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Minimum-error discrimination of quantum states: Bounds and comparisons
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We derive a new bound on the minimum-error probability for ambiguous discrimination and compare the new
bound with six other bounds in the literature. Specifically, the main technical contributions are as follows. (1) We
obtain a general lower bound on the minimum-error probability for ambiguous discrimination among arbitrary
m mixed quantum states with given prior probabilities. We further analyze how this lower bound is attainable by
presenting a necessary and sufficient condition related to it. (2) We compare this new lower bound with six other
bounds in the literature, in detail. We show that this new bound improves the previous one in the literature and
in the equiprobable case; the new bound also improves another one. Moreover, we give an example to show that
this new bound is the tightest one for some cases.
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I. INTRODUCTION

A fundamental issue in quantum information science
is that nonorthogonal quantum states cannot be perfectly
discriminated, and indeed, motivated by the study of quantum
communication and quantum cryptography [1], distinguishing
quantum states has become a more and more important subject
in quantum information theory [2–8]. This problem may be
roughly described by the connection between quantum com-
munication and quantum-state discrimination in this manner
[2,3,6–8]: Suppose that a transmitter, Alice, wants to convey
classical information to a receiver, Bob, using a quantum
channel, and Alice represents the message conveyed as a mixed
quantum state that, with given prior probabilities, belongs to
a finite set of mixed quantum states, say {ρ1,ρ2, . . . ,ρm}; then
Bob identifies the state by a measurement.

As is known, if the supports of mixed states ρ1,ρ2, . . . ,ρm

are not mutually orthogonal, then Bob cannot reliably identify
which state Alice has sent, namely, ρ1,ρ2, . . . ,ρm can not
be faithfully distinguished [2,7,8]. However, it is always
possible to discriminate them in a probabilistic means. To
date, there have been many interesting results concerning
quantum-state discrimination; refer to [3,4], and [6], and
references therein. It is worth mentioning that some schemes
of quantum-state discrimination have been experimentally
realized (e.g., see [9–11] and the detailed review in [6]).

Various strategies have been proposed for distinguishing
quantum states [3,4,6], including ambiguous discrimination,
unambiguous discrimination, and a method combining both
strategies. Assume that mixed states ρ1,ρ2, . . . ,ρm have the
a priori probabilities p1,p2, . . . ,pm, respectively. An im-
portant approach to discriminate them is ambiguous (also
called quantum-state detection) [2,7,8], which is studied
further in this paper, in which an inconclusive outcome is
not allowed, and thus error may result. A measurement for
discrimination consists of m measurement operators (e.g.,
positive semidefinite operators) that form a resolution of the
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identity on the Hilbert space spanned by all eigenvectors
corresponding to all nonzero eigenvalues of ρ1,ρ2, . . . ,ρm.
Much work has been devoted to devising a measurement
maximizing the success probability (i.e., minimizing the error
probability) of detecting the states [12–14].

The first important result is the pioneering work by
Helstrom [2]—a general expression of the minimum achiev-
able error probability of distinguishing between two mixed
quantum states. For the case of more than two quantum states,
some necessary and sufficient conditions have been derived for
an optimum measurement maximizing the success probability
of correct detection [7,8]. However, analytical solutions for
an optimum measurement have been obtained only for some
special cases (see, e.g., [15–17]).

Regarding the minimum-error probability for ambiguous
discrimination among arbitrary m mixed quantum states with
given prior probabilities, Hayashi et al. [18] gave a lower
bound in terms of the individual operator norm. Recently,
Qiu [19] obtained a different lower bound by means of pairwise
trace distance. When m = 2, these two bounds are precisely
the well-known Helstrom limit [2]. Later, Montanaro [20]
derived another lower bound by virtue of pairwise fidelity.
However, when m = 2, the lower bound in [20] is smaller
than the Helstrom limit. Indeed, it is worth mentioning that,
with a lemma [21], we can also obtain a different lower bound
represented by the prior probabilities (we review these bounds
in detail in Sec. II). Besides this, there also exist other estimates
of minimum-error probability [22–26].

In this paper, we derive a new lower bound on the minimum-
error probability for ambiguous discrimination between arbi-
trary m mixed quantum states with given prior probabilities.
We show that this bound improves the previous one derived
in [19], and in the equiprobable case, the new bound also
improves the one derived in [20]. Also, we further present a
necessary and sufficient condition to show how this new lower
bound is attainable.

