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We show how to protect a stream of quantum information from decoherence induced by a noisy quantum
communication channel. We exploit preshared entanglement and a convolutional coding structure to develop
a theory of entanglement-assisted quantum convolutional coding. Our construction produces a Calderbank-
Shor-Steane (CSS) entanglement-assisted quantum convolutional code from two arbitrary classical binary
convolutional codes. The rate and error-correcting properties of the classical convolutional codes directly
determine the corresponding properties of the resulting entanglement-assisted quantum convolutional code.
We explain how to encode our CSS entanglement-assisted quantum convolutional codes starting from a stream
of information qubits, ancilla qubits, and shared entangled bits.
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I. INTRODUCTION

Quantum error correction theory [1–6] stands as the pivotal
theoretical tool that will make reliable quantum computing
and quantum communication possible. Any future quantum
information processing device will operate faithfully only if it
employs an error correction scheme. This scheme can be an
active scheme [4], a passive scheme [7–9], or a combination
of both techniques [10–14].

Mermin proclaims it a “miracle” that quantum error
correction is even possible [15]. Various obstacles such
as the no-cloning theorem [16], measurement destroying a
quantum state, and continuous quantum errors seem to pose
an insurmountable barrier to a protocol for quantum error
correction. Despite these obstacles, Shor demonstrated the
first quantum error-correcting code that reduces the negative
effects of decoherence on a quantum bit [1]. Shor’s code
overcame all of the above difficulties and established the basic
principles for constructing a general theory of quantum error
correction [4–6].

Gottesman formalized the theory of quantum block coding
by establishing the stabilizer formalism [4]. The stabilizer
formalism allows one to import self-orthogonal classical
block codes for use in quantum error correction [6]. This
technique has the benefit of exploiting the large body of
research on classical coding theory [17] for use in quantum
error correction, but the self-orthogonality constraint limits
the classical block codes that we can import.

Bowen was the first to extend the stabilizer formalism by
providing an example of a code that exploits entanglement
shared between a sender and a receiver [18]. The underlying
assumption of Bowen’s code is that the sender and receiver
share a set of noiseless ebits (entangled qubits) before
quantum communication begins. Many quantum protocols
such as teleportation [19] and superdense coding [20] are
“entanglement-assisted” protocols because they assume that
noiseless ebits are available.
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Brun, Devetak, and Hsieh generalized Bowen’s example
by constructing a theory of stabilizer codes that employs
ancilla qubits and shared ebits for encoding a quantum error-
correcting code [21,22]. The so-called entanglement-assisted
stabilizer formalism subsumes the stabilizer formalism as the
theory of active quantum error correction.

The major benefit of the entanglement-assisted stabilizer
formalism is that we can construct an entanglement-assisted
quantum code from two arbitrary classical binary block codes
or from an arbitrary classical quaternary block code. The rates
and error-correcting properties of the classical codes translate
to the resulting quantum codes. The entanglement-assisted
stabilizer formalism may be able to reduce the problem of
finding high-performance quantum codes approaching the
quantum capacity [23–27] to the problem of finding good
classical linear codes approaching the classical capacity [28].

Another extension of the theory of quantum error correction
protects a potentially infinite stream of quantum information
against the corruption induced by a noisy quantum com-
munication channel [29–35]. These quantum convolutional
codes possess several advantages over quantum block codes. A
quantum convolutional code typically has lower encoding and
decoding complexity and superior code rate when compared
to a block code that protects the same number of information
qubits [35].

Forney et al. have determined a method for importing an
arbitrary classical self-orthogonal quaternary code for use
as a quantum convolutional code [34,35]. The technique is
similar to that for importing a classical block code as a
quantum block code [6]. One limitation of this technique is
that the self-orthogonality constraint is more restrictive in
the convolutional setting. Each generator for the quantum
convolutional code must commute not only with the other
generators, but it must commute also with any arbitrary shift
of itself and any arbitrary shift of the other generators. Forney
et al. performed specialized searches to determine classical
quaternary codes that satisfy the restrictive self-orthogonality
constraint [35].

In this paper, we develop a theory of entanglement-
assisted quantum convolutional coding for a broad class
of codes. Our major result is that we can produce an
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entanglement-assisted quantum convolutional code from two
arbitrary classical binary convolutional codes. The resulting
quantum convolutional codes admit a Calderbank-Shor-Steane
(CSS) structure [2,3,36]. The rates and error-correcting prop-
erties of the two binary classical convolutional codes directly
determine the corresponding properties of the entanglement-
assisted quantum convolutional code.

Our techniques for encoding and decoding are also an
expansion of previous techniques from quantum convolutional
coding theory. Previous techniques for encoding and decoding
include finite-depth operations only. A finite-depth operation
propagates errors to a finite number of neighboring qubits
in the qubit stream. We introduce an infinite-depth operation
to the set of shift-invariant Clifford operations and explain
it in detail in Sec. VI. We must be delicate when using
infinite-depth operations because they can propagate errors to
an infinite number of neighboring qubits in the qubit stream.
We explain our assumptions in detail in Sec. VII for including
infinite-depth operations in our entanglement-assisted quan-
tum convolutional codes. An infinite-depth operation gives
more flexibility when designing encoding circuits—similar to
the way in which an infinite-impulse response filter gives more
flexibility in the design of classical convolutional circuits. It
also is the key operation enabling us to import arbitrary clas-
sical convolutional codes for entanglement-assisted quantum
coding.

Our CSS entanglement-assisted quantum convolutional
codes divide into two classes based on certain properties of the
classical codes from which we produce them. These properties
of the classical codes determine the structure of the encoding
and decoding circuit for the code, and the structure of the
encoding and decoding circuit in turn determines the class of
the entanglement-assisted quantum convolutional code.

1. Codes in the first class admit both a finite-depth
encoding and decoding circuit.

2. Codes in the second class have an encoding circuit that
employs both finite-depth and infinite-depth operations. Their
decoding circuits have finite-depth operations only.

We structure our work as follows. Sec. II reviews the
stabilizer formalism for quantum block codes, entanglement-
assisted quantum codes, and convolutional stabilizer codes.
We review the important isomorphism that allows us to
work with matrices of binary polynomials rather than infinite
tensor products of Pauli matrices. Sec. III reviews finite-depth
Clifford operations for use in encoding and decoding [31–33].
We outline the operation of an entanglement-assisted quantum
convolutional code and present our main theorem in Sec. IV.
This theorem shows how to produce a CSS entanglement-
assisted quantum convolutional code from two arbitrary clas-
sical binary convolutional codes. The theorem gives the rate
and error-correcting properties of a CSS entanglement-assisted
quantum convolutional code as a function of the parameters of
the classical convolutional codes. Sec. V completes the proof
of the theorem for our first class of entanglement-assisted
quantum convolutional codes. In Sec. VI, we introduce an
infinite-depth encoding operation to the set of shift-invariant
Clifford operations and discuss its effect on both the sta-
bilizer and the logical operators for the information qubits.
Sec. VII completes the proof of our theorem for the second
class of entanglement-assisted quantum convolutional codes.

We discuss the implications of the assumptions for the different
classes of entanglement-assisted quantum convolutional codes
while developing the constructions. Our hope is that our
theory will produce high-performance quantum convolutional
codes by importing high-performance classical convolutional
codes.

II. REVIEW OF THE STABILIZER FORMALISM

The stabilizer formalism is a mathematical framework
for quantum error correction [4,37]. This framework has
many similarities with classical coding theory, and it is even
possible to import a classical code for use in quantum error
correction by employing the CSS construction [2,3,36]. We
briefly review the stabilizer theory for quantum block codes,
entanglement-assisted quantum block codes, and quantum
convolutional codes (see Refs. [35,38] for a more detailed
review).

A. Stabilizer formalism for quantum block codes

The following four matrices,

I ≡
[

1 0

0 1

]
, X ≡

[
0 1

1 0

]
,

Y ≡
[

0 −i

i 0

]
, Z ≡

[
1 0

0 −1

]
,

in the Pauli group � = {I,X,Y,Z} are the most important
in formulating a quantum error-correcting code. Two crucial
properties of these matrices are useful: Each matrix in �

has eigenvalues equal to +1 or −1, and any two matrices
in � either commute or anticommute. Matrices in � act on
a two-dimensional complex vector, or equivalently, a single
qubit.

In general, a quantum error-correcting code uses n physical
qubits to protect a smaller set of information qubits against
decoherence or quantum noise. An n-qubit quantum error-
correcting code employs elements of the Pauli group �n. The
Pauli group �n consists of n-fold tensor products of Pauli
matrices:

�n =
{

eiφA1 ⊗ · · · ⊗ An : ∀j ∈ {1, . . . ,n},
Aj ∈ �, φ ∈ {0,π/2,π,3π/2}

}
. (1)

We liberally omit the tensor product symbol in what follows
so that A1 · · · An ≡ A1 ⊗ · · · ⊗ An. The above two crucial
properties for the single-qubit Pauli group � still hold for the
Pauli group �n (up to an irrelevant phase for the eigenvalue
property). Matrices in �n act on a 2n-dimensional complex
vector, or equivalently, an n-qubit quantum register.

We can phrase the theory of quantum error correction in
purely mathematical terms using elements of �n. Consider
a matrix g1 ∈ �n that is not equal to ±I . Matrix g1 then
has two eigenspaces each of size 2n−1. We can identify one
eigenspace with the eigenvalue +1 and the other eigenspace
with eigenvalue −1. Consider a matrix g2 ∈ �n different from
g1 that commutes with g1. Matrix g2 also has two eigenspaces
each of size 2n−1 and identified similarly by its eigenvalues
±1. Both g1 and g2 have simultaneous eigenspaces because
they commute. These matrices together have four different
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FIG. 1. The operation of a general stabilizer code. Thin lines
denote quantum information and thick lines denote classical informa-
tion. Slanted bars denote multiple qubits. A sender employs a unitary
encoding operation U to encode a set of information qubits in the state
|ψ〉 with the help of ancilla qubits each in the state |0〉. The sender
transmits the encoded qubits over the noisy quantum communication
channel. The receiver performs quantum measurements to diagnose
which error has occurred. He finally performs a recovery operation
R to reverse the error from the channel.

eigenspaces, each of size 2n−2 and identified by the eigenvalues
±1, ± 1 of g1 and g2, respectively. We can continue this
process of adding more commuting and independent matrices
to a set S. The matrices in S are independent in the sense that
no matrix in S is a product of two or more other matrices in S.
Adding more matrices from �n to S continues to divide the
eigenspaces of matrices in S. In general, suppose S consists
of n − k independent and commuting matrices g1, . . . , gn−k ∈
�n. These n − k matrices then have 2n−k different eigenspaces
each of size 2k and identified by the eigenvalues ±1, . . . ,±1 of
g1, . . . , gn−k , respectively. Consider that the Hilbert space of
k qubits has size 2k . A dimension count immediately suggests
that we can encode k qubits into one of the eigenspaces of S.
We typically encode these k qubits into the simultaneous +1
eigenspace of g1, . . . , gn−k . This eigenspace is the codespace.
An [n,k] quantum error-correcting code encodes k information
qubits into the simultaneous +1 eigenspace of n − k matrices
g1, . . . , gn−k ∈ �n. The rate of an [n,k] code is the ratio of
information qubits to physical qubits: k/n.

The operation of an [n,k] quantum error-correcting code
consists of four steps. Figure 1 highlights these steps. First,
a unitary operation U encodes k qubits and n − k ancilla
qubits into the simultaneous +1 eigenspace of the matrices
g1, . . . , gn−k . The sender transmits the n encoded qubits by
using the noisy quantum communication channel n times.
The receiver performs quantum measurements of the n − k

matrices g1, . . . , gn−k . These measurements learn only about
errors that may occur and do not disturb the encoded quantum
information. Each measurement gives a bit result equal to
+1 or −1, and the result of all the measurements is to
project the n-qubit quantum register into one of the 2n−k

different eigenspaces of g1, . . . , gn−k . Suppose that no error
occurs. Then the measurements project the n qubits into the
simultaneous +1 eigenspace and return a bit vector consisting
of n − k ones. Now suppose that a quantum error in an error
set E occurs. The error takes the encoded quantum state out of
the codespace and into one of the other 2n−k − 1 orthogonal
eigenspaces. The measurements can detect that an error has
occurred because the result of the measurements is a bit vector
differing from the all ones vector. The receiver may be able

to identify uniquely which error has occurred if it satisfies the
following quantum error correction conditions:

∀Ea,Eb ∈ E ∃ gi ∈ S : {gi,E
†
aEb} = 0 or E†

aEb ∈ S.

