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An (n,m,p) random access code (RAC) makes it possible to encode n bits in an m-bit message in such a
way that a receiver of the message can guess any of the original n bits with probability p greater than 1

2 . In
quantum RACs (QRACs), one transmits n qubits. The full set of primitive entanglement-assisted random access
codes (EARACs) is introduced, in which parties are allowed to share a two-qubit singlet. It is shown that via
a concatenation of these, one can build for any n an (n,1,p) EARAC. QRACs for n > 3 exist only if parties
also share classical randomness. We show that EARACs outperform the best of known QRACs not only in the
success probabilities but also in the amount of communication needed in the preparatory stage of the protocol.
Upper bounds on the performance of EARACs are given and shown to limit also QRACs.
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I. INTRODUCTION

In many communication-related tasks quantum protocols
are superior to classical ones. In cryptography, secret sharing,
and communication complexity two particular approaches to
“quantization” of classical tasks are used. The parties use
quantum communication instead of classical communication,
or the communication stays classical but the parties are allowed
to share some entanglement. Examples for both approaches
include [1] and [2] in cryptography, [3] and [4] in secret
sharing, and [5] and [6] in communication complexity.

Quantum random access codes (QRACs), since their
introduction in [7], have been studied only as protocols
with quantum communication. Recently, an experimental
realization of QRACs has been demonstrated [8]. As RACs are
extremely useful in information processing tasks (e.g., network
coding [9]), it is important to search for optimal codes. We
address the problem of whether protocols that involve classical
communication and entanglement lead to better codes. The
answer is positive.

II. PRIMITIVES

Every RAC is described by three numbers n, m, and p,
where n is the number of bits (a0,a1, . . . ,an−1) that are known
only by the first party (Alice) and m is the number of bits she
sends to the second party (Bob), m < n. The code is optimized
in such a way that for every bit ai of Alice, the probability
that Bob correctly guesses this bit is at least p. Such code is
denoted by (n,m,p) or, in the case when the probability is not
specified but is strictly greater than 1

2 , by (n,m). In the case
of a QRAC the communicated bits are replaced by qubits. An
entanglement-assisted random access code (EARAC) is a code
in which the m communicated bits are classical; however, the
parties are additionally allowed to use shared entangled states
during their coding and decoding procedures. For a specified
m the only figure of merit to be studied is p as a function
of n.1 Other parameters, like the amount of entanglement
necessary for the code, are usually not taken into account.

1We study the case of m = 1. A generalization to m > 1 will be
presented elsewhere [10].

However, if we were to introduce some additional efficiency
factor that quantifies the amount of communication required
in the preparatory stage of the protocol, EARACs have the
upper hand also in this area. To be able to compare different
types of resources, we first need to equate a single bit of
shared randomness (SR) with a single e-bit. This is justified,
since both of these elementary resources can be generated by
a transfer of a single qubit from one party to another. Now we
note that for (n,1) code, the EARACs presented in this article
require at most n − 1 e-bits, while (for n > 3) QRACs require
at least n bits of SR [11].

Let us start with pinpointing the two primitive EAR-
ACs, which are (2,1, 1

2 (1 + 1√
2
)) and (3,1, 1

2 (1 + 1√
3
)) ones,

achievable with a shared two-qubit singlet and without any
shared classical randomness. In the first case, denoted as
E[2], Alice encodes her two bits, a0 and a1, by making a
measurement in a basis dependent on the value of a0 ⊕ a1.
The two bases of Alice Aa0⊕a1 are specified by the Bloch
vector pairs Aa = {± 1√

2
(1,(−1)a,0)}, where a = 0,1. Alice’s

outcome A is denoted as 0 if the measurement results in a
collapse onto the first “+” state of the basis and 1 if onto the
second one. Whenever Bob wants to learn a bth bit of Alice,
he chooses to measure in the basis Bb, defined as

B0 = {±(1,0,0)}, B1 = {±(0,1,0)}. (1)

Bob’s outcome B is ascribed 0 for the − vectors and 1 for +
ones. Alice sends to Bob a message M = a0 ⊕ A. With this he
can decode the desired bit with a high probability. As P (A ⊕
B = 0) = 1

2 (1 + �a · �b), where �a and �b are the Bloch vectors
of the local settings specified by the + vectors of the bases,
which in turn implies that P (A ⊕ B = ab) = 1

2 (1 + 1√
2
), it is

easy to see that

M ⊕ B = ab, (2)

with a probability p = 1
2 (1 + 1√

2
) ≈ 0.85. This code may

be considered as a version of an oblivious transfer protocol
presented in [12] with the singlet state being an imperfect
realization of a PR box [13].
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To construct a (3,1, 1
2 (1 + 1√

3
)) EARAC, denoted here as

E[3], a similar procedure can be used. The only difference is
in the bases that the parties choose. For Alice there are four
bases and the choice is again implied by her input bits

a0 = a1 = a2 ⇒ A0 =
{
± 1√

3
(1,1,1)

}
,

a0 = a1 �= a2 ⇒ A1 =
{
± 1√

3
(1,1, − 1)

}
,

(3)

a0 �= a1 = a2 ⇒ A2 =
{
± 1√

3
(1, − 1, − 1)

}
,

a0 �= a1 �= a2 ⇒ A3 =
{
± 1√

3
(1, − 1,1)

}
.

