
PHYSICAL REVIEW A 81, 042330 (2010)

Universal quantum computation using the discrete-time quantum walk

Neil B. Lovett,* Sally Cooper, Matthew Everitt, Matthew Trevers, and Viv Kendon†

School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
(Received 19 October 2009; revised manuscript received 2 March 2010; published 30 April 2010)

A proof that continuous-time quantum walks are universal for quantum computation, using unweighted graphs
of low degree, has recently been presented by A. M. Childs [Phys. Rev. Lett. 102, 180501 (2009)]. We present
a version based instead on the discrete-time quantum walk. We show that the discrete-time quantum walk is
able to implement the same universal gate set and thus both discrete and continuous-time quantum walks are
computational primitives. Additionally, we give a set of components on which the discrete-time quantum walk
provides perfect state transfer.

DOI: 10.1103/PhysRevA.81.042330 PACS number(s): 03.67.Ac, 05.40.Fb

I. INTRODUCTION

Quantum computers offer the promise of fundamentally
faster processing based on quantum mechanical properties.
Although a physical device of a useful size is still to be built,
many quantum algorithms have already been discovered. The
most important of these are the algorithms introduced by Shor
[1] and Grover [2], which can factor integers and search an
unsorted database, respectively, significantly faster than the
best known classical algorithms [1,2].

Quantum walks were initially introduced in both continuous
[3] and discrete [4] time, in direct analogy with their classical
counterparts, and have since been studied extensively [5].
In the same way that classical random walks are used
in computer science for algorithm design, many quantum
algorithms have been developed based on quantum walks, with
varying speed-ups over the best known classical algorithms
for the same problem [6]. These solve the problems using
two different approaches: hitting times and searching. In
hitting-time problems we start from a specific vertex and want
to get to another as quickly as possible. These problems have
yielded the largest speed-up, including exponential speed-ups
over the classical case [7–9]. Searching for an entry in an
unsorted database is a classically time-consuming problem
taking on average a time of O(N) to search a set of N

entries. Grover’s algorithm [2] improves on this to O(
√

N)
by using a technique known as amplitude amplification. The
same speed-up can be obtained using a quantum walk method
on various structures [10–12].

In [13], Childs extends the original results of Feynman
[14] to show that a continuous-time quantum walk, on an
unweighted graph of bounded degree, is universal for quantum
computation. Childs [13] gives an explicit construction that
converts a standard gate model computation into a graph, on
which a continuous-time quantum walk executes an algorithm
by traversing the graph. In this article, we show the equivalent
construction of a universal gate set using the discrete-time
quantum walk in place of the continuous one. This confirms
that both the continuous and the discrete-time quantum walks
can be regarded as computational primitives. The construction
requires an exponentially large graph for the size of the

*pynbl@leeds.ac.uk
†V.Kendon@leeds.ac.uk

input as we require 2n wires for an n-qubit input. The
quantum walk takes place on this N -vertex graph just as the
continuous-time walk does in the construction by Childs [13].
It is already known that a quantum walk on an N -vertex
graph can be simulated efficiently by a universal quantum
computer using poly(log2 N) gates, provided there is a simple
rule for computing the neighbors of any vertex [7]. Thus,
by performing the quantum walk on a quantum computer,
the binary encoding brings the resources required back to the
expected level.

Our construction for the universal gate set in discrete time
is similar to [13] but has maximum degree, d, of eight at
any vertex as opposed to three in the continuous case. The
continuous-time walk can easily be propagated in one direction
with no reflection at the vertices. The discrete-time walk is not
so straightforward; it can only be propagated in one direction
by using a specific coin corresponding to the σx operation.
Using this coin restricts the graph to vertices of degree two,
providing no way to construct higher-degree structures. Thus,
we must use a double-edged wire to accomplish directional
propagation. This solution has its roots in the connection
between the continuous and the discrete-time walks. Strauch
[15] has shown that, as we take the continuous limit of the
discrete-time walk on the line, we actually get two copies of
the continuous-time walk propagating in opposite directions.
Childs [16] later showed a direct correspondence between
the discrete and continuous-time quantum walks on arbitrary
graphs. In the same work, Childs shows how a discrete-time
walk can be used, at its limit of small eigenvalues, to
approximate the continuous-time walk. He uses this “lazy”
quantum walk approach to allow the discrete-time walk to
propagate in the same way as the continuous. This same
approach could be used in this case to allow the computation to
be performed on the same structures defined in [13]. However,
this would require the discrete-time walk to approach the
limit at which it is doing very little at each time step. This
would then increase the overhead required to allow completely
deterministic computation.