The first condition states that errors are detectable if they
anticommute with one of the generators in S, and the second
condition states that errors have no effect on the encoded state
if they are in S. If the receiver can identify which error occurs,
he can then apply unitary operation R that is the inverse of the
error. He finally performs a decoding unitary that decodes the
k information qubits.

We comment briefly on the encoding operation U . The
encoding operation U is a special type of unitary matrix
called a Clifford operation. A Clifford operation U is one
that preserves elements of the Pauli group under conjugation:
A ∈ �n ⇒ UAU † ∈ �n. The controlled-NOT (C-NOT) gate,
the Hadamard gate H , and the phase gate P suffice to
implement any unitary matrix in the Clifford group [4]. A
quantum code with the CSS structure needs only the C-NOT

and Hadamard gates for encoding and decoding. The matrix
for the C-NOT gate acting on two qubits is

C-NOT =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤
⎥⎥⎥⎦ , (2)

the matrix for the Hadamard gate H acting on a single qubit is

H = 1√
2

[
1 1

1 −1

]
, (3)

and the matrix for the phase gate P acting on a single qubit is

P =
[

1 0

0 i

]
. (4)

For the C-NOT gate, the first qubit is the “control” qubit and
the second qubit is the “target” qubit. The standard basis for
elements of the two-qubit Pauli group �2 is as follows:

Z I

I Z

X I

I X

, (5)

because any element of �2 is a product of the above four
matrices up to an irrelevant phase. The standard basis for �1

is X and Z for the same reasons. The C-NOT gate transforms
the standard basis of �2 under conjugation as follows:

Z I

I Z

X I

I X

→

Z I

Z Z

X X

I X

, (6)

where the first qubit is the control and the second qubit is the
target. The Hadamard gate H transforms the standard basis of
�1 under conjugation as follows:

Z

X
→ X

Z
, (7)

042333-3



MARK M. WILDE AND TODD A. BRUN PHYSICAL REVIEW A 81, 042333 (2010)

and the phase gate P transforms the standard basis as follows:

Z

X
→ Z

Y
. (8)

The appendix of Ref. [38] details an algorithm that determines
an encoding circuit consisting of C-NOT, H , and P gates for any
stabilizer code or any entanglement-assisted stabilizer code
(we review entanglement-assisted codes in the next section).

Another aspect of the theory of quantum error correction
is later useful for our purposes in quantum convolutional
coding. This aspect concerns the information qubits and the
operators that change them. Consider that the initial unencoded
state of a quantum error-correcting code is a simultaneous
+1 eigenstate of the matrices Zk+1, . . . ,Zn, where Zi has a
Z matrix operating on qubit i and the identity I on all other
qubits. Therefore, the matrices Zk+1, . . . ,Zn constitute a sta-
bilizer for the unencoded state. The initial unencoded logical
operators for the information qubits are Z1,X1, . . . ,Zk,Xk .
The encoding operation U rotates the unencoded stabilizer
matrices Zk+1, . . . ,Zn and the unencoded logical operators
Z1,X1, . . . ,Zk,Xk to the encoded stabilizer Z̄k+1, . . . , Z̄n and
the encoded logical operators Z̄1,X̄1, . . . ,Z̄k,X̄k , respectively.
The encoded matrices Z̄k+1, . . . ,Z̄n are, respectively, equiv-
alent to the matrices g1, . . . , gn−k in the above discussion.
The encoded operators obey the same commutation relations
as their unencoded counterparts. We would violate the un-
certainty principle if this invariance does not hold. Therefore,
each of the encoded logical operators commutes with elements
of the stabilizer S. Let A denote an arbitrary logical operator
from the above set and let Z̄i denote an arbitrary element of
the stabilizer S. The operator AZ̄i (or equivalently Z̄iA) is an
equivalent logical operator because AZ̄i and A have the same
effect on an encoded state |ψ̄〉:

Z̄iA|ψ̄〉 = AZ̄i |ψ̄〉 = A|ψ̄〉. (9)

We make extensive use of the above fact in our work.
The logical operators also provide a useful way to character-

ize the information qubits. Gottesman showed that the logical
operators for the information qubits provide a straightforward
way to characterize the information qubits as they progress
through a quantum circuit [4]. As an example of this technique,
he develops quantum teleportation in the stabilizer formalism.
The logical operators at the beginning of the protocol are X1

and Z1 and become X3 and Z3 at the end of the protocol.
The quantum information in qubit one teleports to qubit three
because the logical operators act on only qubit three at the end
of the protocol. We use the same idea throughout this paper
to determine if our decoding circuits have truly decoded the
information qubits.

It is possible to produce a stabilizer code from two classical
binary block codes by employing the CSS construction.
The elements of the stabilizer group of a CSS stabilizer
code commute if and only if the codewords of one clas-
sical code are orthogonal to the codewords of the other
classical code with respect to the binary inner product. The
codes that we can import must satisfy this condition because
the commuting condition is essential in formulating a quantum
code. The entanglement-assisted stabilizer formalism finds a

clever way around this restriction by exploiting entanglement
shared between sender and receiver.

B. Entanglement-assisted stabilizer formalism
for quantum block codes

The entanglement-assisted stabilizer formalism is a sig-
nificant extension of the standard stabilizer formalism that
incorporates shared entanglement as a resource for encoding
[21,22]. Several references provide a review of this technique
and generalizations of the basic theory to block [39] and convo-
lutional [38] entanglement distillation protocols, continuous-
variable codes [40], and entanglement-assisted operator codes
for discrete-variable [13,14] and continuous-variable systems
[41].

An entanglement-assisted code employs ebits or Bell states
in addition to ancilla qubits for quantum redundancy. We
express the state |�+〉 of an ebit shared between a sender
Alice and a receiver Bob as follows:

|�+〉 ≡ |00〉AB + |11〉AB

√
2

. (10)

The advantage of the entanglement-assisted stabilizer
formalism is that it allows us to exploit the error-correcting
properties of an arbitrary set of Pauli matrices. They do not
necessarily have to form a commuting set. In particular, this
construction allows us to produce a quantum block code
from two arbitrary classical binary block codes by employ-
ing the CSS construction. Two high-performance classical
block codes lead to a high-performance entanglement-assisted
quantum code. The entanglement-assisted method allows us
to exploit the full error-correcting power of classical coding
theory.

An [n,k; c] entanglement-assisted code uses c ebits and
n − k − c ancilla qubits to encode k information qubits. It
operates as follows. The sender and receiver share c ebits
before quantum communication begins. The sender encodes
her k information qubits with the help of n − k − c ancilla
qubits and her half of the c ebits. She performs an encoding
operation U on her n qubits and sends them over a noisy
quantum communication channel. The noisy channel affects
these n qubits only and does not affect the receiver’s half
of the c ebits. The receiver combines his half of the c ebits
with those he receives from the noisy quantum channel. He
performs measurements on all n + c qubits to diagnose an error
that may occur on the n qubits. He learns which error occurs
and performs a recovery operation that eliminates the error.
Figure 2 illustrates the operation of an entanglement-assisted
stabilizer code.

Suppose we have an arbitrary set of Pauli matrices in �n

whose error-correcting properties we would like to exploit. We
do not necessarily know beforehand how many ebits we require
for the Pauli matrices to form a commuting set, and we would
like a method to determine the minimum number of ebits.
Several methods exist [13,14,21,22,38], but the algorithm in
the appendix of Ref. [38] determines the minimum number of
ebits required for the code, the encoding and decoding circuit
for the code, and the measurements the receiver performs to
diagnose errors. It essentially “kills three birds with one stone.”
The algorithms we employ in this work are similar to the
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FIG. 2. The operation of a general entanglement-assisted stabi-
lizer code. The sender encodes a set of information qubits with the
help of ancilla qubits and her half of a set of shared ebits. She sends her
encoded qubits over a noisy quantum communication channel. The
entanglement-assisted communication paradigm assumes that the
receiver’s half of the shared ebits remain noiseless throughout this
process. The receiver combines the noisy qubits with his half of
the shared ebits. He performs measurements on all of the qubits to
diagnose which error occurs and reverses the effect of this error by
performing a recovery operation.

algorithm in Ref. [38], but they are quite a bit more complicated
because of the convolutional nature of our codes.

1. Rate of an entanglement-assisted quantum code

We can interpret the rate of an entanglement-assisted
quantum convolutional code in three different ways [21,22,38].
Suppose that an entanglement-assisted quantum code encodes
k qubits in n qubits with the help of c ebits.

1. The “entanglement-assisted” rate assumes that entan-
glement shared between sender and receiver is free. Bennett
et al. make this assumption when deriving the entanglement-
assisted capacity of a quantum channel for sending quantum
information [26,27]. The entanglement-assisted rate for the
above example is k/n.

2. The “trade-off” rate assumes that entanglement is not
free and a rate pair determines performance. The first number
in the pair is the number of noiseless qubits generated per
channel use, and the second number in the pair is the number
of ebits consumed per channel use. The rate pair for the
above example is (k/n,c/n). Quantum information theorists
have computed asymptotic trade-off curves that bound the
rate region in which achievable rate pairs lie [42]. Brun
et al.’s construction for an entanglement-assisted quantum
block code minimizes the number c of ebits given a fixed
number k and n of information qubits and encoded qubits,
respectively [21,22].

3. The “catalytic rate” assumes that bits of entanglement
are built up at the expense of transmitted qubits [21,22]. A
noiseless quantum channel or the encoded use of noisy quan-
tum channel are two different ways to build up entanglement
between a sender and receiver. The catalytic rate for the above
code is (k − c)/n.

Which interpretation is most reasonable depends on the
context in which we use the code. In any case, the param-
eters n, k, and c ultimately govern performance, regardless
of which definition of the rate we use to interpret that
performance.

C. Stabilizer formalism for quantum convolutional codes

We review the theory of convolutional stabilizer codes by
considering a set of Pauli matrices that stabilize a stream of
encoded qubits. We follow with the most important part of
this review—the isomorphism from the set of Pauli sequences
to the module over the ring of binary polynomials [30,31,
35]. We name it the Pauli-to-binary (P2B) isomorphism. The
P2B isomorphism is important because it is easier to perform
manipulations with vectors of binary polynomials than with
Pauli sequences.

We review the notation and basic definitions first. A Pauli
sequence A is a countably infinite tensor product of Pauli
matrices Ai :

A =
∞⊗
i=0

Ai.

The weight of a Pauli sequence is the number of Pauli matrices
in the countably-infinite tensor product that are not equal to
the identity matrix. A Pauli sequence has finite support if its
weight is finite. Let �Z+

denote the set of all Pauli sequences
and let F (�Z+

) denote the set of Pauli sequences with finite
support.

Definition 1. A rate-k/n quantum convolutional code
consists of a basic set G0 of n − k generators and all of their
n-qubit shifts [29,30,35]. The generators in G0 commute with
each other and with all of their n-qubit shifts. The parameters
k and n satisfy 0 � k � n and the basic set G0 is as follows:

G0 = {Gi ∈ F (�Z+
) : 1 � i � n − k}.