The outcome and the message are defined exactly in the same
way as in the previous (2,1) code. Bob again uses mutually
unbiased bases B0 and B1 from (1) but this time, if he aims
at the third bit, he chooses B2 = {±(0,0,1)}. It is easy to
see that in this case the probability that M ⊕ B = ab is p =
1
2 (1 + 1√

3
) ≈ 0.79. To our knowledge this protocol has not

been studied so far.
The success probabilities for these codes exactly match the

ones for known QRACs [7,9]. This is not surprising. The basis
vectors of Alice in EARAC correspond exactly to her quantum
code words in QRAC, and Bob’s measurements are the
same.

In [9] it was shown that a (4,1) QRAC (without SR) does
not exist [this also holds for any (n,1) QRAC with n > 4].
Nevertheless, as we show, for any n, one has an (n,1) EARAC.
To this end we present concatenated EARACs formed out of
the primitive ones singled out previously.

III. CONCATENATION

Since the procedure has classical inputs and outputs at every
point, it can be concatenated. Consider the following simplest
case. Alice is given four bits a0, a1, a2, and a3, while Bob might
be interested in a bit number b = 0, . . . ,3. They agree that Bob
would use a binary expansion of b, given by a bit sequence
b1b0 defined via

∑1
i=0 bi2i , where bi = 0,1. Alice encodes the

first two bits of hers by performing a measurement in a basis
Aa0⊕a1 on a (2,1) EARAC called here E(b1 = 0). Denote the
measurement result by A(0). Her output value is M0 = a0 ⊕
A(0). She also encodes the other two bits in a similar procedure
with yet another (2,1) EARAC, denoted as E(b1 = 1). The
basis is now Aa2⊕a3 . The output is M1 = a2 ⊕ A(1), where A(1)

is her measurement result for E(b1 = 1). The value of M1

along with M0 are treated as her input bits for a third (2,1)
EARAC, denoted by E′, which fixes the measurement basis
as AM0⊕M1 . Let us denote the result by A′. Only the output
bit of this final EARAC, M = M0 ⊕ A′, is then sent to Bob.
What Alice does is an encoding of a0 and a1 into M0 and
a2 and a3 into M1, while M0 and M1 are next encoded into
M . When Bob gets M and performs a measurement on E′
in the basis Bb1 yielding a result denoted as B ′, he is able to
decode Mb1 if he also performs a measurement in basis Bb0

on E(b1). The results for E(b1 = x) we denote by B(x). The
value of his guess is then ab1b0 = M ⊕ B(b1) ⊕ B ′. Bob makes
measurements on only two of three singlets at his disposal, but

which of them are measured depends on his choice of bit he is
interested in. Once he chooses to measure E′ in the basis Bb1=x ,
this can be accompanied by a measurement on E(b1 = x), a
measurement on E(bl �= x) is useless. A larger number of bits
encoded comes at the price of lower probability of success.
Bob will guess the target bit correctly if both of their EARAC
devices give the correct value or if both of them are wrong.
Therefore, the code just introduced is a (4,1, 3

4 ) EARAC (see
later in this article).

More generally, if Alice and Bob know how to devise a
(k,1,pk) EARAC, denoted here E[k], they can use two such
procedures followed by a (2,1) one to construct a (2k,1,p2k)
code. Alice simply encodes first k bits into one the first E[k]

using the coding procedure from (k,1,pk) code and she repeats
the procedure for the remaining k bits with the second E[k].
That allows her to compress 2k bits into two, which she
can encode using a (2,1) primitive EARAC into a single-bit
message, which is sent to Bob. Again, Bob needs two failures
or two successes of their EARAC devices to get the correct
value of the bit he is interested in. This yields the probability
of success

p2k = pk

1

2

(
1 + 1√

2

)
+ (1 − pk)

1

2

(
1 − 1√

2

)
, (4)

which if one puts pk = 1
2 (1 + d) reads p2k = 1

2 (1 + d 1√
2
)