The remainder of the paper is organized as follows. In
Sec. II, we review six of the existing lower bounds on
the minimum-error probability for ambiguous discrimination
between arbitrary m mixed states and also give the new bound
in this paper, which is derived in the next section. Then, in

1050-2947/2010/81(4)/042329(8) 042329-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.042329


DAOWEN QIU AND LVJUN LI PHYSICAL REVIEW A 81, 042329 (2010)

Sec. III, we present the new lower bound on the minimum-error
probability for ambiguous discrimination between arbitrary
m mixed states, and we give a necessary and sufficient
condition to show how this new lower bound is attainable.
Furthermore, in Sec. IV, we show that this new bound improves
the previous one [19], and in the equiprobable case, the new
bound also improves the one derived in [20]. In particular,
we try to compare the new bound with these six other bounds
reviewed in Sec. II. Finally, some concluding remarks are made
in Sec. V.

II. REVIEWING LOWER BOUNDS ON THE
MINIMUM-ERROR PROBABILITY

This section reviews some of the existing lower bounds on
the minimum-error probability for ambiguous discrimination
between arbitrary m mixed states. Also, we present the new
bound in this paper, but its proof is deferred to the next section.

Assume that a quantum system is described by a mixed
quantum state, say ρ, drawn from a collection {ρ1,ρ2, . . . ,ρm}
of mixed quantum states on an n-dimensional complex
Hilbert space H, with the a priori probabilities p1,p2, . . . ,pm,
respectively. We assume without loss of generality that all
eigenvectors of ρi , 1 � i � m, span H; otherwise we consider
the spanned subspace instead of H. A mixed quantum state
[27,28] ρ is a positive semidefinite operator with trace 1,
denoted Tr(ρ) = 1. (Note that a positive semidefinite operator
must be a Hermitian operator.) To detect ρ, we need to design a
measurement consisting of m positive semidefinite operators,
say �i , 1 � i � m, satisfying the resolution

m∑
i=1

�i = I, (1)

where I denotes the identity operator on H. By the measure-
ment �i , 1 � i � m, if the system has been prepared by ρ, then
Tr(ρ�i) is the probability of deducing the system’s being state
ρi . Therefore, with this measurement, the average probability
P of correctly detecting the system’s state is as follows:

P =
m∑

i=1

piTr(ρi�i). (2)

The average probability Q of erroneous detection is

Q = 1 − P = 1 −
m∑

i=1

piTr(ρi�i). (3)

A main objective is to design an optimum measurement
that minimizes the probability of erroneous detection. As
mentioned, for the case of m = 2, the optimum detection
problem has been completely solved by Helstrom [4], and
the minimum attainable error probability, say QE , is, by the
Helstrom limit [4],

QE = 1
2 (1 − Tr|p2ρ2 − p1ρ1|), (4)

where |A| =
√

A†A for any linear operator A, and A† denotes
the conjugate transpose of A.

For discriminating more than two states, some bounds
have been obtained [18–26], and we review six lower bounds

[18–23] here. We first give a lower bound, and it follows from
the subsequent lemma.

Lemma 1 [21]. If 0 � λi � 1, and
∑m

i=1 λi � l, then∑m
i=1 piλi � Pr({pi},l), where {p1,p2, . . . ,pm} is a probabil-

ity distribution, and Pr({pi},l) denotes the sum of the l compar-
atively larger probabilities of {p1,p2, . . . ,pm} [e.g., if pi1 �
pi2 � · · · � pim and l � m, then Pr({pi},l) = ∑l

k=1 pik ].
From this lemma it follows a lower bound on the minimum-

error probability for ambiguous discrimination between
{ρ1,ρ2, . . . ,ρm} with the a priori probabilities p1,p2, . . . ,pm.
We first recall the operator norm and trace norm of operator
A. ‖A‖ denotes the operator norm of A, that is, ‖A‖ =
max{‖A|ψ〉‖ : |ψ〉 ∈ S}, where S is the set of all unit vectors,
that is, ‖A‖ is the largest singular value of A. ‖A‖tr =
Tr

√
A†A denotes the trace norm of A; equivalently, ‖A‖tr

is the sum of the singular values of A.
Theorem 2. For any m mixed quantum states ρ1,ρ2, . . . ,ρm

with a priori probabilities p1,p2, . . . ,pm, respectively, then
the minimum-error probability QE satisfies QE � L0, where

L0 = 1 − Pr({pi},d), (5)

and d denotes the dimension of the Hilbert space spanned
by {ρi}.

Proof. Let PS denote the optimal correct probability, and let
Em denote the class of all positive-operator-valued measures
(POVMs) of the form {Ei : 1 � i � m}. Due to

m∑
i=1

Tr(ρiEi) �
m∑

i=1

‖ρi‖ ‖Ei‖tr =
m∑

i=1

‖Ei‖tr

=
m∑

i=1

Tr(Ei) = Tr(I ) = d, (6)

and with Lemma 1, we have
m∑

i=1

piTr(ρiEi) � Pr({pi},d). (7)

We thus get

PS = max
{Ej }∈Em

m∑
i=1

piTr(ρiEi) � Pr({pi},d). (8)

Therefore, we have

QE = 1 − PS � 1 − Pr ({pi},d) . (9)

The proof is completed. �
Another lower bound L1 was given by Hayashi et al. [18]

in terms of the individual operator norm. That is,

L1 = 1 − d max
i=1,...,m

{||piρi ||}, (10)

where d, as above, is the dimension of the Hilbert space
spanned by {ρi}. It is easily seen that L1 may be negative
for discriminating some states.