A frame of the code consists of n qubits.
The operation of a rate-k/n quantum convolutional code

begins with the sender encoding a stream of information
qubits. Figure 3 of Ref. [38] illustrates the basic operation of a
quantum convolutional code. The sender encodes n − k ancilla
qubits and k information qubits per frame [31,33] and transmits
the encoded qubits over a noisy quantum channel. The above
stabilizer G0 and all of its shifts act like a parity check matrix
for the quantum convolutional code. The receiver measures the
generators in the stabilizer to determine an error syndrome. It
is important that the generators in G0 have finite weight so
that the receiver can perform the measurements and produce
an error syndrome. It is also important that the generators
have a block-band form so that the receiver can perform the
measurements online as the noisy encoded qubits arrive. The
receiver processes the error syndrome with a method such as
the Viterbi algorithm [43] or any other decoding algorithm [44]
to determine the most likely error for each frame of quantum
data. The receiver performs a unitary that reverses the errors.
He finally processes the encoded qubits with a decoding circuit
to recover the original stream of information qubits.

1. The P2B isomorphism

We now review the P2B isomorphism from the set of
phase-free Pauli sequences to the module over the ring of
binary polynomials [30,35,38]. We illustrate it by example (see
Ref. [38] for a more rigorous development).
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FIG. 3. (Color online) An entanglement-assisted quantum convolutional code operates on a stream of qubits partitioned into a countable
number of frames. The sender encodes the frames of information qubits, ancilla qubits, and half of shared ebits with a repeated, overlapping
encoding circuit U . The noisy channel affects the sender’s encoded qubits but does not affect the receiver’s half of the shared ebits. The
receiver performs overlapping measurements on both the encoded qubits and his half of the shared ebits. These measurements produce an
error syndrome which the receiver can process to determine the most likely error. The receiver reverses the errors on the noisy qubits from the
sender. The final decoding circuit operates on all qubits in a frame and recovers the original stream of information qubits.

Suppose the following two basic generators specify a rate-
1/3 quantum convolutional code [34,35],

· · ·
∣∣∣∣ III

III

∣∣∣∣ XXX

ZZZ

∣∣∣∣XZY

ZYX

∣∣∣∣ III

III

∣∣∣∣ · · · (11)

The vertical bars indicate that we shift by multiples of three
to obtain the other generators in the quantum convolutional
code. Observe that the above two generators commute with all
of their three-qubit shifts.

The P2B isomorphism is a mapping from the above
stabilizer generators to a matrix whose entries are binary
polynomials. The left side of the matrix is the “Z” matrix
and the right side of the matrix is the “X” matrix. We consider
the entries in the first frame of the stabilizer generators in (11)
for now and map these entries to a matrix with binary entries.
The first frame of the first generator in (11) has “X” entries
only and the first frame of the second generator in (11) has “Z”
entries only. The binary matrix corresponding to the entries in
the first frame is as follows:

H0 =
[

0 0 0

1 1 1

∣∣∣∣ 1 1 1

0 0 0

]
.

The vertical bar now indicates the separation of the “Z” matrix
on the left and the “X” matrix on the right. A “Y” entry maps
to a “1” in both the “Z” and “X” matrix. Let us consider the
entries in the second frame of (11). They map to the following
binary matrix:

H1 =
[

0 1 1

1 1 0

∣∣∣∣ 1 0 1

0 1 1

]
.

We form a matrix of binary polynomials by incorporating
the delay transform or D transform. The following binary

polynomial matrix H (D) fully specifies the quantum convo-
lutional code:

H (D) = H0 + H1 · D

=
[

0 D D

1 + D 1 + D 1

∣∣∣∣ 1 + D 1 1 + D

0 D D

]
.

The above description of a quantum convolutional code
with a binary polynomial matrix is powerful because it allows
us to perform manipulations with finite polynomials rather than
with countably infinite sequences of Pauli matrices (classical
convolutional coding theory exploits the same idea [44]). The
first and second rows of H (D) capture all of the information
about the first and second generators in (11) and all of their
three-qubit shifts. We obtain the nl shift of either of the
above generators by multiplying the corresponding row in
H (D) by Dl .

2. The shifted symplectic product

The shifted symplectic product � provides a way to
determine the commutative properties of any convolutional
stabilizer code [30,38] (see Ref. [38] for a detailed discussion
of the shifted symplectic product with examples). Let z1 (D)
and z2 (D) denote the first and second respective rows of the
“Z” matrix of H (D). Let x1 (D) and x2 (D) be the first and
second respective rows of the “X” matrix of H (D). Let

h1(D) = (z1(D)|x1(D)),

h2(D) = (z2(D)|x2(D)),

denote the first and second respective rows of H (D). The
vectors h1(D) and h2(D) specify the first and second respective
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generators in (11). We define the shifted symplectic product
of h1(D) and h2(D) as follows:

(h1 � h2)(D) = z1(D−1) · x2(D) + x1(D−1) · z2(D),

where · denotes the binary inner product and addition is binary.
The shifted symplectic product (h1 � h2)(D) vanishes in

the above case. The shifted symplectic products (h1 � h1)(D)
and (h2 � h2)(D) also vanish. The shifted symplectic product
between two vectors of binary polynomials vanishes if and
only if their corresponding Pauli sequences commute [30,38].
Time reversal (substituting D−1 for D) ensures that the shifted
symplectic product checks commutativity for every shift of
the two Pauli sequences being compared. The cases where
the shifted symplectic product does not vanish (where the
two Pauli sequences anticommute for one or more shifts)
are important for constructing entanglement-assisted quantum
convolutional codes.

3. Row and column operations

We can perform row operations on binary polynomial
matrices for quantum convolutional codes. A row operation
is merely a “mental” operation that has no effect on the states
in the codespace or on the error-correcting properties of the
code. We have three types of row operations:

1. An elementary row operation multiplies a row times
an arbitrary binary polynomial and adds the result to another
row. This additive invariance holds for any code that admits
a description within the stabilizer formalism. Additive codes
are invariant under multiplication of the stabilizer generators
in the “Pauli picture” or under row addition in the “binary-
polynomial picture.”

2. Another type of row operation is to multiply a row by
an arbitrary power of D. Ollivier and Tillich discuss such row
operations as “multiplication of a line by D” and use them
to find encoding operations for their quantum convolutional
codes [30]. Grassl and Rötteler use this type of operation to
find a subcode of a given quantum convolutional code with
an equivalent asymptotic rate and equivalent error-correcting
properties [31]. We use this type of row operation in each of our
two classes of entanglement-assisted quantum convolutional
codes.

3. We also employ row operations that multiply a row
by an arbitrary polynomial (not necessarily a power of D).
We only use these operations when the receiver performs a
measurement to diagnose an error. This type of row operation
occurs when we have generators with infinite weight that we
would like to reduce to finite weight so that the receiver can
perform measurements in an online fashion as qubits arrive
from the noisy channel. We use this type of row operation in our
second class of entanglement-assisted quantum convolutional
codes.

A row operation does not change the shifted symplectic
product when all generators commute. A row operation does
change the shifted symplectic product of a set of generators
that do not commute. It is a convenient tool for constructing
our entanglement-assisted quantum convolutional codes.

We can also perform column operations on binary poly-
nomial matrices for quantum convolutional codes. Column
operations change the error-correcting properties of the code

and are important for realizing a periodic encoding circuit for
the code. We have two types of column operations:

1. An elementary column operation multiplies one column
by an arbitrary binary polynomial and adds the result to another
column. We implement elementary column operations with
gates from the shift-invariant Clifford group [31,33].

2. Another column operation is to multiply column i in
both the “X” and “Z” matrix by Dl where l ∈ Z. We perform
this operation by delaying or advancing the processing of qubit
i by l frames relative to the original frame.

A column operation implemented on the “X” side of the
binary polynomial matrix has a corresponding effect on the “Z”
side of the binary polynomial matrix. This corresponding effect
is a manifestation of the Heisenberg uncertainty principle
because commutation relations remain invariant with respect to
the action of quantum gates. The shifted symplectic product is
therefore invariant with respect to column operations from the
shift-invariant Clifford group. We describe possible column
operations for implementing encoding circuits in the next
section.

III. FINITE-DEPTH CLIFFORD OPERATIONS

One of the main advantages of a quantum convolutional
code is that its encoding circuit has a periodic form. We
can encode a stream of quantum information with the same
physical routines or devices and therefore reduce encoding
and decoding complexity.

Ollivier and Tillich were the first to discuss encoding cir-
cuits for quantum convolutional codes [29,30]. They provided
a set of necessary and sufficient conditions to determine when
an encoding circuit is noncatastrophic. A noncatastrophic en-
coding circuit does not propagate uncorrected errors infinitely
through the decoded information qubit stream. Classical
convolutional coding theory has a well-developed theory of
noncatastrophic encoding circuits [44].

Grassl and Rötteler later showed that Ollivier and Tillich’s
conditions for a circuit to be noncatastrophic are too restrictive
[31–33]. They found subcodes of quantum convolutional codes
that admit noncatastrophic encoders. The noncatastrophic
encoders are a sequence of Clifford circuits with finite
depth. They developed a formalism for encapsulating the
periodic structure of an encoding circuit by decomposing the
encoding circuit as a set of elementary column operations.
Their decoding circuits are exact inverses of their encoding
circuits because their decoding circuits perform the encoding
operations in reverse order.

Definition 2. A finite-depth operation transforms every
finite-weight stabilizer generator to one with finite weight.

We review the finite-depth operations in the shift-invariant
Clifford group [31–33]. The shift-invariant Clifford group is
an extension of the Clifford group operations mentioned in
Sec. II A. We describe how finite-depth operations in the shift-
invariant Clifford group affect the binary polynomial matrix
for a code. Each of the following operations acts on every
frame of a quantum convolutional code.

1. The sender performs a C-NOT from qubit i to qubit j

in every frame where qubit j is in a frame delayed by k. The
effect on the binary polynomial matrix is to multiply column
i by Dk and add the result to column j in the “X” matrix and
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to multiply column j by D−k and add the result to column i

in the “Z” matrix.
2. A Hadamard on qubit i swaps column i in the “X” matrix

with column i in the “Z” matrix.
3. A phase gate on qubit i adds column i from the “X”

matrix to column i in the “Z” matrix.
4. A controlled-phase gate from qubit i to qubit j in a

frame delayed by k multiplies column i in the “X” matrix by
Dk and adds the result to column j in the “Z” matrix. It also
multiples column j in the “X” matrix by D−k and adds the
result to column i in the “Z” matrix.

5. A controlled-phase gate from qubit i to qubit i in a
frame delayed by k multiplies column i in the “X” matrix by
Dk + D−k and adds the result to column i in the “Z” matrix.

We use finite-depth operations extensively in this work,
but we employ only the above Hadamard and C-NOT gates
because our entanglement-assisted quantum convolutional
codes have the CSS structure. Figure 4 gives an example
of an entanglement-assisted quantum convolutional code that
employs several finite-depth operations. The circuit encodes
a stream of information qubits with the help of ebits shared
between sender and receiver.

Multiple C-NOT gates can realize an elementary column
operation as described at the end of Sec. II. Suppose the
elementary column operation multiplies column i in the “X”
matrix by f (D) and adds the result to column j . Polynomial
f (D) is a summation of some finite set {l1, . . . ,ln} of powers
of D:

f (D) = Dl1 + · · · + Dln .

We can realize f (D) by performing a C-NOT gate from qubit i

to qubit j in a frame delayed by li for each i ∈ {1, . . . ,n}.

|ψ1〉A

|ψ2〉A

|ψ3〉A

|ψ4〉A

|ψ5〉A

|ψ6〉A

|Φ+〉BA

|Φ+〉BA

|Φ+〉BA

|Φ+〉BA

|Φ+〉BA

|Φ+〉BA

{
{
{
{
{
{

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

H

H

H

H

H

H

H

H

H

H

H

H

FIG. 4. (Color online) The finite-depth encoding circuit for the
entanglement-assisted quantum convolutional code in Example 1.
The above operations in reverse order give a valid decoding circuit.