By induction, since p1 = 1
2 (1 + 1√

2
), this procedure makes

it possible to generate a (2k,1, 1
2 (1 + 2− 1

2 k)) EARAC.
To generate an (n,1) EARAC for n > 3, one must use

the primitive ones, E[2] and E[3], in a concatenated scheme
(see Fig. 1). For example, for n = 5 Alice will encode first
three bits using a E[3] and the remaining two with E[2]. Then
she uses one more E[2] to get one bit of message that she
sends to Bob. In the general case, if Alice gets n bits she can
divide them into n2 groups of 2 and n3 groups of 3. If the
reminder of the division of n by 3 is r then n2 = 2r mod 3
and n3 = n − 2n2. This gives her n′ = n3

3 + n2
2 � n bits, with

which she will perform a similar procedure until she is
left with only 1 bit that she can communicate to Bob (of
course, they ignore the possible additional bit by fixing it
to 0).

To calculate the success probability of guessing a given bit,
one has to trace the way from the initial bit to the final coded
message in the schematic representation of the code (see Fig. 1
for example). Since the success probability for a E[3] is lower
than for E[2], the success probability of the code will depend
on which primitives were used in the concatenation. The guess
is successful not only when the guess is correct for every step
of the concatenation, but also if the number of errors is even.
The probability of making an even number of errors when
using E[2] k times is

p2e(k) =
� k

2 	∑
i=0

(
k

2i

) [
1

2

(
1 + 1√

2

)]k−2i [1

2

(
1 − 1√

2

)]2i

= 1

2
(1 + 2− 1

2 k). (5)

For a E[3] it is

p3e(k) = 1
2 (1 + 3− 1

2 k). (6)
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FIG. 1. (a) Schematic representation of the two primitives: (2,1)
and (3,1) EARAC. (b) Example of concatenation: (5,1) EARAC.
The probability of Bob guessing a2 is higher than for a3 since in the
first case only (2,1) EARAC primitives are used. These probabilities
are, respectively, P2 = 1

2 (1 + 1√
4
) and P3 = 1

2 (1 + 1√
6
). The success

probability associated with the whole code is the lower one.
(c) One possible permutation of input bits for (5,1) code. The choice
of permutation is governed by the data from a shared random string.
Having all possible permutations with the same probability results
in an averaged version of the protocol with the success probability
p = 2

5 P2 + 3
5 P3, which is higher than in the previous case.

For an odd number of errors, one has

p2o(k) = 1
2 (1 − 2− 1

2 k), (7)

p3o(k) = 1
2 (1 − 3− 1

2 k). (8)

That gives the overall probability of success for a bit encoded
k times with (2,1) EARACs and j times with (3,1) EARACs:

pk,j = p2e(k)p3e(j ) + p2o(k)p3o(j ) = 1
2 (1 + 2− 1

2 k3− 1
2 j ).

(9)

Thus, for any encoding of this type the probability of guessing
any bit is strictly greater than 1

2 . Therefore, in contrast to
QRACs, an (n,1) EARAC exists for any n, even if the parties
do not make use of SR.

When parties are allowed to use SR, QRACs do exist
for any n (see [11]), which is obvious, for anyone can
devise nonconcatenated EARAC using in the same way SR
as their counterpart QRACs. However, we will show that for
concatenated EARAC with SR, the success probabilities are
higher than for the best of known QRACs.

IV. SHARED RANDOMNESS

One of the possibilities of employing SR in an EARAC is
via defining the place each bit of Alice ai enters the coding
procedure by the values of the random string. This makes
it possible to average the success probabilities. Obviously,
this cannot decrease the minimal probability, which defines
the efficiency of the code. In fact, in most of the cases
this efficiency is increased. For an (n,1,p) EARAC with
ni bits having success probability pi , where n = ∑

i ni and
p = min pi , SR allows an upgrade to an (n,1,p′) EARAC,
where p′ = 1

n

∑
i nipi (see Fig. 1).

An evident advantage of an EARAC with SR over a QRAC
with SR from [11], which are the best ones known so far, is the
simpler way of finding a construction. To create the EARAC
one just needs to concatenate the two basic codes a sufficient
number of times. In the case of a QRAC, numerical search
procedures are used. The other advantage is that EARACs
give higher probabilities of success for all n > 3 (see Table I).