Recently, Qiu [19] gave a lower bound L2 in terms of
pairwise trace distance, that is,

L2 = 1

2

(
1 − 1

m − 1

∑
1�i<j�m

Tr|pjρj − piρi |
)

. (11)
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Then Montanaro [20] derived a lower bound L3 in terms of
pairwise fidelity, that is,

L3 =
∑

1�i<j�m

pipjF
2(ρi,ρj ), (12)

where, also in this paper, F (ρi,ρj ) = Tr
√√

ρiρj

√
ρi as usual

[28].
In this paper, we derive a new lower bound L4 in terms of

trace distance. More exactly,

L4 = 1 − min
k=1,...,m

⎧⎨
⎩pk +

∑
j �=k

Tr(pjρj − pkρk)+

⎫⎬
⎭ , (13)

where (pjρj − pkρk)+ denotes the positive part of a spectral
decomposition of pjρj − pkρk . The proof for deriving L4 is
deferred to Sec. III.

In addition, Nagaoka et al. [23] gave a two-sided estimate,
which is tight within a factor of 2 and includes a lower bound
L5, that is,

L5 = 1 − Tr

√√√√ m∑
i=1

p2
i ρ

2
i . (14)

Montanaro [22] derived a lower bound of pure-states
discrimination. For discriminating pure states {|ψi〉} with the
a priori probabilities pi , the minimum-error probability
satisfies

Q∗
E � 1 −

√√√√ m∑
i=1

(〈ψ ′
i |ρ− 1

2 |ψ ′
i 〉)2, (15)

where |ψ ′
i 〉 = √

pi |ψi〉 and ρ = ∑m
i=1 |ψ ′

i 〉〈ψ ′
i |. By the fol-

lowing lemma of Tyson [23], a mixed-state lower bound can
be obtained from the pure-state lower bound.

Lemma 3 [23]. Take spectral decompositions ρi =∑
k λik|ψik〉〈ψik|, and consider the pure-state ensemble ξ ∗ =

{(|ψik〉,piλik)}. Then the minimum-error probability Q∗
E for

discriminating ξ ∗ satisfies

QE � Q∗
E � (2 − QE)QE. (16)

From Lemma 3, we can get

QE � 1 − √
1 − Q∗

E. (17)

So we get a lower bound for discriminating the mixed state
{ρi}, that is,

QE � 1 − 4

√√√√ m∑
i=1

rank(ρi )∑
k=1

(〈ψ ′
ik|ρ− 1

2 |ψ ′
ik〉)2, (18)

where ρ = ∑m
i piρi , |ψ ′

ik〉 = √
piλik|ψik〉, and ρi =∑rank(ρi )

k=1 λik|ψik〉〈ψik|. We denote this lower bound

L6 = 1 − 4

√√√√ m∑
i=1

rank(ρi)∑
k=1

(〈ψ ′
ik|ρ− 1

2 |ψ ′
ik〉)2. (19)

III. A NEW LOWER BOUND AND EQUALITY
CONDITIONS

In this section, we derive the new lower bound L4 on
the minimum-error discrimination between arbitrary m mixed
quantum states, then we give a sufficient and necessary
condition to achieve this bound.

The measures (e.g., various trace distances and fidelities)
between quantum states are of importance in quantum in-
formation [28–30]. Here we first give three useful lemmas
concerning the usual trace distance and fidelity. As indicated
previously, in this paper, F (ρ,σ ) = Tr

√√
ρσ

√
ρ.

Lemma 4 [28]. Let ρ and σ be two quantum states. Then

2[1 − F (ρ,σ )] � Tr|ρ − σ | � 2
√

1 − F 2(ρ,σ ). (20)

Lemma 5 [19]. Let ρ and σ be two positive semidefinite
operators. Then

Tr(ρ) + Tr(σ ) − 2F (ρ,σ ) � Tr|ρ − σ | � Tr(ρ) + Tr(σ ).

In addition, the second equality holds if and only if ρ⊥σ .
Definition 1. Let A be a self-adjoint matrix. Then the

positive part is given by

A+ =
∑
λk>0

λk�k, (21)

where A = ∑
k λk�k is a spectral decomposition of A.

Lemma 6. Let E, ρ, and σ be three positive semidefinite
matrices, with E � I . Then

Tr[E(ρ − σ )] � Tr(ρ − σ )+, (22)

with equality iff E is of the form

E = P + + P2, (23)

where P + is the projection onto the support of (ρ − σ )+, and
0 � P2 � I is supported on the kernel of (ρ − σ ).