IV. CSS ENTANGLEMENT-ASSISTED QUANTUM
CONVOLUTIONAL CODES

An entanglement-assisted quantum convolutional code
operates similarly to a standard quantum convolutional code.
The main difference is that the sender and receiver share
entanglement in the form of ebits. An [[n,k; c]] entanglement-
assisted quantum convolutional code encodes k information
qubits per frame with the help of c ebits and n − k − c ancilla
qubits per frame. Figure 3 highlights the main features of the
operation of an entanglement-assisted quantum convolutional
code. The sender encodes a stream of quantum information
using both additional ancillas and ebits. The sender performs
the encoding operations on her qubits only (i.e., not including
the halves of the ebits in possession of the receiver). The
encoding operations have a periodic structure so that the same
operations act on qubits in different frames and give the code
a memory structure. The sender can perform these encoding
operations in an online manner as she places more qubits in
the unencoded qubit stream. The sender transmits her encoded
qubits over the noisy quantum communication channel. The
noisy channel does not affect the receiver’s half of the shared
ebits. The receiver combines the received noisy qubits with his
half of the ebits and performs measurements to diagnose errors
that may occur. These measurements may overlap on some
of the same qubits. The receiver then diagnoses errors using
a classical technique such as Viterbi error estimation [43],
reverses the errors that the channel introduces, and finally
performs an online decoding circuit that outputs the original
information qubit stream.

Our main theorem below allows us to import two arbitrary
classical convolutional codes for use as a CSS entanglement-
assisted quantum convolutional code. Grassl and Rötteler
were the first to construct CSS quantum convolutional codes
from two classical binary convolutional codes that satisfy
an orthogonality constraint—the polynomial parity check
matrices H1(D) and H2(D) of the two classical codes are
orthogonal with respect to the shifted symplectic product [33]:

H1(D)HT
2 (D−1) = 0. (12)

The resulting symplectic code has a self-orthogonal parity-
check matrix when we join them together using the CSS
construction. Our theorem generalizes the work of Grassl and
Rötteler because we can import two arbitrary classical binary
convolutional codes—the codes do not necessarily have to
obey the self-orthogonality constraint.

The theorem gives a direct way to compute the amount
of entanglement that the code requires. The number of ebits
required is equal to the rank of a particular matrix derived from
the check matrices of the two classical codes. It generalizes an
earlier theorem that determines the amount of entanglement
required for an entanglement-assisted quantum block code
[13].

Theorem 1 also provides a formula to compute the per-
formance parameters of the entanglement-assisted quantum
convolutional code from the performance parameters of the
two classical codes. This formula ensures that high-rate
classical convolutional codes produce high-rate entanglement-
assisted quantum convolutional codes. Our constructions also
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ensure high performance for the “trade-off” and “catalytic”
rates by minimizing the number of ebits that the codes require.

We begin the proof of the theorem in this section and
complete it in different ways for each of our two classes
of entanglement-assisted quantum convolutional codes in
Secs. V and VII. The proofs detail how to encode a stream
of information qubits, ancilla qubits, and shared ebits into a
code that has the CSS structure.

Theorem 1. Let H1 (D) and H2 (D) be the respective
check matrices corresponding to noncatastrophic, delay-free
encoders for classical binary convolutional codes C1 and C2.
Suppose that classical code Ci encodes ki information bits with
n bits per frame where i = 1,2. The respective dimensions of
H1 (D) and H2 (D) are thus (n − k1) × n and (n − k2) × n.
Then the resulting entanglement-assisted quantum convolu-
tional code encodes k1 + k2 − n + c information qubits per
frame and is an [[n,k1 + k2 − n + c; c]] entanglement-assisted
quantum convolutional code. The code requires c ebits per
frame where c is equal to the rank of H1 (D) HT

2 (D−1).
Let us begin the proof of the above theorem by constructing

an entanglement-assisted quantum convolutional code. Con-
sider the following quantum check matrix in CSS form:[

H1(D)

0

∣∣∣∣ 0

H2(D)

]
. (13)

We label the above matrix as a “quantum check matrix”
for now because it does not necessarily correspond to a
commuting stabilizer. The quantum check matrix corresponds
to a set of Pauli sequences whose error-correcting properties
are desirable.

The following lemma begins the proof of the above theo-
rem. It details an initial decomposition of the above quantum
check matrix for each of our two classes of entanglement-
assisted quantum convolutional codes.

Lemma 1. Elementary row and column operations relate the
quantum check matrix in (13) to the following matrix:[

E(D) F (D)

0 0

∣∣∣∣ 0 0

I 0

]
,

where E (D) is dimension (n − k1) × (n − k2), F (D) is
(n − k1) × k2, the identity matrix is (n − k2) × (n − k2), and
the null matrix on the right is (n − k2) × k2. We give a
definition of E (D) and F (D) in the following proof.

Proof. The Smith form [44] of Hi (D) for each i = 1,2 is

Hi(D) = Ai(D)[ I 0 ]Bi(D), (14)

where Ai(D) is (n − ki) × (n − ki), the matrix in brackets is
(n − ki) × n, and Bi(D) is n × n [44]. Let Bia(D) be the first
n − ki rows of Bi(D) and let Bib(D) be the last ki rows of
Bi(D):

Bi(D) =
[

Bia(D)

Bib(D)

]
.

The (n − ki) × (n − ki) identity matrix in brackets in (14)
indicates that the invariant factors of Hi(D) for each i = 1,2
are all equal to one [44]. The invariant factors are all unity for
both check matrices because the check matrices correspond to
noncatastrophic, delay-free encoders [44]. The matrices Ai(D)

and Bi(D) are a product of a sequence of elementary row and
column operations, respectively [44].

Premultiplying Hi(D) by A−1
i (D) gives a check matrix

H ′
i (D) for each i = 1,2. Matrix H ′

i (D) is a check matrix for
code Ci with equivalent error-correcting properties as Hi(D)
because row operations relate the two matrices. This new check
matrix H ′

i (D) is equal to the first n − ki rows of matrix Bi(D):

H ′
i (D) = Bia(D).

The invariant factors of H1(D)HT
2 (D−1) are equivalent to

those of H ′
1(D)H ′T

2 (D−1) because they are related by row and
column operations [44]:

H1(D)HT
2 (D−1) = A1(D)H ′

1(D)H ′T
2 (D−1)AT

2 (D−1). (15)

We now decompose the above quantum check matrix into a
basic form using elementary row and column operations. The
row operations have no effect on the error-correcting properties
of the code, and the column operations correspond to elements
of an encoding circuit. We later show how to incorporate ebits
so that the quantum check matrix forms a valid commuting
stabilizer.

Perform the row operations in matrices A−1
i (D) for both

check matrices Hi(D). The quantum check matrix becomes[
B1a(D)

0

∣∣∣∣ 0

B2a(D)

]
. (16)

The error-correcting properties of the above generators are
equivalent to those of the generators in (13) because row
operations relate the two sets of generators. The matrix B2(D)
corresponds to a sequence of elementary column operations
B2,i(D):

B2(D) = B2,1(D) · · ·B2,l(D) =
l∏

i=1

B2,i(D).

The inverse matrix B−1
2 (D) is therefore equal to the above

sequence of operations in reverse order:

B−1
2 (D) = B2,l(D) · · ·B2,1(D) =

1∏
i=l

B2,i(D).

Perform the elementary column operations in B−1
2 (D) with

C-NOT and SWAP gates [31]. The effect of each elementary
column operation B2,i(D) is to postmultiply the “X” matrix
by B2,i(D) and to postmultiply the “Z” matrix by BT

2,i(D
−1).

Therefore, the effect of all elementary operations is to
postmultiply the “Z” matrix by BT

2 (D−1) because

1∏
i=l

BT
2,i(D

−1) =
(

l∏
i=1

B2,i(D
−1)

)T

= BT
2 (D−1).

The quantum check matrix in (16) becomes[
B1a(D)BT

2 (D−1)

0

∣∣∣∣ 0 0

I 0

]
. (17)

Let E(D) be equal to the first n − k1 rows and n − k2 columns
of the “Z” matrix:

E(D) ≡ B1,a(D)BT
2,a(D−1),
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and let F (D) be equal to the first n − k1 rows and last k2

columns of the “Z” matrix:

F (D) ≡ B1,a(D)BT
2,b(D−1).

The quantum check matrix in (17) is then equivalent to the
following matrix:[

E(D) F (D)

0 0

∣∣∣∣ 0 0

I 0

]
, (18)

where each matrix above has the dimensions stated in the
theorem above. �

The above operations end the initial set of operations that
each of our two classes of entanglement-assisted quantum con-
volutional codes employs. We outline the remaining operations
for each class of codes in what follows.

V. ENTANGLEMENT-ASSISTED QUANTUM
CONVOLUTIONAL CODES WITH FINITE-DEPTH

ENCODING AND DECODING CIRCUITS

This section details entanglement-assisted quantum convo-
lutional codes in our first class. Codes in the first class admit
an encoding and decoding circuit that employ finite-depth
operations only. The check matrices for codes in this class
have a property that allows this type of encoding and decoding.
The following lemma gives the details of this property, and
the proof outlines how to encode and decode this class of
entanglement-assisted quantum convolutional codes.

Lemma 2. Suppose the Smith form of H1(D)HT
2 (D−1) is

H1(D)HT
2 (D−1) = A(D)

[
�(D) 0

0 0

]
B(D),

where A(D) is an (n − k1) × (n − k1) matrix, B(D) is an
(n − k2) × (n − k2) matrix, �(D) is a diagonal c × c matrix
whose entries are powers of D, and the matrix in brack-
ets has dimension (n − k1) × (n − k2). Then the resulting
entanglement-assisted quantum convolutional code has both
a finite-depth encoding and decoding circuit.

Proof. We begin the proof of this theorem by continuing
where the proof of Lemma IV ends. The crucial assump-
tion for the above lemma is that the invariant factors of
H1(D)HT

2 (D−1) are all powers of D. The Smith form of E(D)
in (18) therefore becomes

A−1
1 (D)A(D)

[
�(D) 0

0 0

]
B(D)A−1

2 (D),

by employing the hypothesis of Lemma V and (15). The rank
of both H1(D)HT

2 (D−1) and E(D) is equal to c.
Perform the inverse of the row operations in A−1

1 (D)A(D)
on the first n − k1 rows of the quantum check matrix in
(18). Perform the inverse of the column operations in matrix
B(D)A−1

2 (D) on the first n − k2 columns of the quantum
check matrix in (18). We execute these column operations with
Hadamard, C-NOT, and SWAP gates. These column operations
have a corresponding effect on columns in the “X” matrix,
but we can exploit the identity matrix in the last n − k2 rows
of the “X” matrix to counteract this effect. We perform row
operations on the last n − k2 rows of the matrix that act as the

inverse of the column operations, and therefore the quantum
check matrix in (18) becomes⎡

⎢⎢⎢⎣
�(D) 0 F1(D)

0 0 F2(D)

0 0 0

0 0 0

∣∣∣∣∣∣∣∣∣
0 0 0

0 0 0

I 0 0

0 I 0

⎤
⎥⎥⎥⎦ ,

where F1(D) and F2(D) are the first c and n − k1 − c respec-
tive rows of A−1(D)A1(D)F (D). We perform Hadamard and
C-NOT gates to clear the entries in F1(D) in the “Z” matrix
above. The quantum check matrix becomes⎡

⎢⎢⎢⎣
�(D) 0 0

0 0 F2(D)

0 0 0

0 I 0

∣∣∣∣∣∣∣∣∣
0 0 0

0 0 0

I 0 0

0 0 0

⎤
⎥⎥⎥⎦ . (19)

The Smith form of F2(D) is

F2(D) = AF (D)[�F (D) 0]BF (D),

where �F (D) is a diagonal matrix whose entries are powers
of D, AF (D) is (n − k1 − c) × (n − k1 − c), and BF (D) is
k2 × k2. The Smith form of F2(D) takes this particular form
because the original check matrix H2(D) is noncatastrophic
and column operations with Laurent polynomials change the
invariant factors only up to powers of D.