We begin by describing the discrete-time quantum walk
briefly in Sec. II, then move on to show structures on which the
discrete-time quantum walk will allow perfect state transfer in
Sec. III. These structures allow us to construct the elements we
need to perform computation. Section IV shows the universal
gate set we choose and how we implement these using the
discrete-time walk. Section V describes how we can link these

1050-2947/2010/81(4)/042330(7) 042330-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.042330

LOVETT, COOPER, EVERITT, TREVERS, AND KENDON PHYSICAL REVIEW A 81, 042330 (2010)

gates and structures together to form any quantum circuit and
elaborates on how this is efficient, despite the size of the graph
being exponential in the number of gates required. Finally, in
Sec. VI we discuss our findings and the differences with the
continuous-time construction of [13].

II. DISCRETE-TIME QUANTUM WALK

Consider a classical random walk on a line in which a walker
starts at a specific position and, depending on the outcome of
a coin toss, moves either left or right. The outcome after many
runs is a binomial distribution about the starting position with a
spread (quantified by the standard deviation) of

√
t , where t is

the number of time steps. A discrete-time quantum walk is the
direct analog of the classical walk with the walker replaced
by a quantum particle carrying a two-state quantum system
for the coin. The coin toss is effected by a unitary operator.
Although this is now deterministic, if we were to measure the
coin we would get a random output as in the classical case.
We start the quantum walker at the origin and act upon it with
a unitary operator for the coin toss, followed by a conditional
shift operation (to obtain the movement of the walker) at each
time step. We write the basis states of the walker as an ordered
pair, |x,c〉, denoting the position of the walker, x, and the state
of the coin, that is, heads (c = 1) or tails (c = 0). The simplest
unitary operator is the Hadamard operator, H , which acts on
the state as

H |x,0〉 = 1√
2

(|x,0〉 + |x,1〉),
(1)

H |x,1〉 = 1√
2

(|x,0〉 − |x,1〉).

The shift operation, S, acts thus:

S|x,0〉 = |x − 1,0〉,
(2)

S|x,1〉 = |x + 1,1〉.
The first three time steps starting at the origin are as follows:

(SH)3|0,0〉
= (SH)2S

1√
2

(|0,0〉 + |0,1〉)

= (SH)2 1√
2

(|−1,0〉 + |1,1〉)

= (SH)S
1

2
(|−1,0〉 + | − 1,1〉 + |1,0〉 − |1,1〉)

= SH
1

2
(|−2,0〉 + |0,1〉 + |0,0〉 − |2,1〉)

= S
1√
8

(|−2,0〉 + |−2,1〉 + |0,0〉 − |0,1〉
+|0,0〉 + |0,1〉 − |2,0〉 + |2,1〉)

= 1√
8

(|−3,0〉 + |−1,1〉 + 2|−1,0〉 − |1,0〉 + |3,1〉).
(3)

As the walk progresses, quantum interference occurs whenever
there is more than one possible path of t steps to the position.
This can be both constructive and destructive, as shown in

FIG. 1. A general graph with five vertices and six edges. It is
undirected and has vertices of varying degree.

Eq. (3), which causes some probabilities to be amplified or
decreased at each time step. The walk on the line has been
solved analytically [17,18], where it was first remarked that the
quantum walk spreads quadratically faster than the classical
one.