Proof. It is obvious that

(ρ − σ ) � (ρ − σ )+. (24)

It follows immediately by the positivity of E (or by Lemma 2
of Yuen-Kennedy-Lax [8]) that

TrE(ρ − σ ) � TrE(ρ − σ )+. (25)

Since E � I , it similarly follows that

TrE(ρ − σ )+ � Tr(ρ − σ )+, (26)

proving (22). The equality condition is left as an exercise for
the reader. �

The new bound is presented by the following theorem.
Theorem 7. For any m mixed quantum states ρ1,

ρ2, . . . ,ρm with the a priori probabilities p1,p2, . . . ,pm,
respectively, then the minimum-error probability QE satisfies

QE � L4, (27)

where L4 is given by Eq. (13).
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Proof. Let PS denote the maximum probability and let Em

denote the class of all POVMs of the form {Ei : 1 � i � m}.
Then we have that, for any k ∈ {1,2, . . . ,m},

PS = max
{Ej }∈Em

m∑
j=1

Tr(Ejpjρj ) (28)

= max
{Ej }∈Em

⎧⎨
⎩pk +

∑
j �=k

Tr[Ej (pjρj − pkρk)]

⎫⎬
⎭ (29)

� pk +
∑
j �=k

Tr(pjρj − pkρk)+, (30)

where inequality (30) holds by Lemma 6.
Consequently, we get

PS � min
k=1,...,m

⎧⎨
⎩pk +

∑
j �=k

Tr(pjρj − pkρk)+

⎫⎬
⎭ . (31)

Therefore, we conclude that inequality (27) holds by QE =
1 − PS . �

Remark 1. With Lemma 5, Tr|pjρj − piρi | � pi + pj ,
and the equality holds if and only if ρj⊥ρi . Therefore, in
Theorem 7, the upper bound on the probability of correct
detection between m mixed quantum states satisfies

pk0 +
∑
j �=k

Tr(pjρj − pk0ρk0 )+

= 1

2

⎡
⎣1 +

∑
j �=k0

Tr|pjρj − pk0ρk0 | − (m − 2)pk0

⎤
⎦

� 1

2

⎡
⎣1 +

∑
j �=k0

(pj + pk0 ) − (m − 2)pk0

⎤
⎦ = 1. (32)

By Lemma 5, we further see that this bound is strictly smaller
than 1 usually, unless ρ1,ρ2, . . . ,ρm are mutually orthogonal.

Remark 2. When m = 2, the lower bound in Theorem 7
is precisely 1

2 (1 − Tr|p2ρ2 − p1ρ1|), which is in accord with
the well-known Helstrom limit [2]; and indeed, in this case,
this bound can always be attained by choosing the optimum
POVM: E2 = P +

12 and E1 = I − E2. Here P +
12 denotes the

projective operator onto the subspace spanned by the all
eigenvectors corresponding to all positive eigenvalues of
p2ρ2 − p1ρ1.

From the proof of Theorem 7, we can obtain a sufficient
and necessary condition on the minimum-error probability
QE attaining the lower bound L4, which is described by the
following theorem.

Theorem 8. Equality is attained in the bound (27) iff
for some fixed k, the operators {(pjρj − pkρk)+}j �=k have
mutually orthogonal supports.

Proof. Suppose that for some POVM {Ek}, we have the
equality

Tr

(∑
k

Ekρk

)
= Tr

⎛
⎝ρk +

∑
j �=k

Ej (ρj − ρk)

⎞
⎠ (33)

� Tr

⎛
⎝ρk +

∑
j �=k

(ρj − ρk)+

⎞
⎠ . (34)

Then by Lemma 5,

Ej � �+(ρj − ρk), (35)

where �+(ρj − ρk) is the positive projection onto the positive
subspace of ρj − ρk . If the unit vector |ψ〉 is in the support of
(ρj0 − ρk)+, then one has

1 = ||ψ〉||2 =
∑

j

〈ψ |Ej |ψ〉 = 1 +
∑
j �=j0

〈ψ |Ej |ψ〉 � 1.

(36)

It follows that 〈ψ |Ej |ψ〉 = 0 for all j �= j0. In particular, the
support of Ej0 is orthogonal to the supports of the other Ej .

Conversely, if the supports of the other (ρj − ρk)+ are
mutually orthogonal, then the middle term of (34) attains a
maximum for the POVM:

Ej = �+(ρj − ρk), j �= k, (37)

Ek = I −
∑
j �=k

Ej . (38)

In this case, one has equality of all terms in (34). �
Suppose that ρ1,ρ2, . . . ,ρm are m mixed quantum states

with a priori probabilities p1,p2, . . . ,pm, respectively. The
condition for the new bound L4 being attained can also be
presented as follows: there exists pk0ρk0 such that P +

k0i
⊥

P +
k0j

(∀i �= j ), where P +
k0t

denotes the projective operator onto
the subspace spanned by all eigenvectors corresponding to all
positive eigenvalues of ptρt − pk0ρk0 . To make the result more
accessible, we give a simple example to explain the condition
for the bound’s being attained.

