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Strong coupling between two distant electronic spins via a nanomechanical resonator
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We propose a scheme to achieve a strong coupling between two distant symmetrically placed electronic spins
(such as nitrogen-vacancy centers in diamonds) by using a quantized nanomechanical resonator (NAMR) as a
data bus. These distant spins (without any direct interaction) simultaneously couple to a common NAMR. When
the detunings between effective spin transition frequencies and the fundamental frequency of the NAMR are
large enough, an effective coupling could be induced between the two distant electronic spins. The value of such
a coupling could be significantly large (i.e., up to a few kilohertz). This induced interaction between the two spins
can be used to implement an iSWAP quantum gate, and to probabilistically prepare two-spin maximal entangled
states by detecting the frequency shifts of the NAMR.
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I. INTRODUCTION

Electronic spins, which can be realized with nitrogen-
vacancy (N-V) impurities in diamonds [1], are expected to
implement quantum information processing (QIP) [2,3] due to
their long decoherence time [4]. However, in practice it is not
easy to achieve controllable entanglement between these spins
with a typical distance of tens of nanometers to maintain their
weak magnetic interactions.

With advances in micro-manufacturing technologies, it is
possible to produce nanomechanical resonators (NAMRs)
with high quality factors, high resonance frequencies, and
small effective masses [5–7]. These artificial structures could
be utilized for high precision detectors [5,8–12] and to test
quantum phenomena at macroscopic scales [13–19]. Specifi-
cally, NAMRs provide an attractive platform for detecting and
controlling single spins [20–22].

Recently, the coupling between single electronic spins and
NAMRs has been extensively investigated. The detection of
a single electronic spin by a classical cantilever-type NAMR
was reported in Ref. [21]. Later, by quantizing the motion of an
NAMR, P. Rabl et al. [22] found that it is possible to achieve
strong coupling between an NAMR’s quantized motion and
a spin qubit generated by an N-V impurity. The coupling
strength can reach about 100 kHz, which considerably exceeds
both the spin’s decoherence time and the NAMR’s intrinsic
damping rate. Subsequently, P. Rabl et al. [23] proposed a
universal realization of a quantum data bus for electronic spins,
which were coupled to the motion of magnetized mechanical
resonators via the magnetic-field gradients. Furthermore, when
the Rabi frequency of the vibration of the driving microwave
(applied to the spin qubit) and that of the NAMR were
near-resonant, Z. Y. Xu et al. [24] showed that the Dicke
States of N-V centers in a line located in nanoscale diamonds
could be prepared.

In this article, we study the coupling between two distant
electronic spins (generated by, for example, two N-V centers
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in different diamonds) via a quantum NAMR. Two magnetic
tips are attached to the free end of the NAMR on either sides
of which there are two symmetrically positioned electronic
spins. Microwaves are applied to drive the Rabi oscillations
between the states of single spins. The oscillations of the two
tips produce a time-varying magnetic field proportional to the
NAMR’s displacement. By such a magnetic-field gradient,
two distant spins simultaneously couple to the NAMR. We
show that, if the spins and the NAMR work within the
so-called large detuning regime, strong coupling (up to a few
kilohertz) between these two distant spins can be achieved.
More importantly, this coupling strength can be controlled
by adjusting the driving microwave’s frequency and the Rabi
frequency between the spins’ two states. We then show that
how this induced interaction between the two distant spins can
be used to implement an iSWAP quantum gate. Additionally,
the coupling between the NAMR and spins causes a frequency
shift on the NAMR that can be detected by a spectrum
measurement. This measurement would not affect the states of
the spins and could be utilized to prepare entangled states of
the spins.

The article is arranged follows: In Sec. II we briefly review
the manipulations of a single electronic spin by applying
a microwave field, followed by the interaction between the
NAMR and one spin. Then, we consider two distant spins
simultaneously coupled to an NAMR and discuss how to
deliver an effective interaction between the distant spins. Next,
we show in Sec. III that the deduced spin-spin interaction
can be utilized to implement an iSWAP quantum gate and to
generate entangled states of the two spins. Finally, discussions
and conclusions are given in Sec. IV.