The choice of operator at each vertex can greatly affect the
dynamics of the walk and its propagation across the structure.
A bias can be introduced [19] for d = 2; this is done using a
generalization of the Hadamard operator,

Hbias =
(√

δ
√

1 − δ√
1 − δ −√

δ

)
, (4)

where δ is the bias in the coin. Setting this to δ = 1
2 returns

the standard Hadamard operator [Eq. (1)]. Similarly, the choice
of the walker’s initial state is also important, unlike in the
classical random walk. A good review of these effects can be
found in [20].

For universal computation we need a quantum walk on a
more complex graph. In graph theory, a general graph, G, is
an ordered pair consisting of a set of vertices, V , and a set
of edges, E, which link the vertices. The number of edges
incident on a vertex is the degree of the vertex. Figure 1 shows
a small general graph which has vertices of varying degree. It
is also undirected, meaning that the edges allow movement in
both directions. A different operator (coin) is needed at vertices
with d > 2 in order to act on the entire state space [21,22].

The Grover coin can be extended to any degree at a vertex,

G(d) =

⎡
⎢⎢⎣

2
d

. . . 2
d

...
. . .

...
2
d

. . . 2
d

⎤
⎥⎥⎦ − Id, (5)

where d is the degree of the vertex and Id is the identity matrix
of the same dimension.

Coins of degree four will be needed at most of the vertices in
our computational graphs. The Grover coin in four dimensions
[Eq. (5)] reduces to

G(4) = 1

2

⎡
⎢⎢⎢⎣

−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

⎤
⎥⎥⎥⎦ . (6)

Using these higher-dimensional coins can cause the walker
to be reflected back upon itself with some probability. Figure 2
shows this reflection for a vertex of degree d = 4. In quantum-
walk search and other quantum-walk algorithms this can be
useful to provide interference. However, here we need to
ensure that the walker moves in one direction only, from left
to right, so it most resembles the circuit model of quantum

042330-2

UNIVERSAL QUANTUM COMPUTATION USING THE . . . PHYSICAL REVIEW A 81, 042330 (2010)

FIG. 2. An example of a portion of the walker reflecting back
upon itself. This is a single degree-four vertex with the Grover coin
[Eq. (5)] operating on the incoming amplitude α.

computation. We show how we accomplish this forward-only
propagation in Sec. IV.

III. PERFECT STATE TRANSFER

As a preliminary to our quantum computation scheme,
we discuss structures on which perfect state transfer can be
achieved using the discrete-time quantum walk. Perfect state
transfer has been investigated in the context of spin chains by
Landahl et al. [23,24]. The propagation of the state through
spin systems follows the same dynamics as a continuous-time
quantum walk. Perfect state transfer can occur on chains of
length 2 or 3, hypercubes of any size, and chains with different
coupling strengths engineered to optimize state transfer.

The closely related properties of instantaneous mixing and
periodic cycles have been studied in detail for quantum walks.
For the continuous-time quantum walk, instantaneous mixing
has been investigated by Tamon et al. [25–28]. They showed
in [25] that this is achieved on cycles of two, three, and four
vertices only. For the discrete-time walk, slightly larger cycles
show exact periodic behavior. Travaglione and Milburn [29]
showed that a cycle of four vertices has a periodicity of eight
time steps, after which the entire state returns to the starting
position. Tregenna et al. [20] showed that more periodic cycles
exist, cycles of two, three, four, five, six, eight, and ten were
shown numerically to be periodic by varying both the bias and
the phase in the coin. Perfect state transfer occurs at half the
periodic cycle for even cycles, where we obtain the entire state
at the opposite point of the cycle, as shown in Fig. 3.