For example, let p1 = p2 = p3 = 1
3 , 0 < γ < β < α < 1,

and ρ1 = α|0〉〈0| + (1 − α)|1〉〈1|, ρ2 = β|0〉〈0| +
(1 − β)|2〉〈2|, ρ3 = γ |0〉〈0| + (1 − γ )|3〉〈3|. We have
(p2ρ2 − p1ρ1)+ = (1−β)

3 |2〉〈2| (i.e., P +
12 = |2〉〈2|), and

(p3ρ3 − p1ρ1)+ = (1−γ )
3 |3〉〈3| (i.e., P +

13 = |3〉〈3|), which
have mutually orthogonal supports. So in this case, the new
lower bound is attained. We get

L4 = 1 − min
k=1,...,m

⎧⎨
⎩pk +

∑
j �=k

Tr(pjρj − pkρk)+

⎫⎬
⎭ (39)

= 1 − β + γ

3
. (40)

That is, QE = 1 − [(β + γ )/3].

IV. COMPARISONS BETWEEN DIFFERENT
LOWER BOUNDS

In this section, we compare the seven different lower bounds
(Li, i = 0,1,2,3,4,5,6) on the minimum-error probability for
discriminating arbitrary m mixed quantum states with the
a priori probabilities p1,p2, . . . ,pm, respectively. Also, when
discriminating two states, we consider their relation to the
Helstrom limit.
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First, concerning the relation between L4 and L2, we have
the following result.

Theorem 9. For any m mixed quantum states ρ1,ρ2, . . . ,ρm

with the a priori probabilities p1,p2, . . . ,pm, respectively,
the two lower bounds L2 and L4 on the minimum-error
probability for ambiguously discriminating these m states have
the following relationship:

L4 � L2. (41)

Proof. First from Eq. (13) it follows that L4 is equivalent
to

1

2

⎡
⎣1 − min

k=1,...,m

⎧⎨
⎩
∑
j �=k

Tr|pjρj − pkρk| − (m − 2)pk

⎫⎬
⎭
⎤
⎦ ,

(42)

and

L2 = 1

2

⎛
⎝1 − 1

m − 1

∑
1�i<j�m

Tr|pjρj − piρi |
⎞
⎠ . (43)

Let

min
k=1,...,m

⎧⎨
⎩
∑
j �=k

Tr|pjρj − pkρk| − (m − 2)pk

⎫⎬
⎭

=
∑
j �=k0

Tr|pjρj − pk0ρk0 | − (m − 2)pk0 (44)

for some k0 ∈ {1,2, . . . ,m}. Then L4 equals

1

2

⎧⎨
⎩1 −

⎡
⎣∑

j �=k0

Tr|pjρj − pk0ρk0 | − (m − 2)pk0

⎤
⎦
⎫⎬
⎭ . (45)

Therefore,

2L4 − 2L2 = 1

m − 1

∑
1�i<j�m

Tr|pjρj − piρi |

−
⎡
⎣∑

j �=k0

Tr|pjρj − pk0ρk0 | − (m − 2)pk0

⎤
⎦ .

(46)

Note that

∑
1�i<j�m

Tr|pjρj − piρi | = 1

2

m∑
i=1

∑
j �=i

Tr|pjρj − piρi |

(47)

and ∑
j �=k0

Tr|pjρj − pk0ρk0 | − (m − 2)pk0

= 1

m

m∑
i=1

⎡
⎣∑

j �=k0

Tr|pjρj − pk0ρk0 | − (m − 2)pk0

⎤
⎦ .

By combining Eqs. (46) and (47) and the preceding equality,
we have

2L4 − 2L2

= 1

2(m − 1)

m∑
i=1

∑
j �=i

Tr|pjρj − piρi |

− 1

m

m∑
i=1

⎡
⎣∑

j �=k0

Tr|pjρj − pk0ρk0 | − (m − 2)pk0

⎤
⎦ .