V. UPPER AND LOWER BOUND

Calculating the exact success probability for (n,1,p)
EARAC is not difficult, but it is hard to put into a short
formula. Nevertheless, it is possible in the special case when
the success probabilities for all individual bits are equal,
without a randomization procedure with the use of SR. If k

and j again denote the number of times (2,1) and (3,1) are
used for encoding a bit, pk,j will be the same for all bits if and
only if for all bits k and j are the same. This implies that the
preceding conditions hold for only n = 2k3j . In such a case,
via Eq. (9), the success probability is

p = pn = 1

2

(
1 + 1√

n

)
. (10)

Equation (10) gives also an upper bound for the suc-
cess probability of any EARAC for any n. Consider an

TABLE I. Success probabilities for (n,1,pQ,n) QRAC with SR
from [11] compared with the probabilities for (n,1,pE,n) EARAC.
The rightmost column displays the advantage of EARAC for
every n > 3.

n pQ,n pE,n � = pE,n − pQ,n

2 1
2 (1 + 1√

2
) 1

2 (1 + 1√
2
) 0

3 1
2 (1 + 1√

3
) 1

2 (1 + 1√
3
) 0

4 0.741 48 3
4 0.008 52

5 0.713 58 1
20 (12 + √

6) 0.008 89

6 0.694 05 1
2 (1 + 1√

6
) 0.010 07

7 0.678 64 1
21 (12 + √

6) 0.009 43

8 0.666 63 1
80 (52 + √

6) 0.013 99

9 0.656 89 2
3 0.009 78

10 0.648 20 1
20 (10 + √

2 + √
3) 0.009 11

11 0.641 05 1
120 (60 + 3

√
2 + 8

√
3) 0.009 78

12 0.634 87 1
2 (1 + 1√

12
) 0.009 47

15 0.620 36 1
60 (30 + 3

√
2 + 2

√
3) 0.008 09
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(nN,1) EARAC constructed by N -level concatenation of
(n,1, 1

2 (1 + 1√
n

+ ε)) EARACs. Since Bob will guess every
bit in the concatenated protocol with the same probability, the
success probability is given by (10)

pnN = 1

2

[
1 +

(
1√
n

+ ε

)N
]

. (11)

To proceed further, we shall use the following technical result.
In [14] it is shown that, in the general case on any information
processing protocol, classical or quantum, if Alice holds a
K-bit secret entirely random data string and sends one classical
bit to Bob, then the bound on mutual information implies the
following inequality:

K[1 − h(pK )] � 1, (12)

where pK denotes the probability that Bob guesses correctly
any of her K bits, and h is Shannon binary entropy. If we
substitute K = nN and use 1 − h( 1+y

2 ) � y2

2 ln 2 , we get

K[1 − h(pK )] �
nN

(
1√
n

+ ε
)2N

2 ln 2
= (1 + 2

√
nε + nε2)N

2 ln 2
.

(13)

If ε > 0, then 1 + 2
√

nε + nε2 > 1 and there exists N large
enough for which (1 + 2

√
nε + nε2)N > 2 ln 2, which leads

to violation of (12). That means that for any (n,1,pn) EARAC,
one must have

pn � 1

2

(
1 + 1√

n

)
. (14)

Note that the bound (12) also holds for QRACs. To see
this, notice that for any (n,1,p) QRAC, there exists (n,1,p)
EARAC with the same p. It can be constructed in the following
way. Alice and Bob share a singlet state. When Alice wants
to encode her input a1, . . . ,an she calculates ρ(a1, . . . ,an),
which would be the (pure) state that she would send to Bob
if they were to use (n,1,p) QRAC. She then measures her
part of the singlet in the basis that includes ρ(a1, . . . ,an) as

one of its eigenstates. Her measurement outcome tells her
whether the part of the singlet at Bob’s laboratory collapsed to
ρ(a1, . . . ,an) or the orthogonal one. She then sends Bob 0 if it
is this state and 1 if it is orthogonal. When Bob wants to find
the value of the ith bit, he performs the measurement that he
would in the case of QRAC. If he has received message 0 from
Alice, he keeps his outcome; if 1, he flips it. That procedure
gives him the same probability of successfully guessing any
bit as in QRAC. Therefore, any bound on such EARACs is also
valid for QRACs. Our proof is thus also a simpler version of
the one for the bound for QRAC presented in [11]. The bound
(14) is saturated whenever n is of the type 2k3j . Thus, in such
cases the presented EARACs are optimal.

As has already been mentioned, the derivation of success
probability for any given EARAC is straightforward, but it is
difficult to give one formula for the general case. It is, however,
possible to give a lower bound for optimal protocols. Notice
that if n is not of the form 2k3j , the parties can always use an
(n�,1) EARAC, where n� is the smallest integer greater than
n and being of the form 2k3j . This leads to the lower bound

pn � 1

2

(
1 + 1√

n�

)
. (15)

VI. CONCLUSION

We introduce EARACs and show them to be superior to the
best known QRACs in the terms of both success probabilities
and existence without SR. We also derive the bound for any
RAC and show that for infinitely many n the EARAC is the
best one. An open questions is whether the bound is saturated
for all n, and if not, what are then the best possible codes.
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