II. NAMR COUPLES TO DISTANT SPINS

In the setup shown in Fig. 1, two magnetic tips are attached
to the end of an NAMR on either side of which two spins
are symmetrically placed at a distance h from the NAMR.
All the experimental devices are placed in a static magnetic
field �B0 pointing in the positive z-axis direction. Oscillations
of the magnetic tips produce a time-varying field, which
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FIG. 1. Sketch for coupling two distant electronic spins via an
NAMR. Two magnetic tips are attached to the free end of the NAMR,
which mechanically oscillates in the z-axis direction. About 25-nm
apart (denoted here by h) from the two tips’ equilibrium position
there are two electronic spins driven by microwaves.

is proportional to the NAMR’s displacement. The NAMR
couples with the two spins via the magnetic-field gradient.
Microwaves are applied to drive Rabi oscillations between the
two states of the spins.

For a single electronic spin driven by microwave field, the
Hamiltonian in a frame rotating with the frequency of the
microwave field is

HS = −h̄δ|↑〉〈↑| + h̄�

2
(|↑〉〈↓| + |↓〉〈↑|) , (1)

where � denotes Rabi frequency of the transition between the
two spin states |↑〉 and |↓〉 and δ denotes the detuning between
the microwave frequency and the intrinsic frequency of the
spin, as shown in Fig. 2(a). The eigenbasis of HS is given by

|g〉 = cos(θ/2)|↑〉 + sin(θ/2)|↓〉, (2a)

|e〉 = − sin(θ/2)|↑〉 + cos(θ/2)|↓〉, (2b)

FIG. 2. (Color online) (a) Energy levels for an electronic spin
driven by a microwave. (b) Eigenenergies in the presence of hyperfine
interactions of the form Hn = h̄δnSz caused by the interaction
between the nuclear-spin bath magnetic field and the z component
of the spin for �/δ = 10 (solid line), �/δ = 1 (dashed line), and
�/δ = 0.1 (dotted line).

with tan θ = −�/δ. In this basis, the spin can be described
by three pseudospin operators: σz = |e〉〈e| − |g〉〈g|, σ+ =
|e〉〈g|, and σ− = |g〉〈e|. The above Hamiltonian can be
therefore rewritten as

HS = 1
2h̄ωσz, (3)

with ω = (�2 + δ2)1/2.
Additionally, in this new basis, the z-component of the spin

operator Sz = h̄
2 (|↓〉〈↓| − |↑〉〈↑|) reads

Sz = h̄

2
[cos θσz + sin θ (σ+ + σ−)]. (4)

A. One-spin case

For comparison, we start with the case that the NAMR
couples to only one spin. The Hamiltonian of this spin-NAMR
system can be written as

Ĥ = HS + h̄ωr
(
a†a + 1

2

) + λ(a† + a)Sz. (5)

The second term describes the quantized vibration of the
NAMR with the fundamental frequency ωr. The last term
describes the interaction between the NAMR and the spin
with a coupling coefficient λ = gsµBGma0/h̄. Here, µB is
the Bohr magneton, Gm is the magnetic field gradient, a0 =√

h̄/(2mrωr) is the amplitude of zero-point fluctuations for a
resonator with effective mass mr, and gs � 2.

In the interaction picture, Hamiltonian (5) becomes

ĤI = h̄λ

2
(e−iωrt a + eiωrt a†)

× [cos θσz + sin θ (e−iωtσ− + eiωtσ+)]. (6)

Under the usual rotating-wave approximation, Hamiltonian (6)
is further simplified to

ĤI(t) ≈ h̄λg

2
(ei�ta†σ− + e−i�taσ+) (7)

with � = ωr − ω and λg = λ sin θ .
If the spin and the NAMR work within the so-called

large detuning regime wherein |λg/�| 	 1, then the evolution
operator Û (t) of the system can be well-approximated by

Û (t) = T̂ exp

[∫ t

0
ĤI(t

′)dt ′
]

≈ 1 +
(

− i

h̄

)2 ∫ t

0

∫ t ′

0
ĤI(t

′)ĤI(t
′′)dt ′′dt ′ + · · ·

= exp

[
− i

h̄
Ĥeff t

]
, (8)

with the time series operator T̂ and the effective Hamiltonian

Ĥeff = −h̄λ2
g

4�

(
a†a + 1

2

)
σz. (9)

Returning to the Schrödinger picture, Hamiltonian (9) be-
comes

Ĥ = h̄ω′
r

(
a†a + 1

2

) + 1
2h̄ωσz

= h̄ωr
(
a†a + 1

2

) + 1
2h̄ω′σz, (10)
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with ω′
r = ωr − λ2

gσz/(4�) and ω′ = ω − λ2
g(a†a +

1/2)/(2�). Obviously, the effective coupling between
the spin and NAMR only shifts their eigenfrequencies.