Furthermore, the above equality can be equivalently written as
follows:

2L4 − 2L2

= 1

2(m − 1)

m∑
i=1

⎡
⎣
⎛
⎝∑

j �=i

Tr|pjρj − piρi | − (m − 2)pi

⎞
⎠

−
⎛
⎝ m∑

j �=k0

Tr|pjρj − pk0ρk0 | − (m − 2)pk0

⎞
⎠
⎤
⎦

+ m − 2

2(m − 1)
−

[
1

m
− 1

2(m − 1)

]

×
m∑

i=1

⎡
⎣∑

j �=k0

Tr|pjρj − pk0ρk0 | − (m − 2)pk0

⎤
⎦ . (48)

With Eq. (44) we know that, for any i ∈ {1,2, . . . ,m},∑
j �=i

Tr|pjρj − piρi | − (m − 2)pi

�
∑
j �=k0

Tr|pjρj − pk0ρk0 | − (m − 2)pk0 . (49)

Note that (1/m) − {1/[2(m − 1)]} = (m − 2)/2m(m − 1).
Therefore, with Eq. (48) we have

2L4 − 2L2 � m − 2

2(m − 1)
− m − 2

2m(m − 1)

m∑
i=1

×
⎡
⎣∑

j �=k0

Tr|pjρj − pk0ρk0 | − (m − 2)pk0

⎤
⎦
(50)

= m − 2

2(m − 1)
− m − 2

2(m − 1)

×
⎡
⎣∑

j �=k0

Tr|pjρj − pk0ρk0 | − (m − 2)pk0

⎤
⎦ .

(51)

With Lemma 5, we know that Tr|pjρj − pk0ρk0 | �
pj + pk0 . Therefore, according to the inequality (51), we
further have

2L4 − 2L2 � m − 2

2(m − 1)
− m − 2

2(m − 1)

×
⎡
⎣∑

j �=k0

(pj + pk0 ) − (m − 2)pk0

⎤
⎦ = 0.

(52)

042329-5



DAOWEN QIU AND LVJUN LI PHYSICAL REVIEW A 81, 042329 (2010)

Consequently, we conclude that inequality (41) holds and
the proof is completed. �

Indeed, L4 > L2 is also possible for discriminating some
states. We give an example later in this section.

When m = 2, we have the following relations between
L2,L3,L4 and the Helstrom limit H .

Proposition 10. When m = 2,

L4 = L2 = H � L3, (53)

where H is the Helstrom limit [2]; that is, H = 1
2 (1 −

Tr|p1ρ1 − p2ρ2|).
Here, we need another useful lemma.
Lemma 11. Let ρ1 and ρ2 be two mixed states, and p1 +

p2 � 1 with pi � 0, i = 1,2. Then

p1 + p2 − 2
√

p1p2F (ρ1,ρ2)

� Tr|p1ρ1 − p2ρ2| (54)

� p1 + p2 − 2p1p2F
2(ρ1,ρ2). (55)

Proof. Since p1ρ1 and p2ρ2 are positive semidefinite op-
erators and F (p1ρ1,p2ρ2) = √

p1p2F (ρ1,ρ2), we can directly
get the first inequality from Lemma 5.

Now we prove the second inequality. By Uhlmann’s
theorem [29,30], we let |ψ1〉 and |ψ2〉 be the purifications of
ρ1 and ρ2, respectively, such that F (ρ1,ρ2) = |〈ψ1|ψ2〉|. Since
the trace distance is nonincreasing under the partial trace [28],
we obtain

Tr|p1ρ1 − p2ρ2| � Tr|p1|ψ1〉〈ψ1| − p2|ψ2〉〈ψ2||. (56)

Let {|ψ1〉,|ψ⊥
1 〉} be an orthonormal basis in the subspace

spanned by {|ψ1〉,|ψ2〉}. Then |ψ2〉 can be represented as
|ψ2〉 = cos θ |ψ1〉 + sin θ |ψ⊥

1 〉. In addition, we have

Tr|p1|ψ1〉〈ψ1| − p2|ψ2〉〈ψ2||

= Tr

∣∣∣∣∣
(

p1 − p2 cos2 θ −p2 cos θ sin θ

−p2 cos θ sin θ −p2 sin2 θ

)∣∣∣∣∣ . (57)

We can calculate the eigenvalues of matrix (57) as

1

2

[
p1 − p2 ±

√
p2

1 + p2
2 − 2p1p2 cos(2θ )

]
. (58)

Therefore, we have

Tr |p1|ψ1〉〈ψ1| − p2|ψ2〉〈ψ2||
=

√
p2

1 + p2
2 − 2p1p2 cos(2θ ). (59)

Since

2p1p2F
2(ρ1,ρ2) = 2p1p2|〈ψ1|ψ2〉|2 = 2p1p2 cos2 θ,

it suffices to show that√
p2

1 + p2
2 − 2p1p2 cos(2θ ) � p1 + p2 − 2p1p2 cos2 θ.

That is,

p2
1 + p2

2 − 2p1p2 cos(2θ ) � (p1 + p2 − 2p1p2 cos2 θ )2,

and equivalently,

4p1p2 cos2 θ [1 − (p1 + p2) + p1p2 cos2 θ ] � 0, (60)

which is clearly true. Consequently, we complete the
proof. �

Proof of Proposition 10. It is easy to verify that, when
m = 2, L1 = L2 = 1

2 (1 − Tr|p1ρ1 − p2ρ2|) = H , and L3 =
p1p2F

2(ρ1,ρ2). As a result, to prove inequality (53), we
should show that 1

2 (1 − Tr|p1ρ1 − p2ρ2|) � p1p2F
2(ρ1,ρ2).