For our case of using the walk for computation, we require
the walk to travel perfectly in a single direction. On the
structures mentioned, the quantum walk travels around the

Start
Perfect state transfer
after 12 timesteps

FIG. 3. Cycle of eight vertices which gives perfect state transfer
from the initial vertex to the opposite vertex after half of the period,
12 time steps. The entire state returns to the initial vertex in a full
period, 24 time steps.

cycle in both directions and interferes to produce perfect state
transfer. Using a completely biased coin,

Hmax. bias =
(

0 1

1 0

)
, (7)

we can make the state transfer perfectly around the cycle in
a single direction. However, if we then try to attach another
structure to the cycle, this periodicity is broken in both cases.
The Grover coin [Eq. (5)] can be used to overcome part of this
problem at vertices with an equal number of input edges as
output edges. For any vertex of even degree, it will transfer
the entire state from all the input edges to all the output edges
provided the inputs are all equal in both amplitude and phase.
These results led us to the designs that work for universal
computation.

IV. UNIVERSAL GATE SET

We now show how we construct a universal gate set with
the discrete-time quantum walk. Although the gate set we
implement is the same as in [13], the structures used to
propagate the discrete-time walk are different. The gate set
used is the standard universal set comprising the controlled-not
(CNOT) gate,

CNOT =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤
⎥⎥⎥⎦ , (8)

the single-qubit Hadamard,

H = 1√
2

[
1 1

1 −1

]
, (9)

and phase-shift gates (we implement the specific phase shift
known as the π

8 gate),

P
(π

8

)
=

[
1 0

0 ei π
4

]
. (10)

These gates create a universal set that can implement any
quantum computation [30].

In order to represent quantum states, Childs defines his
computational basis states as quantum wires. The other gates
required for universality are then attached to wires and used
to connect them together. The computation is represented
as a quantum walk on these wires and structures, where
the computation flows from input to output (left to right in
our diagrams). Note that this encoding is not meant to be
implemented directly. The wires represent computational basis
states rather than qubits; thus, the model does not represent a
physical architecture. Instead, the underlying graph structure
created would be used to help “program” a quantum computer.
We first show how to construct a simple wire along which the
quantum walk will propagate naturally in one direction. We
use two edges per wire to ensure that no reflection occurs at a
vertex. We distribute the walker across the two edges, which
then recombine at the next vertex. As the split is equal, the
Grover coin in effect moves both halves to the output edges

042330-3

LOVETT, COOPER, EVERITT, TREVERS, AND KENDON PHYSICAL REVIEW A 81, 042330 (2010)

ShiftGrover

A B C

FIG. 4. Grover and shift operation acting on a vertex of degree
d = 4. Section A shows the initial state, B shows the state after the
Grover coin is applied, and C is after the shift operation.

of the vertex. Figure 4 shows this operation and the “shift”
to the next vertex in explicit steps. The Grover diffusion coin
[Eq. (5)] is used at each vertex of degree d = 4. The initial and
final vertices are in effect degree four if we include other edges
attached to either end. Figure 5 shows the basic wire we use.
The computation would start with the amplitude at the initial
vertex spread equally across the pair of edges in a wire. For
example, the state α|0〉 + β|1〉, where |α|2 + |β|2 = 1, would
be split thus,

|ψinitial〉 = 1√
2

[α|0〉a + α|0〉b + β|1〉a + β|1〉b] , (11)

where the subscript a refers to the top line of the wire and
subscript b is the bottom line. The walk propagates left to
right on the wire deterministically, in this case reaching the
incoming edges of the final vertex in four time steps. These
wires form the basic connections in the computation.

The simplest gate to construct is the CNOT. It is trivial to
implement by just exchanging the wires of the second qubit.
The CNOT gate is shown in Fig. 6 and shows how the second
qubit is flipped but the first qubit is untouched.