B. Two-spin case

We now consider the generalized two-spin case in which
a common NAMR couples simultaneously to two distant
spins (see, e.g., Fig. 1). The direct spin-spin interaction can
be omitted since it is excessively weak compared with the
spin-NAMR interaction [25]. The Hamiltonian of the present
system is

H̃ =
∑
i=1,2

HSi + h̄ωr

(
a†a + 1

2

)
+ λ(a + a†)(S1z − S2z).

(11)

Here, the subscript i denotes the spin above or below the
NAMR. For simplicity, we set ω1 = ω2 = ω by adjusting
�1 = �2 = � and δ1 = δ2 = δ for the two electronic spins.
Again, let the system work in the large detuning regime; that
is, the NAMR is dispersively coupled to two spins. Then, the
effective Hamiltonian of this system is

H̃eff = −h̄λ2
g

4�

[(
a†a + 1

2

)
(σ1z + σ2z) − (σ1+σ2− + σ2+σ1−)

]
.

(12)

This indicates that the vibration mode of the NAMR does not
induce the energy exchange between the two electronic spins.
It also reveals that quantum nondemolition measurements on
the two-spin states could be made by detecting the frequency
shift of the NAMR. More importantly, the second term means
that the two distant electronic spins can be coupled to each
other via the NAMR’s quantized motion, which plays the role
of data bus. Finally, the induced coupling between the distant
spins can be controlled by regulating � and λg .

Specifically, the present electronic spins could be gener-
ated by the N-V centers in diamonds. For realistic situa-
tions, we consider the following parameters as an example:
mr ∼ 2.53 × 10−15 kg, h ∼ 25 nm, Gm = 106 T/m, a0 ∼
5 × 10−13 m [22], gs = 2, Qr = 6 × 105, and ωr/(2π ) =
1 MHz. We choose �/(2π ) = 0.9 MHz and δ/(2π ) = 1 kHz
to satisfy the large detuning and rotating-wave-approximation
conditions. The coupling coefficient between the two distant
electronic spins is

λe = λ2
g

4�
= 3.08 kHz. (13)

Apparently, this coupling coefficient exceeds the electronic-
spin decoherence time (e.g., T2 ∼ 6 ms [26]). Also, it should
be significantly larger than the damping rate κ ≡ ωr/Qr of
the NAMR. In fact, the relevant decoherence rate is γr ≡
kBT/(h̄Qr) for an environment temperature T . Typically,
the heating rate is γr/(2π ) = 0.35 kHz, which is smaller
than λe/(2π ) for an experimentally accessible temperature
T = 10 mK. Indeed, for N-V centers, the dephasing time
induced by the nuclear-spin fluctuations is observed to be
T2 = 0.35 ms [4]. Finally, the nuclear-spin fluctuations may
result in vibrations of the spins’ upper-energy levels (i.e., the
vibrations of δ), which leads to perturbations of ω. We have

chosen � and δ to satisfy the condition δ 	 �, so the shift of
ωeg (i.e., the transition frequency between |e〉 and |g〉) caused
by these vibrations can be ignored. In Fig. 2(b), we plot the
eigenenergies of H ′

S = HS + Hn(δn) as a function of δn with
Hn = h̄δnSz. In the eigenbasis of HS, the perturbations of the
ωeg are suppressed for � 
 |δn|. Hence, this combination
enables us to access the strong-coupling regime of the two
spins. Higher values of Qr or lower temperature T would
allow further improvements.

For comparison, we calculate the bare coupling and the
maximum-achievable coupling induced by NAMR. Follow-
ing Takashi [25], the effective coupling strength between
two bare spins can be calculated by Jeff = −µ0µ

2
B(sin2 θ −

2 cos2 θ )/[4π (2h)3], where µ0 is the magnetic constant. For
the present two distant N-V centers separated by about 50 nm,
Jeff/h̄ ∼ 0.65 kHz. Obviously, the induced coupling in Eq. (13)
is about 4.7 times larger than the bare coupling. In addition, if
� = 7λg is used as the large-detuning condition by adjusting
� and δ, then the maximum-achievable coupling is λe =
(λg/�)2�/4 ∼ 3.21 kHz. Certainly, the higher values of ωr

would allow the stronger NAMR-induced coupling.