Because p1 + p2 = 1, according to the second inequality in
Lemma 11, we easily get the conclusion, and therefore, (53)
holds. �

Remark 3. From the proof of Lemma 11, we know that
when m = 2, L3 is smaller than the Helstrom limit unless the
mixed states are mutually orthogonal.

Moreover, if we discriminate m equiprobable mixed states,
that is, the m mixed states are chosen uniformly at random
(pi = 1/m, i = 1,2, . . . ,m), then L3 and L4 have the follow-
ing relationship.

Proposition 12. If pi = 1/m (i = 1,2, . . . ,m), then we
have L4 � L3.

Proof. If pi = 1/m (i = 1,2, . . . ,m), we have

L3 = 1

m2

∑
i<j

F 2(ρi,ρj ), (61)

and for any given k0 ∈ {1,2, . . . ,m}, by Eq. (42) we have

L4 = 1

2

⎡
⎣1− min

k=1,...,m

⎧⎨
⎩
∑
j �=k

Tr|pjρj − pkρk| − (m − 2)pk

⎫⎬
⎭
⎤
⎦

= 1

2

⎡
⎣2m − 2

m
− 1

m
min

k=1,...,m

⎧⎨
⎩
∑
j �=k

Tr|ρj − ρk|
⎫⎬
⎭
⎤
⎦

� 1

2

⎡
⎣2m − 2

m
− 1

m

∑
j �=k0

Tr|ρj − ρk0 |
⎤
⎦ (62)

� 1

2

⎡
⎣2m − 2

m
− 2

m

∑
j �=k0

√
1 − F 2(ρj ,ρk0 )

⎤
⎦ , (63)

where the last inequality holds by Lemma 4. Thus, we get

L4 � 1

2

⎡
⎣2m − 2

m
− 2

m
min

k=1,...,m

⎧⎨
⎩
∑
j �=k

√
1 − F 2(ρj ,ρk)

⎫⎬
⎭
⎤
⎦ .

Therefore, we have

2m2(L4 − L3)

� 2m2 − 2m − 2m min
k=1,...,m

⎧⎨
⎩
∑
j �=k

√
1 − F 2(ρj ,ρk)

⎫⎬
⎭

− 2
∑
i<j

F 2(ρi,ρj ) (64)

= 2m2 − 2m − 2
m∑

i=1

min
k=1,...,m

⎧⎨
⎩
∑
j �=k

√
1 − F 2(ρj ,ρk)

⎫⎬
⎭

−
m∑

i=1

∑
j �=i

F 2(ρi,ρj ) (65)

042329-6



MINIMUM-ERROR DISCRIMINATION OF QUANTUM . . . PHYSICAL REVIEW A 81, 042329 (2010)

� 2m2 − 2m − 2
m∑

i=1

∑
j �=i

√
1 − F 2(ρj ,ρi)

−
m∑

i=1

∑
j �=i

F 2(ρi,ρj ) (66)

=
m∑

i=1

∑
j �=i

(√
1 − F 2(ρj ,ρi) − 1

)2

(67)

� 0. (68)

Thus, we have L4 � L3. We complete the proof. �
Furthermore, even if the prior probabilities are not equal,

under some restricted conditions, L2, L3, and L4 also have cer-
tain relationships. We present a sufficient condition as follows.

Proposition 13. Let ai = ∑
j �=i pipjF

2(ρi,ρj ). Then
L2,L3, and L4 have the following relationship: for any m � 2,

L2 � 1

m − 1
L3, (69)

and when maxi=1,...,m {ai} � 1
2

∑m
i=1 ai , we have

L4 � L3. (70)

Proof. By Lemma 11, we have

L2 = 1

2

⎛
⎝1 − 1

m − 1

∑
1�i<j�m

Tr|pjρj − piρi |
⎞
⎠ (71)

� 1

2

⎧⎨
⎩1− 1

m − 1

∑
1�i<j�m

[
pi+pj−2pipjF

2(ρi,ρj )
]⎫⎬⎭
(72)

= 1

m − 1
L3. (73)

For any given k0 = 1, . . . ,m, by Eq. (42) we have

L4 � 1

2

⎧⎨
⎩1 −

⎡
⎣∑

j �=k0

Tr
∣∣pjρj − pk0ρk0

∣∣ − (m − 2)pk0

⎤
⎦
⎫⎬
⎭
(74)

= 1

2
− 1

2

∑
j �=k0

Tr
∣∣pjρj − pk0ρk0

∣∣ + m − 2

2
pk0 (75)