The phase gate [Eq. (10)] requires the addition of a relative
phase to one wire or computational basis state in relation to the
other. To accomplish this, but still have only one coin operator
for each vertex of the same degree, we modify the basic wire
and add a phase factor, eiφ , to it,

G
(4)
φ = eiφG(4). (12)

Thus, as the walk propagates along a basic wire, it now picks
up a phase of eiφ each time it passes through a vertex of degree
d = 4. For the wires shown in Fig. 5 the walker would pick
up a phase of e5iφ as it reaches the final vertex. The phase
added here is arbitrary and can be set to any value so long as
it is set to the same value for all vertices of degree d = 4. As
we are looking to implement a π/8 gate, we set it as follows:
φ = −π/4. In order to add a relative phase of π/4 between
the |0〉 and |1〉 wires, we insert the structure in Fig. 7 into
the graph at the required point. In this structure there are also

FIG. 5. Basic wire used to propagate the quantum walk from left
to right only. At a vertex of degree d = 4, the Grover diffusion coin
is used. The initial state is split across the pair of edges in the wire
[Eq. (11)].

FIG. 6. Structure used to implement a CNOT gate. In this case the
first qubit is the control and the second is the target. The target qubit’s
wires are interchanged and the control qubit is left unaltered. The
dotted lines represent wires passing underneath the solid lines—there
is no interaction between these wires.

vertices of degree d = 2, at which we use the Grover coin at
its limit of degree d = 2,

G(2) =
[

0 1

1 0

]
. (13)

We add no phase to Eq. (13) so as the walker passes through
these vertices no phase is picked up. In Fig. 7, the walker
propagates along the |1〉 wire and picks up a phase of e−iπ in
four time steps as it only passes through four vertices of degree
four. However, the |0〉 wire picks up a phase of e−5i π

4 in the
same number of time steps as all its vertices are of degree four.
Relative to the |0〉 wire, the |1〉 wire will pick up a phase of
ei π

4 . Therefore, using the structure described here we obtain
the operation in Eq. (10).

The last gate in the universal set is the Hadamard gate. This
requires an interaction between the two computational basis
states. The structure we use to perform this operation is shown
in Fig. 8. This looks complex in relation to the other gates
we have shown so we break it up to explain it more clearly.
Sections A and C of the structure are each two phase gates
giving a relative phase of i to the |1〉 wire before and after
the main section of the gate (B). Section B of the structure
combines the two inputs from the |0〉 and |1〉 wires and then
splits this across the outputs equally. The structure here is
similar to the basis-changing gate in [13]. In order to obtain

FIG. 7. Phase-gate structure. The d = 2 Grover coin [Eq. (13)] is
used at the vertices of degree d = 2. The |1〉 wire will pick up a phase
of eiφ relative to the |0〉 wire. In our construction we actually obtain
the operation corresponding to a phase of ei π

4 as we set φ = −π/4.

042330-4

UNIVERSAL QUANTUM COMPUTATION USING THE . . . PHYSICAL REVIEW A 81, 042330 (2010)

A B C

FIG. 8. Hadamard gate structure. Sections A and C add a relative phase of i to the |1〉 wire. The structure adds a global phase of 3π/4 to
the wires.

the desired operation on this structure, we have designed a
coin for vertices of degree d = 8:

G(8) = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 i i −1

0 0 0 0 i 1 −1 i

0 0 0 0 i −1 1 i

0 0 0 0 −1 i i 1

i −1 1 i 0 0 0 0

−1 i i 1 0 0 0 0

1 i i −1 0 0 0 0

i 1 −1 i 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(14)

This operator combines the complex Hadamard operator,

Hi = 1√
2

[
1 i

i 1

]
, (15)

and the σx ,

σx =
[

0 1

1 0

]
, (16)

in a tensor product form,

G(8) = (Hi ⊗ Hi) ⊗ σx, (17)

with the top two and bottom two rows of the Hi ⊗ Hi matrix
rearranged. This rearrangement ensures the outputs come out
in the same order as the input states. This gate adds a global
phase of 3π/4. The phase gates at the start and end of the
central section give us the relative phase of −1 required for
the Hadamard operation. We note here that the choice of where
to place the phases in this construction is arbitrary. The same
result can be achieved by using the degree-four Grover coin
[Eq. (6)] with no phase at vertices of degree four and the
degree-two Grover coin [Eq. (13)], with a phase of π/4 at
vertices of degree two. However, by placing the phases on the
Grover coin in the fashion we described previously [Eqs. (12)
and (13)] means that the global phase added by the Hadamard
gate [Eq. (14)] corresponds to the phase added by a wire of the
same length.