III. APPLICATIONS

The induced interactions described in the preceding section
could be utilized to achieve certain quantum manipulations
between the two distant spins, such as for quantum-logic
operations and entanglement generations.

A. iSWAP Gate implementation

QIP provides opportunities to tackle problems not feasible
with classical methods, such as factoring large prime numbers,
searching large unstructured databases, and secure commu-
nication. Universal quantum gate is one of the necessary
operations for most QIP tasks. As one of the universal quantum
gates, iSWAP quantum gates combined with single-bit gates
can simulate a unitary operation to arbitrary accuracy. In what
follows, we will show how an iSWAP quantum gate can be
achieved by using the induced interactions between the two
distant spins. The Hamiltonian (12) can be rewritten as

H̃eff = −h̄

4

(
λ2

g

2�

) [
2

(
a†a + 1

2

)
(σ1z + σ2z)

− (σ1x ⊗ σ2x + σ1y ⊗ σ2y)

]
, (14)

which means that the evolution operator of the system after
the time t = 6π�/λ2

g is given by

ŨS = exp

[
−i

H̃eff

h̄
t

]
=

⎛
⎜⎜⎜⎝

eiϕ 0 0 0

0 0 i 0

0 i 0 0

0 0 0 e−iϕ

⎞
⎟⎟⎟⎠ , (15)

where ϕ = 3π (n + 1/2) with n = 〈a†a〉 being the average
phonon number in the NAMR. Compared with the matrix
form of an iSWAP quantum gate, an unwanted global phase ϕ

is introduced. Fortunately, this global phase can be eliminated
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by the single qubit phase rotations |0〉 → eiϕ/2|0〉 and |1〉 →
e−iϕ/2|1〉 if n is known in advance.

B. Entanglement preparation

Returning to the Schrödinger picture, Hamiltonian (12) is
given by

H̃ = H ′′
S + h̄ω′

r

(
a†a + 1

2

)
, (16)

whereH ′′
S = h̄ω(σ1z + σ2z)/2 + h̄λ2

g(σ1+σ2−+σ1−σ2+)/(4�)
is the Hamiltonian associated with only the two spins and
ω′

r = ωr + δωr with

δωr = − λ2
g

4�
(σ1z + σ2z). (17)

Equation (17) shows that the frequency shift depends on the
eigenvalues of σ1z and σ2z. Compared with the spectrum of
the NAMR without spins, the two spins in the same state shift
the positions of the spectral peaks due to the quantum motion of
the NAMR, which is larger than the classical-NAMR case [27].
When the two electronic spins are in |e1g2〉 or |g1e2〉, the
coefficient (σ1z + σ2z) of Eq. (17) is zero and would result in
no frequency shift.

To show that the frequency shift is large enough to be
distinguished in the presence of the environmental noise and
can be measured within the decoherence time of the spin, we
now study the frequency spectrum of the NAMR’s position,
including the effect of the fluctuation-dissipation processes
which would disturb the dynamics of the NAMR by affecting
the mechanical mode. In the presence of dissipation, the
motion equations of the NAMR can be deduced from the
quantum Langevin equations:

ż(t) = p(t)

mr
, (18a)

ṗ(t) = −mrω
′2
r z(t) − γ ż(t) + ξ (t), (18b)

where z(t) and p(t) are the position and corresponding mo-
mentum operators of the NAMR, respectively. The mechanical
mode is affected by a viscous force with damping rate γ and a
Brownian stochastic force with zero mean value ξ (t) with the
mean anticommutator [28]

〈[ξ (t),ξ (t ′)]+〉 = γh̄

π

∫ +∞

−∞
dωe−iω(t−t ′)ω coth

(
h̄ω

2kBT

)
,

(19)

where kB is the Boltzmann constant. By performing a Fourier
transform of z(t) and solving equations (18a) and (18b), we
have the NAMR spectrum

Sz(ω) = Sξ (ω)

m2
r

(
ω2 − ω′2

r

)2 + ω2SR(ω)
, (20)

where Sξ (ω) and SR(ω) are the spectra due to the reservoir and
the viscous force, respectively.