Perform row operations corresponding to A−1
F (D) on the

second set of n − k1 − c rows with F2(D) in (19). Perform
column operations corresponding to B−1

F (D) on columns n −
k2 + 1, . . . ,n with Hadamard, C-NOT, and SWAP gates. The
resulting quantum check matrix has the following form:⎡

⎢⎢⎢⎣
�(D) 0 0 0

0 0 �F (D) 0

0 0 0 0

0 I 0 0

∣∣∣∣∣∣∣∣∣
0 0 0 0

0 0 0 0

I 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦ . (20)

We have now completed the decomposition of the original
quantum check matrix in (13) for this class of entanglement-
assisted quantum convolutional codes. It is not possible to
perform row or column operations to decompose the above
matrix any further. The problem with the above quantum check
matrix is that it does not form a valid quantum convolutional
code. The first set of rows with matrix �(D) are not orthogonal
under the shifted symplectic product to the third set of rows
with the identity matrix on the “X” side. Equivalently, the
set of Pauli sequences corresponding to the above quantum
check matrix do not form a commuting stabilizer. We can use
entanglement shared between sender and receiver to solve this
problem. Entanglement adds columns to the above quantum
check matrix to resolve the issue. The additional columns
correspond to qubits on the receiver’s side. We next show in
detail how to incorporate ancilla qubits, ebits, and information
qubits to obtain a valid stabilizer code. The result is that we
can exploit the error-correcting properties of the original code
to protect the sender’s qubits.
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Consider the following check matrix corresponding to a
commuting stabilizer:⎡

⎢⎢⎢⎣
I I 0 0 0

0 0 0 I 0

0 0 0 0 0

0 0 I 0 0

∣∣∣∣∣∣∣∣∣
0 0 0 0 0

0 0 0 0 0

I I 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎦ , (21)

where the identity matrices in the first and third sets of rows
each have dimension c × c, the identity matrix in the second
set of rows has dimension (n − k1 − c) × (n − k1 − c), and
the identity matrix in the fourth set of rows has dimension
(n − k2 − c) × (n − k2 − c). The first and third sets of c rows
stabilize a set of c ebits shared between Alice and Bob. Bob
possesses the “left” c qubits and Alice possesses the “right”
n qubits. The second and fourth sets of rows stabilize a set
of 2(n − c) − k1 − k2 ancilla qubits that Alice possesses. The
stabilizer, therefore, stabilizes a set of c ebits, 2(n − c) − k1 −
k2 ancilla qubits, and k1 + k2 − n + c information qubits.

Observe that the last n columns of the “Z” and “X” matrices
in the above stabilizer are similar in their layout to the entries
in (20). We can delay the rows of the above stabilizer by an
arbitrary amount to obtain the desired stabilizer. So the above
stabilizer is a subcode of the following stabilizer in the sense
of Ref. [31]:⎡

⎢⎢⎢⎣
�(D) �(D) 0 0 0

0 0 0 �F (D) 0

0 0 0 0 0

0 0 I 0 0

∣∣∣∣∣∣∣∣∣
0 0 0 0 0

0 0 0 0 0

I I 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎦ .

The stabilizer in (21) has equivalent error-correcting properties
to and the same asymptotic rate as the above desired stabilizer.
The above stabilizer matrix is an augmented version of the
quantum check matrix in (20) that includes entanglement. The
sender performs all of the encoding column operations detailed
in the proofs of this lemma and Lemma 1 in reverse order.
The result of these operations is an [[n,k1 + k2 − n + c; c]]
entanglement-assisted quantum convolutional code with the
same error-correcting properties as the quantum check matrix
in (13). The receiver decodes the original information-qubit
stream by performing the column operations in the order
presented. The information qubits appear as the last k1 +
k2 − n + c in each frame of the stream (corresponding to the
k1 + k2 − n + c columns of zeros in both the “Z” and “X”
matrices above). �

Example 1. Consider a classical convolutional code with
the following check matrix:

H (D) = [1 + D2 1 + D + D2].

We can use H (D) in an entanglement-assisted quantum
convolutional code to correct for both bit-flip errors and
phase-flip errors. We form the following quantum check
matrix:[

1 + D2 1 + D + D2

0 0

∣∣∣∣ 0 0

1 + D2 1 + D + D2

]
. (22)

This code falls in the first class of entanglement-assisted
quantum convolutional codes because H (D)HT (D−1) = 1.
We do not show the decomposition of the above check matrix

as outlined in Lemma 2, but instead show how to encode
it starting from a stream of information qubits and ebits.
Each frame has one ebit and one information qubit. Let us
begin with a polynomial matrix that stabilizes the unencoded
state: [

1 1 0

0 0 0

∣∣∣∣ 0 0 0

1 1 0

]
.

Alice possesses the two qubits on the “right” and Bob
possesses the qubit on the “left.” We label the middle qubit
as “qubit one” and the rightmost qubit as “qubit two.” Alice
performs a C-NOT from qubit one to qubit two in a delayed
frame and a C-NOT from qubit one to qubit two in a frame
delayed by two. The stabilizer becomes[

1 1 0

0 0 0

∣∣∣∣ 0 0 0

1 1 D + D2

]
.

Alice performs Hadamard gates on both of her qubits. The
stabilizer becomes[

1 0 0

0 1 D + D2

∣∣∣∣ 0 1 0

1 0 0

]
.

Alice performs a C-NOT from qubit one to qubit two in a
delayed frame. The stabilizer becomes[

1 0 0

0 D D + D2

∣∣∣∣ 0 1 D

1 0 0

]
.

Alice performs a C-NOT from qubit two to qubit one in a
delayed frame. The stabilizer becomes[

1 0 0

0 D 1 + D + D2

∣∣∣∣ 0 1 + D2 D

1 0 0

]
.

Alice performs a C-NOT from qubit one to qubit two. The
stabilizer becomes[

1 0 0

0 1 + D2 1 + D + D2

∣∣∣∣ 0 1 + D2 1 + D + D2

1 0 0

]
.

A row operation that switches the first row with the second
row gives the following stabilizer:[

0 1 + D2 1 + D + D2

1 0 0

∣∣∣∣ 1 0 0

0 1 + D2 1 + D + D2

]
.

The entries on Alice’s side of the above stabilizer have
equivalent error-correcting properties to the quantum check
matrix in (22). Figure 4 illustrates how the above operations
encode a stream of ebits and information qubits for our
example.

4. Discussion

Codes in the first class are more useful in practice than those
in the second because their encoding and decoding circuits are
finite depth. An uncorrected error propagates only to a finite
number of information qubits in the decoded qubit stream.
Codes in the first class therefore do not require any assumptions
about noiseless encoding or decoding.

The assumption about the invariant factors in the Smith
form of H1(D)HT

2 (D−1) holds only for some classical check
matrices. Only a subclass of classical codes satisfy this
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assumption, but it still expands the set of available quantum
codes beyond those whose check matrices H1 (D) and H2 (D)
are orthogonal. We need further techniques to handle the
classical codes for which this assumption does not hold. The
following sections provide these further techniques to handle
a larger class of entanglement-assisted quantum convolutional
codes.

VI. INFINITE-DEPTH CLIFFORD OPERATIONS

We now introduce a new type of operation, an infinite-
depth operation, to the set of operations in the shift-invariant
Clifford group available for encoding and decoding quantum
convolutional codes. We require infinite-depth operations to
expand the set of classical convolutional codes that we can
import for quantum convolutional coding.

Definition 3. An infinite-depth operation can transform
a finite-weight stabilizer generator to one with infinite
weight (but does not necessarily do so to every finite-weight
generator).

A decoding circuit with infinite-depth operations on qubits
sent over the noisy channel is undesirable because it spreads
uncorrected errors infinitely into the decoded information
qubit stream. But an encoding circuit with infinite-depth
operations is acceptable if we assume a communication
paradigm in which the only noisy process is the noisy quantum
channel.

We later show several examples of circuits that include
infinite-depth operations. Infinite-depth operations expand the
possibilities for quantum convolutional circuits in much the
same way that incorporating feedback expands the possibilities
for classical convolutional circuits.

We illustrate the details of several infinite-depth operations
for use in an entanglement-assisted quantum convolutional
code. We first provide some specific examples of infinite-depth
operations and then show how to realize an arbitrary infinite-
depth operation.

We consider both the stabilizer and the logical operators
for the information qubits in our analysis. Tracking both of
these sets of generators is necessary for determining the proper
decoding circuit when including infinite-depth operations.

A. Examples of infinite-depth operations

Our first example of an infinite-depth operation involves
a stream of information qubits and ancilla qubits. We divide
the stream into frames of three qubits where each frame has
two ancilla qubits and one information qubit. The following
two generators and each of their three-qubit shifts stabilize the
qubit stream:

· · ·
∣∣∣∣ I I I

I I I

∣∣∣∣ Z I I

I Z I

∣∣∣∣ I I I

I I I

∣∣∣∣ · · · (23)

The binary polynomial matrix corresponding to this stabilizer
is as follows: [

1 0 0

0 1 0

∣∣∣∣ 0 0 0

0 0 0

]
. (24)

We obtain any Pauli sequence in the stabilizer by multiplying
the above rows by a power of D and applying the inverse of the

P2B isomorphism. The logical operators for the information
qubits are as follows:

· · ·
∣∣∣∣ I I I

I I I

∣∣∣∣ I I X

I I Z

∣∣∣∣ I I I

I I I

∣∣∣∣ · · ·
They also admit a description with a binary polynomial matrix:[

0 0 0

0 0 1

∣∣∣∣ 0 0 1

0 0 0

]
. (25)

We refer to the above matrix as the “information-qubit matrix.”

1. Encoding

Suppose we would like to encode the above stream so that
the following generators stabilize it:

· · ·
∣∣∣∣ I I I

I I I

∣∣∣∣ X X X

Z Z I

∣∣∣∣X X I

I I I

∣∣∣∣ · · · ,
or equivalently, the following binary polynomial matrix
stabilizes it: [

0 0 0

1 1 0

∣∣∣∣ D + 1 D + 1 1

0 0 0

]
. (26)

We encode the above stabilizer using a combination of
finite-depth operations and an infinite-depth operation. We
perform a Hadamard on the first qubit in each frame and follow
with a C-NOT from the first qubit to the second and third qubits
in each frame. These operations transform the matrix in (24)
to the following matrix:[

0 0 0

1 1 0

∣∣∣∣ 1 1 1

0 0 0

]
,

or equivalently transform the generators in (23) to the
following generators:

· · ·
∣∣∣∣ I I I

I I I

∣∣∣∣ X X X

Z Z I

∣∣∣∣ I I I

I I I

∣∣∣∣ · · ·
The information-qubit matrix becomes[

0 0 0

1 0 1

∣∣∣∣ 0 0 1

0 0 0

]
.

We now perform an infinite-depth operation: a C-NOT from the
third qubit in one frame to the third qubit in a delayed frame
and repeat this operation for all following frames. Figure 5
shows this operation acting on our stream of qubits with three
qubits per frame. The effect of this operation is to translate the
above stabilizer generators as follows:

· · ·
∣∣∣∣ I I I

I I I

∣∣∣∣ X X X

Z Z I

∣∣∣∣ I I X

I I I

∣∣∣∣ I I X

I I I

∣∣∣∣ · · ·
The first generator above and each of its three-qubit shifts is an
infinite-weight generator if the above sequence of C-NOTs acts
on the entire countably infinite qubit stream. We represent the
above stabilizer with the binary rational polynomial matrix,[

0 0 0

1 1 0

∣∣∣∣ 1 1 1/(1 + D)

0 0 0

]
, (27)
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FIG. 5. An example of an infinite-depth operation. A sequence of
C-NOT gates acts on the third qubit of every frame. This infinite-depth
operation effectively multiplies the third column of the “X” side of the
binary polynomial matrix by the rational polynomial 1/ (1 + D) and
multiplies the third column of the “Z” side of the binary polynomial
matrix by 1 + D−1.

where 1/ (1 + D) = 1 + D + D2 + · · · is a repeating fraction.
The operation is infinite-depth because it translates the original
finite-weight stabilizer generator to one with infinite weight.