V. CONSTRUCTING QUANTUM CIRCUITS

Thus far, each gate we have described only acts on one or
two qubits. However, nontrivial quantum computers involve
many qubits. We now describe how to link these wires and
structures together to form larger circuits. Figure 10 shows

the underlying graph structure of the circuit in Fig. 9. The
graph structure is obtained by connecting together wires and
structures so that the walk flows from left to right. For this
reason, we designed our wire and structures with both input
and output vertices of degree four, thus making it simple to
link them together. The initial state of the computation is set
on all or a subset of the vertices on the left-hand side of
the graph, with the amplitude at each vertex split across the
incoming edges. This initial state can be thought of as the first
column of vertices in the graph structure in superposition, with
each subsequent column of vertices representing a further time
step. For example, in Fig. 10 this column of vertices is the set
prior to the Hadamard structures. The walker is propagated
across the graph structure, from left to right deterministically,
for the required number of time steps. We therefore do not
require the addition of momentum filters or separators as in the
continuous-time case. Our structures all propagate the walker
at the same speed, meaning output from the wires will be
synchronized throughout the computation. Finally, the walker
picks up a global phase of −π/4 per vertex that is not part
of a gate that changes the phase, so all the wires also stay
synchronized in phase. Thus, we know with certainty that,
after the required number of time steps, the walker will have a
distribution over just the output vertices on the right-hand side
of the graph. Once the computation has been completed, we
measure the output vertices. We will find the walker at just one
of these vertices, representing the output of the computation.

The graph structure in Fig. 10 is clearly larger in size than its
equivalent representation in the circuit model (Fig. 9). In fact,
for a general n-qubit computation the equivalent graph will
have 2n wires, one for each combination of computational basis
states. Similarly, we require more gate structures than in the
circuit model. Single-qubit structures are repeated 2n−1 times
and for the CNOT gate we need 2n−2 structures. As an example,
we can see that the phase gate acting on qubit 3 in Fig. 9 is
repeated four times in the underlying graph structure of Fig. 10,
one for each combination of wires involving qubit 3. Although
this seems as though we would lose any form of quantum
speed-up due to the exponential number of gates required in

PH

FIG. 9. Quantum circuit on three qubits. A Hadamard operation
is performed on qubit 3 followed by two CNOT gates. Finally, a phase
gate is applied on qubit 3. The underlying graph of this structure is
shown in Fig. 10.

042330-5

LOVETT, COOPER, EVERITT, TREVERS, AND KENDON PHYSICAL REVIEW A 81, 042330 (2010)

H

H

H

H

FIG. 10. Graph representing the quantum circuit in Fig. 9. The Hadamard structure, H , is the same as in Fig. 8. The dotted lines represent
wires passing underneath the solid lines—there is no interaction between these wires.

the underlying graph, this is not the case. Consider simulating
a classical random walk on a classical computer, the N -vertex
graph is represented in log2 N bits of memory with each vertex
having a unique binary number as a label. In a similar fashion,
if we simulate a quantum walk on a quantum computer, the N -
vertex graph can be represented by log2 N qubits. Therefore,
if we encode our graph using qubits, we can describe the 2n

wires in just n qubits. By manipulation of a single qubit, we
can affect all combinations of wires associated with that qubit.
As the state moves across the graph, the adjacent vertices
must be established. In complex graphs the description of the
graph and its connections is often exponential in size and
an oracle must be used to store it [7]. The graphs produced
here are of bounded degree and have a regularity stemming
from the repetition of gate structures on combinations of wires
involving a specific qubit. Due to the labeling of the wires, we
know where to place each structure based on one bit in the
label; thus, we can efficiently describe the graph. For example,
consider the second CNOT gate in Fig. 9, which operates on
qubit 3 with qubit 2 as control. We can see from Fig. 10 that it
is easy to identify where the CNOT structures should be placed.
The labeling of the wires shows that the middle bit determines
which combinations of wires relate to the second qubit having a
value of 1. Similarly, we can also identify which wire it should
link to by the last bit in the labeling scheme: It needs to be
flipped relative to the original wire; that is, |010〉 links to |011〉.