Consider the NAMR with the parameters given above as
an example. Under the first Markov approximation, SR(ω) =
|γ |2 and Sξ (ω) = h̄ωγ

2π
coth( h̄ω

2kBT
) with γ = 4πmrωr/Qr. For

a temperature of T = 10 mK, the frequency shift is about

FIG. 3. (Color online) (a) Frequency shift for the two-spin case.
The black (or solid) curve denotes no frequency shift when the two
electrons are in |e1g2〉 or |g1e2〉. The red (or dotted) curve and blue (or
dashed) curve denote a frequency shift of about 980 Hz when the two
electrons are in |e1e2〉 and |g1g2〉, respectively. (b) Frequency shift for
the one spin case. The solid curve is the spectrum without spin.

0.98 kHz with a full width at half maximum (FWHM) of
about 21 Hz, as shown in Fig. 3(a). The three curves can be
distinguished. The spectrum measurement can be completed
in microseconds, which is within the spin’s decoherence time.
Thus, this frequency shift is detectable.

For the one-spin case, the frequency shift is shown in
Fig. 3(b), which is almost half of the two-spin case. In this case,
the interaction between NAMR and one spin always results in
a frequency shift. Whereas for the two-spin case, if the two
spins are in opposite states in the eigenbasis, zero frequency
shift occurs for the NAMR. As a consequence, entangled states
of the two spins could be produced by detecting the frequency
shift of the NAMR without affecting the states of the spins.
For example, if the spins and NAMR are prepared in the initial
state |↑↑〉 ⊗ |n〉 then, at time t afterward, the state of this
system reads

|χSN 〉 =
{

sin2(θ/2)eiλebt |ee〉 + cos2(θ/2)e−iλebt |gg〉

− 1√
2

sin θe−iλet

[
1√
2

(|eg〉 + |ge〉)
]}

⊗ |n〉, (21)

with b = 2a†a + 1. When zero frequency shift is detected, the
maximal entangled state

|χf 〉 = 1√
2

(|eg〉 + |ge〉) (22)

of the two spins could be produced with a success prob-
ability proportional to sin2 θ . Here, we have neglected the
insignificant global phase factor −e−iλet . Certainly, if the
measurement result gives a frequency shift, no entangled state
can be obtained.
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IV. DISCUSSIONS AND CONCLUSION

Perfect accuracy is impossible in practical experiments,
so we now discuss the imperfect situation; namely that the
symmetry of the spins’ placements is slightly broken. The two
tips on the free end of the NAMR can be treated as a magnetic
dipole and produce a field Btip = Bz0 + Gmz. Here, Bz0 is a
constant field which is independent of z, Gm = h−4(Am +
Bmh−2ρ2) is the field gradient with ρ being the distance
between the spins and the z axis, and Am and Bm are the two
constants determined by the magnetic-dipole moments. The
asymmetric positions of the two spins have different magnetic
gradients, which would lead to different coupling coefficients
between the spins and the NAMR. As a consequence of
this asymmetry, the terms λ2

g(σ1z + σ2z) and λ2
g(σ1+σ2− +

σ2+σ1−) in the effective Hamiltonian (12) are replaced by new
terms (λ2

g1σ1z + λ2
g2σ2z) and λg1λg2(σ1+σ2− + σ2+σ1−). The

magnitude of the NAMR frequency shift is replaced by
(λ2

g1 + λ2
g2)/2 instead of λ2

g , and a small frequency shift of the
order of |λ2

g1 − λ2
g2|/2 occurs, compared with the symmetry

condition.
In conclusion, two distant spins can be strongly coupled

together via the quantized motion of an NAMR. In the
large-detuning regime, the motion of the NAMR does not

excite transitions between the spin’s states. In the one-spin
case, the effective interaction between the spin and the NAMR
only shifts their intrinsic frequency and transition frequency.
In the two-spin case, an effective interaction term between
the two distant spins occurs. The strong-coupling regime can
be still accessed in the presence of fast dephasing of the
spins because of interactions with the nuclear bath. More
importantly, this coupling can be controlled by adjusting
the microwave frequency and the detuning. Meanwhile, the
spectrum measurement of the NAMR does not affect the states
of the spins. The two spins in different states may cause zero
frequency shift of the NAMR. Thus, the maximal entangled
states of the two spins can be probabilistically generated by
detecting the frequency shift of the NAMR.
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