It is possible to perform a row operation that multiplies the
first row by D + 1. This operation gives a stabilizer matrix
that is equivalent to the desired stabilizer in (26). The receiver
of the encoded qubits measures the finite-weight stabilizer
generators in (26) to diagnose errors. These measurements do
not disturb the information qubits because they also stabilize
the encoded stream.

The above encoding operations transform the information-
qubit matrix as follows:[

0 0 0

1 0 1 + D−1

∣∣∣∣ 0 0 1/(1 + D)

0 0 0

]
. (28)

The infinite-depth operation on the third qubit has an effect
on the “Z” or left side of the information-qubit matrix as
illustrated in the second row of the above matrix. The effect is
to multiply the third column of the “Z” matrix by f (D−1) if
the operation multiplies the third column of the “X” matrix by
1/f (D). This corresponding action on the “Z” side occurs
because the commutation relations of the Pauli operators
remain invariant under quantum gates, or equivalently, the
shifted symplectic product remains invariant under column
operations. The original shifted symplectic product for the
logical operators is one, and it remains as one because
f (D−1)−1/f (D) = 1.

2. Decoding

We perform finite-depth operations to decode the stream of
information qubits. Begin with the stabilizer and information-
qubit matrix in (27) and (28), respectively. Perform a C-NOT

from the first qubit to the second qubit. The stabilizer becomes[
0 0 0

0 1 0

∣∣∣∣ 1 0 1/(1 + D)

0 0 0

]
,

and the information-qubit matrix does not change. Perform a
C-NOT from the third qubit to the first qubit in the same frame
and in a delayed frame. These gates multiply column three in
the “X” matrix by 1 + D and add the result to column one. The
gates also multiply column one in the “Z” matrix by 1 + D−1

and add the result to column three. The effect is as follows on
both the stabilizer:[

0 0 0

0 1 0

∣∣∣∣ 0 0 1/(1 + D)

0 0 0

]
, (29)

and the information-qubit matrix:[
0 0 0

1 0 0

∣∣∣∣ 1 0 1/(1 + D)

0 0 0

]
. (30)

We can multiply the logical operators by any element of the
stabilizer and obtain an equivalent logical operator [4]. We
perform this multiplication in the “binary-polynomial picture”
by adding the first row of the stabilizer in (29) to the first row
of (30). The information-qubit matrix becomes[

0 0 0

1 0 0

∣∣∣∣ 1 0 0

0 0 0

]
, (31)

so that the resulting logical operators act only on the first qubit
of every frame. We have successfully decoded the information
qubits with finite-depth operations. The information qubits
teleport coherently [45,46] from being the third qubit of each
frame as in (25) to being the first qubit of each frame as in (31).
We exploit the above method of encoding with infinite-depth
operations and decoding with finite-depth operations for the
class of entanglement-assisted quantum convolutional codes
in Sec. VII.

B. General infinite-depth operations

We discuss the action of a general infinite-depth operation
on two weight-one “X” and “Z” Pauli sequences where each
frame has one Pauli matrix. Our analysis then determines the
effect of an infinite-depth operation on an arbitrary stabilizer or
information-qubit matrix. The generators in the “Pauli picture”
are as follows:

· · ·
∣∣∣∣ II

∣∣∣∣XZ
∣∣∣∣ I

I

∣∣∣∣ · · · , (32)

or as follows in the “binary-polynomial picture”:[
0
1

∣∣∣∣ 1
0

]
.
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An infinite-depth 1/f (D) operation, where f (D) is an arbi-
trary polynomial, should transform the above matrix to the
following one: [

0

f (D−1)

∣∣∣∣ 1/f (D)

0

]
.

A circuit that performs this transformation preserves the
shifted symplectic product because f (D−1) · 1/f (D−1) = 1.
The circuit should operate on a few qubits at a time and
should be shift invariant—the same device or physical routines
implement it.

First perform the long-division expansion of binary rational
polynomial 1/f (D). This expansion has a particular repeating
pattern with period l. For example, suppose that f (D) = 1 +
D + D3. Its long-division expansion is 1 + D + D2 + D4 +
D7 + D8 + D9 + D11 + · · · and exhibits a repeating pattern
with period seven. We want a circuit that realizes the following
Pauli generators:

· · ·
∣∣∣∣ I

Z

∣∣∣∣ II
∣∣∣∣ I

Z

∣∣∣∣XZ
∣∣∣∣ X

I

∣∣∣∣XI
∣∣∣∣ I

I

∣∣∣∣XI
∣∣∣∣ I

I

∣∣∣∣ · · · , (33)

where the pattern in the X matrices is the same as the repeating
polynomial 1/f (D) and continues infinitely to the right, and
the pattern on the Z matrices is the same as that in f

(
D−1

)
and

terminates at the left. The above Pauli sequence is equivalent
to the following binary rational polynomial matrix:[

0

1 + D−1 + D−3

∣∣∣∣ 1/(1 + D + D3)

0

]
.

We now discuss a method that realizes an arbitrary rational
polynomial 1/f (D) as an infinite-depth operation. Our method
for encoding the generators in (33) from those in (32)
consists of a “sliding-window” technique that determines
transformation rules for the circuit. The circuit is an additive,
shift-invariant filtering operation. It resembles an infinite-
impulse response filter because the sequence it produces
extends infinitely. In general, the number N of qubits that
the encoding unitary operates on is as follows:

N = deg[f (D)] − del[f (D)] + 1,

where deg[f (D)] and del[f (D)] are the respective highest and
lowest powers of polynomial f (D). Therefore, our exemplary
encoding unitary operates on four qubits at a time. We delay
the original sequence in (32) by three frames. These initial
frames are “scratch” frames that give the encoding unitary
enough “room” to generate the desired Paulis in (33). The first
set of transformation rules is as follows:

I

I

∣∣∣∣ I

I

∣∣∣∣ II
∣∣∣∣ X

Z
→ I

Z

∣∣∣∣ I

I

∣∣∣∣ I

Z

∣∣∣∣ X

Z
, (34)

and generates the first four elements of the pattern in (33). Now
that the encoding unitary has acted on the first four frames, we
need to shift our eyes to the right by one frame in the sequence
in (33) to determine the next set of rules. So we shift the
above outputs by one frame to the left (assuming that only
identity matrices lie to the right) and determine the next set

of transformation rules that generate the next elements of the
sequence in (33):

I

I

∣∣∣∣ I

Z

∣∣∣∣XZ
∣∣∣∣ I

I
→ I

I

∣∣∣∣ I

Z

∣∣∣∣XZ
∣∣∣∣ X

I
.

Shift the above outputs to the left by one frame to determine
the next set of transformation rules:

I

Z

∣∣∣∣ X

Z

∣∣∣∣XI
∣∣∣∣ I

I
→ I

Z

∣∣∣∣ X

Z

∣∣∣∣XI
∣∣∣∣ X

I
.

We obtain the rest of the transformation rules by continuing this
sliding process, and we stop when the pattern in the sequence
in (33) begins to repeat:

X

Z

X

X

I

X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X

I

X

I

X

I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X

I

I

X

I

I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I

I

I

I

I

I

→

X

Z

X

X

I

X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X

I

X

I

X

I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X

I

I

X

I

I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I

I

X

I

I

X

.

The above set of rules determines the encoding unitary and
only a few of them are actually necessary. We can multiply
the rules together to form equivalent rules because the circuit
obeys additivity (in the “binary-polynomial picture”). The
rules become as follows after rearranging into a standard form:

Z

I

I

I

X

I

I

I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I

Z

I

I

I

X

I

I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I

I

Z

I

I

I

X

I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I

I

I

Z

I

I

I

X

→

Z

I

I

Z

X

I

I

I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I

Z

I

I

I

X

I

I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I

I

Z

Z

I

I

X

I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I

I

I

Z

X

I

X

X

.

A C-NOT from qubit one to qubit four and a C-NOT from
qubit three to qubit four suffice to implement this circuit.
We repeatedly apply these operations shifting by one frame
at a time to implement the infinite-depth operation. We could
have observed that these gates suffice to implement the “Z”
transformation in the first set of transformation rules in (34),
but we wanted to show how this method generates the full
periodic “X” sequence in (33). Figure 6 shows how the above
encoding unitary acts on a stream of quantum information.

We can determine the encoding unitary for an arbitrary
rational polynomial 1/f (D) using a similar method. Suppose
that del [f (D)] = n and suppose n 
= 0 as in the above case.
First delay or advance the frames if n > 0 or if n < 0,
respectively. Determine the C-NOT gates that transform the
“Z” Pauli sequence,

[ 1 | 0 ],

to

[ Dnf (D−1) | 0 ].

These C-NOT gates form the encoding circuit that transform
both the “X” and “Z” Pauli sequences. We perform the
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FIG. 6. Another example of an infinite-depth operation. An
infinite-depth operation acts on qubit i in every frame. This particular
infinite-depth operation multiplies column i on the “X” side of the
binary polynomial matrix by 1/

(
1 + D + D3

)
and multiplies column

i on the “Z” side of the binary polynomial matrix by 1 + D−1 + D−3.

encoding unitary, shift by one frame, perform it again, and
keep repeating. Our method encodes any arbitrary polynomial
1/f (D) on the “X” side and f (D−1) on the “Z” side.

We can implement the “time-reversed” polynomial
1/f (D−1) on the “X” side by first delaying the frames
by m = deg[f (D)] − del[f (D)] frames and performing the
circuit corresponding to 1/Dm[f (D−1)]. These operations
implement the circuit Dm/Dm[f (D−1)] = 1/f (D−1).

C. Infinite-depth operations in practice

We assume above that each of the infinite-depth operations
acts on the entire countably infinite stream of qubits. In
practice, each infinite-depth operation acts on a finite number
of qubits at a time so that the encoding and decoding circuits
operate in an “online” manner. Therefore, each infinite-depth
operation approximates its corresponding rational polynomial.
This approximation does not pose a barrier to implementation.
We can implement each of the above infinite-depth operations
by padding the initial qubits of the information qubit stream
with some “scratch” qubits. We first transmit these “scratch”
qubits that contain no useful quantum information so that
the later information qubits enjoy the full protection of the
code. These scratch qubits do not affect the asymptotic
rate of the code and merely serve as a convenience for
implementing the infinite-depth operations. From now on,
we adhere to describing infinite-depth operations with binary
rational polynomials because it is more convenient to do so
mathematically.

D. Entanglement-assisted quantum convolutional codes
with infinite-depth operations

In the section that follows, our entanglement-assisted
quantum convolutional codes have infinite-depth operations in
their encoding circuits. This possibility is acceptable because
the entanglement-assisted communication paradigm assumes
that noiseless encoding is possible and that the receiver’s half
of the ebits are noiseless. We later briefly discuss the effects
of relaxing this assumption in a realistic system.

Our decoding circuits in the second class of codes perform
finite-depth operations. Some of our decoding circuits are not
the exact inverse of their corresponding encoding circuits, but
the decoding circuits invert the effect of the encoding circuits
because they produce the original stream of information qubits
at their output.

VII. ENTANGLEMENT-ASSISTED QUANTUM
CONVOLUTIONAL CODES WITH INFINITE-DEPTH

ENCODING AND FINITE-DEPTH DECODING
CIRCUITS

This section details codes whose encoding circuits have
both infinite-depth and finite-depth operations. We therefore
assume that encoding is noiseless to eliminate the possibility
of encoding errors spreading infinitely into the encoded qubit
stream. Their decoding circuits require finite-depth operations
only.

Just as with the previous class, this class of codes is
determined by the properties of their corresponding classical
check matrices, as described in the following lemma.

Lemma 3. Suppose the Smith form of E (D) does not
admit the form from Lemma 2. Then the entanglement-assisted
quantum convolutional code has an encoding circuit with both
infinite-depth and finite-depth operations. Its decoding circuit
has finite-depth operations.