VI. DISCUSSION

In this article we have described an alternative to the
construction in [13] using the discrete-time quantum walk.
This shows the discrete-time quantum walk is universal;
therefore, any quantum algorithm can be reformulated as a

discrete-time quantum walk algorithm. It also confirms that
the discrete and continuous-time walks are both computational
primitives and thus computationally equivalent. This equiva-
lence is dependent on the number of steps in both cases being
of the same order. Our gate constructs require twice the number
of edges compared to the continuous-time case but the same
number of wires. Our phase gate requires an additional time
step in relation to the continuous-time phase-gate construct.
The number of time steps required for a computation is also
the same as the continuous-time case but with a small overhead
depending on the number of phase gates required.

Another difference in the two constructions is the degree
of the graphs produced. In the continuous-time case the
maximum degree of any vertex in the graph is three. In the
discrete-time case we use vertices of higher degree to ensure
directional propagation. In most of the structures, this is a
doubling of the degree at a vertex, as shown in the case of
the basic wire and the phase-gate structure. The Hadamard
structure we propose here, however, does not follow this
doubling. It would seem reasonable, from the equivalent
degree-three structure in the work by Childs, that it may be
possible to decompose our Hadamard structure into one with
degree-six vertices. The doubling of the degree at vertices
would then correspond directly to the continuous case.

ACKNOWLEDGMENTS

We thank Andrew Childs for helpful comments on a draft
of the manuscript. N.L. is funded by the UK Engineering
and Physical Sciences Research Council. V.K. is funded by a
Royal Society University Research Fellowship. S.C. and M.T.
were funded by Nuffield Foundation Science Undergraduate
Research Bursaries. M.E. was funded by the University of
Leeds.

042330-6

UNIVERSAL QUANTUM COMPUTATION USING THE . . . PHYSICAL REVIEW A 81, 042330 (2010)

[1] P. W. Shor, SIAM J. Comput. 26, 1484 (1997).
[2] L. K. Grover, in Proceedings of the 28th Annual ACM STOC,

1996 (ACM, New York, 1996), p. 212.
[3] E. Farhi and S. Gutmann, Phys. Rev. A 58, 915 (1998).
[4] Y. Aharonov, L. Davidovich, and N. Zagury, Phys. Rev. A 48,

1687 (1993).
[5] J. Kempe, Contemp. Phys. 44, 307 (2003).
[6] A. Ambainis, Int. J. Quantum Inf. 1(4), 507 (2003).
[7] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and

D. Spielman, in Proceedings of the 35th ACM Symposium on
Theory of Computing (Association for Computing Machinery,
New York, 2003), p. 59.

[8] J. Kempe, in Proceedings of the RANDOM’03 Lecture Notes in
Computer Science (Springer, 2003), p. 354.

[9] A. M. Childs, L. J. Schulman, and U. V. Vazirani, in Proceedings
of the 48th IEEE Symposium on Foundations of Computer
Science (IEEE, Washington, DC, 2007), p. 395.

[10] N. Shenvi, J. Kempe, and K. B. Whaley, Phys. Rev. A 67, 052307
(2003).

[11] A. M. Childs and J. Goldstone, Phys. Rev. A 70, 022314
(2004).

[12] A. M. Childs and J. Goldstone, Phys. Rev. A 70, 042312
(2004).

[13] A. M. Childs, Phys. Rev. Lett. 102, 180501 (2009).
[14] R. P. Feynman, Opt. News 11, 11 (1985).
[15] F. W. Strauch, Phys. Rev. A 74, 030301(R) (2006).
[16] A. M. Childs, Commun. Math. Phys. 294, 581

(2010).

