, neutron, deuteron, and triton beams and
polarized proton and deuteron targets. However, an important
difference between polarized positron-atom collisions and
polarized electron-atom collisions is that positronium forma-
tion can occur only with positron collisions, while elastic
scattering, excitation, and ionization can occur with both
positron and electron collisions [17]. The nuclear physics
interactions are strongly spin dependent, and therefore we
expect the scattering-matrix elements in those cases to depend
on more than just Racah coefficients, unlike our work, in which
the entire spin dependence is in the recoupling coefficients.
Furthermore, since para-positronium and ortho-positronium
have different spins, types of decay, and rates of decay,
positron-atom collisions in which both types of positronium
are formed are useful for experimental detection of the spins of
the final states. For these reasons, the positron-atom collision
process with the production of positronium and an atomic
ion, studied here, is unique and differs from both polarized
electron-atom scattering as well as nuclear interactions.

Spin effects were a focus of a 1985 Positron Workshop
[18], and since then there have been considerable advances
in the development of intense polarized positron beams
[19–21]. Reference [22] gives a comprehensive compilation
of theoretical and experimental research in the field of
positron physics. Measurements of differential cross sections
for positronium formation made during positronium beam-
development experiments, as well as positron-argon and
positron-krypton collisions in which positronium is detected
in coincidence with the atomic ion, are presented [22].
Theoretical calculations which are most relevant to our study
include positron-hydrogen and positron-helium scattering.
Cross sections for total positronium formation as well as for
the formation of the positronium states, 1s, 2s, and 2p, for
positron-hydrogen scattering in the energy range 0–110 eV,
calculated using a 33-state approximation, are presented in
Ref. [23]. Total positronium formation cross sections for
positron-helium scattering in the Ore gap (17.78–20.58 eV),
calculated using the Kohn variational method, are given in
Ref. [24]. Cross sections for total positronium formation as
well as for the formation of the positronium states, 1s, 2s,
and 2p, for positron-helium scattering in the energy range
above the positronium formation threshold of 17.78 eV, cal-
culated using coupled-pseudostate methods, are presented in
Ref. [25].

In this article, we have not calculated differential cross
sections or polarization vectors for the outgoing ions, which
could be useful for specifying their direction. Differential
cross sections can be calculated using the density matrices
given by Eqs. (11)–(14) and Eq. (14.72) in Ref. [26] or
Eq. (12) in Chap. 55 of Ref. [1], while polarization vectors
can be calculated using Eqs. (11)–(14) and Eq. (13) in
Chap. 55 of Ref. [1]. Our focus in this work is to provide
some motivation for experiments to look for para- and
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ortho-positronium yields separately, as well as for positronium
formation in coincidence with specific spin states of the
outgoing ion. We would like to postpone calculations of
observables such as differential cross sections and polarization
vectors, with comparisons to relevant quantities in theoretical
and experimental studies of positron-hydrogen scattering
or positron-helium scattering, to the future. Our next step
is to study positronium quenching and dissociative attach-
ment. The positronium-quenching process can be described
as target + positronium → target + positronium. If an ortho-
positronium beam is used, both para- and ortho-positronium
can be formed in the final state. In the dissociative-attachment

process described as target molecule + positron → target
atom + positronium oxide, both para- and ortho-positronium
oxides can be formed in the final state. The technique described
in this article can be very easily used to calculate positronium
yields for the quenching process or positronium-oxide yields
for the dissociative-attachment process.
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