Proof. We perform all of the operations from Lemma 1. The
Smith form of E (D) is in general as follows:

AE (D)

⎡
⎢⎣

�1 (D) 0 0

0 �2 (D) 0

0 0 0

⎤
⎥⎦BE (D) ,

where AE (D) is (n − k1) × (n − k1), �1 (D) is an s × s

diagonal matrix whose entries are powers of D, �2 (D) is a
(c − s) × (c − s) diagonal matrix whose entries are arbitrary
polynomials, and BE (D) is (n − k2) × (n − k2). Perform the
row operations in A−1

E (D) and the column operations in
B−1

E (D) on the quantum check matrix in (18). Counteract
the effect of the column operations on the identity matrix in
the “X” matrix by performing row operations. The quantum
check matrix in (18) becomes⎡

⎢⎢⎢⎣
�1 (D) 0 0 F1 (D)

0 �2 (D) 0 F2 (D)

0 0 0 F3 (D)

0 0 0 0

∣∣∣∣∣∣∣∣∣

0 0

0 0

0 0

I 0

⎤
⎥⎥⎥⎦ ,

where F1 (D), F2 (D), and F3 (D) are the respective s, c − s,
and n − k1 − c rows of A−1

E (D) F (D). The Smith form of
F3 (D) is as follows:

F3 (D) = AF3 (D) [�F3 (D) 0] BF3 (D) ,

where AF3 (D) is (n − k1 − c) × (n − k1 − c), �F3 (D) is an
(n − k1 − c) × (n − k1 − c) diagonal matrix whose entries are
powers of D, and BF3 (D) is k2 × k2. The entries of �F3 (D)
are powers of D because the original check matrix H2 (D) is
noncatastrophic and column and row operations with Laurent
polynomials change the invariant factors only by a power of
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D. Perform the row operations in A−1
F3

(D) and the column
operations in B−1

F3
(D). The quantum check matrix becomes⎡

⎢⎢⎢⎢⎣
�1 (D) 0 0 F

′
1a (D) F

′
1b (D)

0 �2 (D) 0 F
′
2a (D) F

′
2b (D)

0 0 0 �F3 (D) 0

0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣

0 0

0 0

0 0

I 0

⎤
⎥⎥⎥⎥⎦ ,

where F
′
1a (D), F

′
1b (D), F

′
2a (D), F

′
2b (D) are the matrices

resulting from the column operations in B−1
F3

(D). Perform
row operations from the entries in �F3 (D) to the rows above
it to clear the entries in F

′
1a (D) and F

′
2a (D). Use Hadamard

and C-NOT gates to clear the entries in F
′
1b (D). The quantum

check matrix becomes⎡
⎢⎢⎢⎣

�1 (D) 0 0 0 0

0 �2 (D) 0 0 F
′
2b (D)

0 0 0 �F3 (D) 0

0 0 0 0 0

∣∣∣∣∣∣∣∣∣

0 0

0 0

0 0

I 0

⎤
⎥⎥⎥⎦ .

We can reduce F
′
2b (D) to a lower triangular form with an

algorithm consisting of column operations only. The algorithm
operates on the last k2 + k1 − n + c columns. It is similar to the
Smith algorithm but does not involve row operations. Consider
the first row of F

′
2b (D). Perform column operations between

the different elements of the row to reduce it to one nonzero
entry. Swap this nonzero entry to the leftmost position. Perform
the same algorithm on elements 2, . . . ,k2 + k1 − n + c of the
second row. Continue on for all rows of F

′
2b (D) to reduce it to

a matrix of the following form:

F
′
2b (D) →

[

c−s︷ ︸︸ ︷
L(D)

k1+k2−n+s︷︸︸︷
0 ]

,

where L (D) is a lower triangular matrix. The above quantum
check matrix becomes⎡

⎢⎢⎢⎣
�1 (D) 0 0 0 0 0

0 �2 (D) 0 0 L (D) 0

0 0 0 �F3 (D) 0 0

0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣

0 0

0 0

0 0

I 0

⎤
⎥⎥⎥⎦ .

We have completed decomposition of the first set of s rows
with �1 (D), the third set of n − k1 − c rows with �F3 (D),
and rows n − k1 + 1, . . . ,n − k1 + s with the identity matrix
on the “X” side.

We now consider an algorithm with infinite-depth opera-
tions to encode the following submatrix of the above quantum
check matrix: [

�2 (D) L (D)

0 0

∣∣∣∣∣ 0 0

I 0

]
. (35)

We begin with a set of c − s ebits and c − s information qubits.
The following matrix stabilizes the ebits:[

I I 0

0 0 0

∣∣∣∣∣ 0 0 0

I I 0

]
,

and the following matrix represents the information qubits:[
0 0 I

0 0 0

∣∣∣∣∣ 0 0 0

0 0 I

]
,

where all matrices have dimension (c − s) × (c − s) and Bob
possesses the c − s qubits on the “left” and Alice possesses
the 2 (c − s) qubits on the “right.” We track both the stabilizer
and the information qubits as they progress through some
encoding operations. Alice performs C-NOT and Hadamard
gates on her 2 (c − s) qubits. These gates multiply the middle
c − s columns of the “Z” matrix by L (D) and add the result
to the last c − s columns and multiply the last c − s columns
of the “X” matrix by LT (D−1) and add the result to the middle
c − s columns. The stabilizer becomes[

I I L (D)

0 0 0

∣∣∣∣∣ 0 0 0

I I 0

]
,

and the information-qubit matrix becomes[
0 0 I

0 0 0

∣∣∣∣∣ 0 0 0

0 LT (D−1) I

]
.

Alice performs infinite-depth operations on her first c − s

qubits corresponding to the rational polynomials γ −1
2,1 (D−1),

. . ., γ −1
2,c−s(D

−1) in �−1
2 (D−1). The stabilizer matrix becomes[

I �2 (D) L (D)

0 0 0

∣∣∣∣∣ 0 0 0

I �−1
2 (D−1) 0

]
,

and the information-qubit matrix becomes[
0 0 I

0 0 0

∣∣∣∣∣ 0 0 0

0 LT (D−1)�−1
2 (D−1) I

]
.

Alice’s part of the above stabilizer matrix is equivalent
to the quantum check matrix in (35) by row operations
[premultiplying the second set of rows in the stabilizer by
�2 (D)]. Bob can therefore make stabilizer measurements
that have finite weight and that are equivalent to the desired
stabilizer.

We now describe a method to decode the above encoded
stabilizer and information-qubit matrix so that the information
qubits appear at the output of the decoding circuit. Bob
performs Hadamard gates on his first and third sets of c − s

qubits, performs C-NOT gates from the first set of qubits to the
third set of qubits corresponding to the entries in L (D), and
performs the Hadamard gates again. The stabilizer becomes[

I �2 (D) 0

0 0 0

∣∣∣∣∣ 0 0 0

I �−1
2 (D−1) 0

]
, (36)

and the information-qubit matrix becomes[
0 0 I

0 0 0

∣∣∣∣∣ 0 0 0

LT (D−1) LT (D−1)�−1
2 (D−1) I

]
.

Bob finishes decoding at this point because we can equivalently
express the information-qubit matrix as follows:[

0 0 I

0 0 0

∣∣∣∣∣ 0 0 0

0 0 I

]
,
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by multiplying the last c − s rows of the stabilizer by LT (D−1)
and adding to the last c − s rows of the information-qubit
matrix.

The overall procedure for encoding is to begin with a set of
c ebits, 2 (n − c) − k1 − k2 ancilla qubits, and k1 + k2 − n + c

information qubits. We perform the infinite-depth operations
detailed in the paragraph with (35) for c − s of the ebits.
We then perform the finite-depth operations detailed in the
proofs of this lemma and Lemma 1 in reverse order. The
resulting stabilizer has equivalent error-correcting properties
to the quantum check matrix in (13).

The receiver decodes by first performing all of the finite-
depth operations in the encoding circuit in reverse order. The
receiver then decodes the infinite-depth operations by the
procedure listed in the paragraph with (36) so that the original
k1 + k2 − n + c information qubits per frame are available for
processing at the receiving end. �

A. Special case of entanglement-assisted codes with
infinite-depth encoding circuits and finite-depth

decoding circuits

We now detail a special case of the above codes in
this final section. These codes are interesting because the
information qubits teleport coherently to other physical qubits
when encoding and decoding is complete.

Lemma 4. Suppose that the Smith form of F (D) in (18) is

F (D) = AF (D) �F (D) 0 BF (D) ,

where AF (D) is (n − k1) × (n − k1), �F (D) is an (n − k1) ×
(n − k1) diagonal matrix whose entries are powers of D, and
BF (D) is k2 × k2. Then the resulting entanglement-assisted
code admits an encoding circuit with both infinite-depth
and finite-depth operations and admits a decoding circuit
with finite-depth operations only. The information qubits also
teleport coherently to other physical qubits for this special case
of codes.

Proof. We perform all the operations in Lemma 1 to obtain
the quantum check matrix in (18). Then perform the row
operations in A−1

F (D) and the column operations in B−1
F (D).

The quantum check matrix becomes[
E′ (D) �F (D) 0

0 0 0

∣∣∣∣∣ 0 0 0

I 0 0

]
,

where E′ (D) = A−1
F (D) E (D). The Smith form of E′ (D) is

E′ (D) = AE′ (D)

⎡
⎢⎣

�1 (D) 0 0

0 �2 (D) 0

0 0 0

⎤
⎥⎦BE′ (D) ,

where AE′ (D) is (n − k1) × (n − k1), �1 (D) is an s × s

diagonal matrix whose entries are powers of D, �2 (D) is a
(c − s) × (c − s) diagonal matrix whose entries are arbitrary
polynomials, and BE′ (D) is (n − k2) × (n − k2).

Now perform the row operations in A−1
E′ (D) and the column

operations in B−1
E′ (D). It is possible to counteract the effect

of the row operations on �F (D) by performing column
operations, and it is possible to counteract the effect of the
column operations on the identity matrix in the “X” matrix

by performing row operations. The quantum check matrix
becomes⎡

⎢⎢⎢⎢⎣
�1 0 0 �

′
1 0 0 0

0 �2 0 0 �
′
2 0 0

0 0 0 0 0 �
′
3 0

0 0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣

0 0 0

0 0 0

0 0 0

I 0 0

⎤
⎥⎥⎥⎥⎦ ,

where �
′
1, �

′
2, and �

′
3 represent the respective s × s, (c − s) ×

(c − s), and (n − k1 − c) × (n − k1 − c) diagonal matrices
resulting from counteracting the effect of row operations
A−1

E′ (D) on �F (D). (We suppress the D argument in all of
the matrices in the above equation.) We use Hadamard and
C-NOT gates to clear the entries in �

′
1 (D). The quantum check

matrix becomes⎡
⎢⎢⎢⎢⎣

�1 0 0 0 0 0 0

0 �2 0 0 �
′
2 0 0

0 0 0 0 0 �
′
3 0

0 0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣

0 0 0

0 0 0

0 0 0

I 0 0

⎤
⎥⎥⎥⎥⎦ .

The first s rows with �1 and rows n − k1 − c + 1, . . . ,n −
k1 − c + s with the identity matrix on the “X” side stabilize
a set of s ebits. The n − k1 − c rows with �′

3 and the n −
k2 − c rows with identity in the “X” matrix stabilize a set of
2 (n − c) − k1 − k2 ancilla qubits (up to Hadamard gates). The
s and k2 − n + k1 columns with zeros in both the “Z” and “X”
matrices correspond to information qubits. The decomposition
of these rows is now complete.