� 1

2
− 1

2

∑
j �=k0

[
pk0 + pj − 2pk0pjF

2
(
ρk0 ,ρj

)]

+ m − 2

2
pk0 (76)

=
∑
j �=k0

pk0pjF
2
(
ρk0 ,ρj

)
. (77)

So we have

L4 � max
k=1,...,m

⎧⎨
⎩
∑
j �=k

pkpjF
2(ρk,ρj )

⎫⎬
⎭ . (78)

Moreover, we have

L3 =
∑

1�i<j�m

pipjF
2(ρi,ρj ) (79)

= 1

2

m∑
i=1

∑
j �=i

pipjF
2(ρi,ρj ). (80)

Let ai = ∑
j �=i pipjF

2(ρi,ρj ). Then we get

L4 − L3 � max
i=1,...,m

{ai} − 1

2

m∑
i=1

ai. (81)

If maxi=1,...,m {ai} − 1
2

∑m
i=1 ai � 0, then L4 � L3. We com-

plete the proof. �
Although the bound L5 is tight within a factor of 2, for

some cases, the new bound is tighter than L5 and becomes
the tightest one in the seven bounds, which is equal to the
minimum-error probability. We give an example as follows.

Example 1. Let p1 = p2 = p3 = 1
3 , and ρ1 = 1

2 |0〉〈0| +
1
2 |1〉〈1|, ρ2 = 1

3 |0〉〈0| + 2
3 |2〉〈2|, ρ3 = 1

4 |0〉〈0| + 3
4 |3〉〈3|.

Then we can work out the seven lower bounds directly, as L0 =
0, L1 = 0, L2 = 5

36 , L3 = 1
24 , L4 = 7

36 ,L5 = 13−√
61

36 , and

L6 = 1 − 4
√

10
13 . Hence, L4 > L5 > L2 > L6 > L3 > L1 =

L0. Indeed, in this example, the operators (p2ρ2 − p1ρ1)+ and
(p3ρ3 − p1ρ1)+ have mutually orthogonal supports. So the
minimum-error probability QE = L4 = 7

36 .
However, even under the same condition when the new

bound is tight, there exist examples to show that the new
bound is not strictly better than other bounds.

Example 2. Let p1 = p2 = p3 = 1
3 , and ρ1 = 1

2 |0〉〈0| +
1
2 |1〉〈1|, ρ2 = 1

2 |0〉〈0| + 1
2 |2〉〈2|, ρ3 = 1

2 |0〉〈0| + 1
2 |3〉〈3|. We

get L4 = 1
3 . In this example, the operators (p2ρ2 − p1ρ1)+ =

1
6 |1〉〈1| and (p3ρ3 − p1ρ1)+ = 1

6 |3〉〈3| have mutually orthog-
onal supports. So according to Theorem 8, the new bound
is tight (i.e., the minimum-error probability QE = L4 = 1

3 ).
Also, we can get L1 = 1

3 = L4. That is, even in the condition
when the new bound is tight, the new bound is as good as L1

but not strictly better than existing bounds.
Therefore, in the light of these two examples, we conclude

that, even under the condition when the new bound is tight,
different examples show that L4 > L1 and L4 = L1 hold,
respectively.

To sum up, when m = 2, we have L4 = L2 = H � L3 (�
can be strict for some states), and for any m states, L4 �
L2 always holds (� can be strict for some states). For the
equiprobable case (the prior probabilities are equivalent), L4 �
L3 always holds. In some cases, the new bound L4 is the
tightest one in the seven bounds.

V. CONCLUDING REMARKS

Quantum-state discrimination is an intriguing issue in
quantum information processing [1–7]. In this paper, we have
reviewed a number of lower bounds on the minimum-error
probability for ambiguous discrimination between arbitrary
m quantum mixed states. In particular, we have derived a new
lower bound on the minimum-error probability and presented
a sufficient and necessary condition for achieving this bound.
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Also, we have proved that our bound improves the previous
one obtained in [19], and in the equiprobable case, the new
bound also improves the one derived in [20]. In addition, we
have compared the new bound with six of the previous bounds,
by a series of propositions and examples.

From Examples IV and IV, we know that, under the
same condition when the new bound L4 is tight, different
examples show the possibility of L4 > L1 and L4 = L1.
Thus a natural question is whether or not there exists a
condition such that the new bound L4 is always strictly
better than the six other bounds. A further problem worthy
of consideration is how to calculate the minimum-error
probability for ambiguous discrimination between arbitrary
m quantum mixed states with the prior probabilities, respec-
tively, and devise an optimum measurement correspondingly.
In particular, we would consider the appropriate application
of these bounds presented in this paper in quantum commu-

nication [21]. Indeed, it is worth mentioning that quantum-
state discrimination has already been applied to quantum
encoding [31].
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