[17] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous,
in Proceedings of the 33rd Annual ACM Symposium on Theory
of Computing (ACM, New York, 2001), p. 60.

[18] A. Nayak and A. Vishwanath, e-print arXiv:quant-ph/0010117.
[19] E. Bach, S. Coppersmith, M. Paz-Goldschen, R. Joynt, and

J. Watrous, J. Comput. Syst. Sci. 69(4), 562 (2004).
[20] B. Tregenna, W. Flanagan, R. Maile, and V. Kendon, New

J. Phys. 5, 83 (2003).
[21] T. D. Mackay, S. D. Bartlett, L. T. Stephenson, and B. C. Sanders,

J. Phys. A 35, 2745 (2002).
[22] V. Kendon, Int. J. Quantum Inf. 4(5), 791 (2006).
[23] M. Christandl, N. Datta, A. Ekert, and A. J. Landahl, Phys. Rev.

Lett. 92, 187902 (2004).
[24] M. Christandl, N. Datta, T. C. Dorlas, A. Ekert, A. Kay, and A. J.

Landahl, Phys. Rev. A 71, 032312 (2005).
[25] A. Ahmadi, R. Belk, C. Tamon, and C. Wendler, Quantum Inf.

Comp. 3, 611 (2003).
[26] L. Fedichkin, D. Solenov, and C. Tamon, Quantum Inf. Comp.

6(3), 263 (2006).
[27] W. Carlson, A. Ford, E. Harris, J. Rosen, C. Tamon, and

K. Wrobel, Quantum Inf. Comp. 7(8), 738 (2007).
[28] A. Best, M. Kliegl, S. Mead-Gluchacki, and C. Tamon, Int. J.

Quantum. Inf. 6(6), 1135 (2008).
[29] B. C. Travaglione and G. J. Milburn, Phys. Rev. A 65, 032310

(2002).
[30] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo,

N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter,
Phys. Rev. A 52, 3457 (1995).

042330-7

http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1103/PhysRevA.58.915
http://dx.doi.org/10.1103/PhysRevA.48.1687
http://dx.doi.org/10.1103/PhysRevA.48.1687
http://dx.doi.org/10.1080/00107151031000110776
http://dx.doi.org/10.1142/S0219749903000383
http://dx.doi.org/10.1103/PhysRevA.67.052307
http://dx.doi.org/10.1103/PhysRevA.67.052307
http://dx.doi.org/10.1103/PhysRevA.70.022314
http://dx.doi.org/10.1103/PhysRevA.70.022314
http://dx.doi.org/10.1103/PhysRevA.70.042312
http://dx.doi.org/10.1103/PhysRevA.70.042312
http://dx.doi.org/10.1103/PhysRevLett.102.180501
http://dx.doi.org/10.1364/ON.11.2.000011
http://dx.doi.org/10.1103/PhysRevA.74.030301
http://dx.doi.org/10.1007/s00220-009-0930-1
http://dx.doi.org/10.1007/s00220-009-0930-1
http://arXiv.org/abs/arXiv:quant-ph/0010117
http://dx.doi.org/10.1016/j.jcss.2004.03.005
http://dx.doi.org/10.1088/1367-2630/5/1/383
http://dx.doi.org/10.1088/1367-2630/5/1/383
http://dx.doi.org/10.1088/0305-4470/35/12/304
http://dx.doi.org/10.1142/S0219749906002195
http://dx.doi.org/10.1103/PhysRevLett.92.187902
http://dx.doi.org/10.1103/PhysRevLett.92.187902
http://dx.doi.org/10.1103/PhysRevA.71.032312
http://dx.doi.org/10.1142/S0219749908004377
http://dx.doi.org/10.1142/S0219749908004377
http://dx.doi.org/10.1103/PhysRevA.65.032310
http://dx.doi.org/10.1103/PhysRevA.65.032310
http://dx.doi.org/10.1103/PhysRevA.52.3457