We need to finish processing the c − s rows with �2 (D)
and �

′
2 (D) as entries and the c − s rows of the identity in the

“X” matrix. We construct a submatrix of the above quantum
check matrix: [

�2 (D) �
′
2 (D)

0 0

∣∣∣∣∣ 0 0

I 0

]
. (37)

We describe a procedure to encode the above entries with
c − s ebits and c − s information qubits using infinite-depth
operations. Consider the following stabilizer matrix:[

I I 0

0 0 0

∣∣∣∣∣ 0 0 0

I I 0

]
, (38)

where all identity and null matrices are (c − s) × (c − s).
The above matrix stabilizes a set of c − s ebits and c − s

information qubits. Bob’s half of the ebits are the c − s

columns on the left in both the “Z” and “X” matrices and
Alice’s half are the next c − s columns. We also track the
logical operators for the information qubits to verify that the
circuit encodes and decodes properly. The information-qubit
matrix is as follows:[

0 0 I

0 0 0

∣∣∣∣∣ 0 0 0

0 0 I

]
, (39)

where all matrices are again (c − s) × (c − s). Alice performs
Hadamard gates on her first c − s qubits and then performs
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C-NOT gates from her first c − s qubits to her last c − s qubits
to transform (38) to the following stabilizer:[

I 0 0

0 I 0

∣∣∣∣∣ 0 I �
′
2 (D)

I 0 0

]
.

The information-qubit matrix in (39) becomes[
0 �

′
2(D−1) I

0 0 0

∣∣∣∣∣ 0 0 0

0 0 I

]
.

Alice then performs infinite-depth operations on her last c −
s qubits. These infinite-depth operations correspond to the
elements of �−1

2 (D). She finally performs Hadamard gates on
her 2 (c − s) qubits. The stabilizer becomes[

I I �−1
2 (D) �

′
2 (D)

0 0 0

∣∣∣∣∣ 0 0 0

I I 0

]
, (40)

and the information-qubit matrix becomes[
0 0 0

0 0 �−1
2 (D)

∣∣∣∣∣ 0 �
′
2(D−1) �2(D−1)

0 0 0

]
. (41)

The stabilizer in (40) is equivalent to the following stabilizer by
row operations [premultiplying the first c − s rows by �2 (D)]:[

�2 (D) �2 (D) �
′
2 (D)

0 0 0

∣∣∣∣∣ 0 0 0

I I 0

]
. (42)

The measurements that Bob performs have finite weight
because the row operations are multiplications of the rows
by the arbitrary polynomials in �2 (D). Alice thus encodes a
code equivalent to the desired quantum check matrix in (37)
using c − s ebits and c − s information qubits.

We now discuss decoding the stabilizer in (40) and
information qubits. Bob performs C-NOTs from the first c − s

qubits to the next c − s qubits. The stabilizer becomes[
0 I �−1

2 (D) �
′
2 (D)

0 0 0

∣∣∣∣∣ 0 0 0

I 0 0

]
, (43)

and the information-qubit matrix does not change. Bob uses
Hadamard and finite-depth C-NOT gates to multiply the last
c − s columns in the “Z” matrix by �

′
2(D−1)�2 (D) and add

the result to the middle c − s columns. It is possible to use
finite-depth operations because the entries of �

′
2 (D) are all

powers of D so that �
′
2(D−1) = �

′−1
2 (D). The stabilizer in

(43) becomes[
0 0 �−1

2 (D) �
′
2 (D)

0 0 0

∣∣∣∣∣ 0 0 0

I 0 0

]
,

and the information-qubit matrix in (41) becomes[
0 0 0

0 �
′
2(D−1) �−1

2 (D)

∣∣∣∣∣ 0 �
′
2(D−1) 0

0 0 0

]
.

We premultiply the first c − s rows of the stabilizer by �
′
2(D−1)

and add the result to the second c − s rows of the information-
qubit matrix. These row operations from the stabilizer to the
information-qubit matrix result in the information-qubit matrix
having pure logical operators for the middle c − s qubits.

Perform Hadamard gates on the second set of c − s qubits.
The resulting information-qubit matrix is as follows:[

0 �
′
2(D−1) 0

0 0 0

∣∣∣∣∣ 0 0 0

0 �
′
2(D−1) 0

]
, (44)

so that the information qubits are available at the end of
decoding. Processing may delay or advance them with respect
to their initial locations because the matrix �

′
2(D−1) is diagonal

with powers of D. We can determine that the information
qubits teleport coherently from the last set of c − s qubits to
the second set of c − s qubits in every frame by comparing
(44) to (39).

The overall procedure for encoding is to begin with a set of
c ebits, 2 (n − c) − k1 − k2 ancilla qubits, and k1 + k2 − n + c

information qubits. We perform the infinite-depth operations
detailed in (37)–(42) for c − s of the ebits. We then perform
the finite-depth operations detailed in the proofs of this lemma
and Lemma 1 in reverse order. The resulting stabilizer has
equivalent error-correcting properties to the quantum check
matrix in (13).

The receiver decodes by first performing all of the finite-
depth operations in reverse order. The receiver then decodes
the infinite-depth operations by the procedure listed in (43) and
(44) so that the original k1 + k2 − n + c information qubits per
frame are available for processing at the receiving end. �

Example 2. Consider a classical convolutional code with
the following check matrix:

H (D) = [1 1 + D].

We can use the above check matrix in an entanglement-assisted
quantum convolutional code to correct for both bit flips and
phase flips. We form the following quantum check matrix:[

1 1 + D

0 0

∣∣∣∣∣ 0 0

1 1 + D

]
. (45)

We first perform some manipulations to put the above quantum
check matrix into a standard form. Perform a C-NOT from qubit
one to qubit two in the same frame and in the next frame. The
above matrix becomes[

D−1 + 1 + D 1 + D

0 0

∣∣∣∣∣ 0 0

1 0

]
.

Perform a Hadamard gate on qubits one and two. The matrix
becomes [

0 0

1 0

∣∣∣∣∣ D−1 + 1 + D 1 + D

0 0

]
.

Perform a C-NOT from qubit one to qubit two. The matrix
becomes [

0 0

1 0

∣∣∣∣∣ D−1 + 1 + D D−1

0 0

]
.

Perform a row operation that delays the first row by D. Perform
a Hadamard on both qubits. The stabilizer becomes[

1 + D + D2 1

‘0 0

∣∣∣∣∣ 0 0

1 0

]
.
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The above matrix is now in standard form. The matrix F (D) =
1 as in (18) so that its only invariant factor is equal to one.
The code falls into the second class of entanglement-assisted
quantum convolutional codes. We begin encoding with one ebit
and one information qubit per frame. The stabilizer matrix for
the unencoded stream is as follows:[

1 1 0

0 0 0

∣∣∣∣∣ 0 0 0

1 1 0

]
,

and the information-qubit matrix is as follows:[
0 0 0

0 0 1

∣∣∣∣∣ 0 0 1

0 0 0

]
.

Perform a Hadamard on qubit two and a C-NOT from qubit two
to qubit three so that the above stabilizer becomes[

1 0 0

0 1 0

∣∣∣∣∣ 0 1 1

1 0 0

]
,

and the information-qubit matrix becomes[
0 0 0

0 1 1

∣∣∣∣∣ 0 0 1

0 0 0

]
.

Perform an infinite-depth operation corresponding to the
rational polynomial 1/

(
1 + D + D2

)
on qubit three. Follow

with a Hadamard gate on qubits two and three. The stabilizer
matrix becomes[

1 1 1/
(
1 + D + D2

)
0 0 0

∣∣∣∣∣ 0 0 0

1 1 0

]
, (46)

and the information-qubit matrix becomes[
0 0 1/

(
1 + D + D2

)
0 0 0

∣∣∣∣∣ 0 0 0

0 1 1 + D−1+D−2

]
. (47)

Perform the finite-depth operations above in reverse order so
that the stabilizer becomes[

D−1 1
1+D+D2

1+D
1+D+D2

0 0 0

∣∣∣∣∣ 0 0 0

1 1 1 + D

]
,

and the information-qubit matrix becomes[
0 D−1+D−2

1+D+D2
1

1+D+D2

0 0 0

∣∣∣∣∣ 0 0 0

0 D−1 + D−2 D−1

]
.

The above stabilizer is equivalent to the desired quantum
check matrix in (45) by a row operation that multiplies its first
row by 1 + D + D2. The receiver decodes by performing the
finite-depth encoding operations in reverse order and gets the
stabilizer in (46) and the information-qubit matrix in (47). The
receiver performs a C-NOT from qubit one to qubit two and
follows with a C-NOT from qubit two to qubit three in the same
frame, in an advanced frame, and in a twice-advanced frame.
Finally, perform a Hadamard gate on qubits two and three. The
stabilizer becomes[

0 0 0

0 0 0

∣∣∣∣∣ 0 0 1/
(
1 + D + D2

)
0 0 0

]
,

and the information-qubit matrix becomes[
0 0 0

0 1 0

∣∣∣∣∣ 0 1 1/
(
1 + D + D2

)
0 0 0

]
.

|ψ1〉A

|ψ2〉A

|ψ3〉A

|ψ4〉A

|ψ5〉A

|ψ6〉A

|Φ+〉BA

|Φ+〉BA

|Φ+〉BA

|Φ+〉BA

|Φ+〉BA

|Φ+〉BA

{
{
{
{
{
{

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

Encoding Circuit Decoding Circuit

FIG. 7. (Color online) The encoding and decoding circuits for the entanglement-assisted quantum convolutional code in Example 2. The
third series of gates in the above encoding circuit is an infinite-depth operation. The other operations in the encoding circuit are finite-depth
operations. The decoding circuit has finite-depth operations only.
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The receiver decodes the information qubits successfully
because a row operation from the first row of the stabilizer
to the first row of the information-qubit matrix gives the
proper logical operators for the information qubits. Figure 7
details the above encoding and decoding operations for this
entanglement-assisted quantum convolutional code.

B. Discussion

This second class of codes assumes that noiseless encoding
is available. We require this assumption because the encoding
circuit employs infinite-depth encoding operations.

If an error does occur during the encoding process, it
can propagate infinitely through the encoded qubit stream.
The result of a single encoding error can distort both the
encoded quantum information, the syndromes that result from
measurements, and the final recovery operations based on the
syndromes.

We may be able to relax the noiseless encoding assumption
if nearly noiseless encoding is available. The probability of an
error would have to be negligible in order to ensure that the
probability for a catastrophic failure is negligible. One way to
lower the probability of an encoding error is to encode first
with a quantum block code and then further encode with our
quantum convolutional coding method. Many classical coding
systems exploit this technique, the most popular of which is a
Reed-Solomon encoder followed by a convolutional encoder.

VIII. CONCLUSION AND CURRENT WORK

This work develops the theory of entanglement-assisted
quantum convolutional coding. We show several methods for
importing two arbitrary classical binary convolutional codes
for use in an entanglement-assisted quantum convolutional
code. Our methods outline different ways for encoding and
decoding our entanglement-assisted quantum convolutional
codes.

We introduce the notion of an infinite-depth operation for
encoding circuits. We use these infinite-depth operations in
both encoding and decoding. These operations are acceptable
if we assume that noiseless processing is available both at the
sender’s end and on the receiver’s half of shared ebits.

Our first class of codes employs only finite-depth operations
in their encoding and decoding procedures. These codes are
the most useful in practice because they do not have the risk of
catastrophic error propagation. An error that occurs during
encoding, measurement, recovery, or decoding propagates
only to a finite number of neighboring qubits.

Our second class of codes uses infinite-depth operations
during encoding. This assumption is reasonable only if
noiseless encoding is available. The method of concatenated
coding is one way to approach nearly noiseless encoding in
practice.

We suggest several lines of inquiry from here. Our codes are
not only useful for quantum communication, but should also be
useful for private classical communication because of the well-
known connection between a quantum channel and private
classical channel [25]. It may make sense from a practical
standpoint to begin investigating the performance of our
codes for encoding secret classical messages. The commercial
success of quantum key distribution for the generation of a
private shared secret key motivates this investigation. It is also
interesting to determine which entanglement-assisted codes
can correct for errors on the receiver’s side. Codes that possess
this property will be more useful in practice.
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[31] M. Grassl and M. Rötteler, in IEEE International Symposium on

Information Theory, e-print arXiv:quant-ph/0602129 (2006).
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