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Teleportation between distant qudits via scattering of mobile qubits
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We consider a one-dimensional structure where noninteracting spin-s scattering centers, such as quantum
impurities or multilevel atoms, are embedded at given positions. We show that the injection into the structure of
unpolarized flying qubits, such as electrons or photons, along with path detection suffice to accomplish spin-state
teleportation between two centers via a third ancillary one. No action over the internal quantum state of both
the spin-s particles and the flying qubits is required. The protocol enables the transfer of quantum information
between well-separated static entities in nanostructures by exploiting a very low control mechanism, namely
scattering.
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I. INTRODUCTION

Teleportation of a quantum state between two remote parties
[1] is a striking prediction of quantum mechanics. While
being a significant manifestation of the nonlocal correlations
inherent in entangled states [2] in contrast to the argument by
Einstein, Podolsky, and Rosen [3] a number of experimental
tests confirmed its effectiveness in various physical scenarios
[4]. Besides its intriguing features, quantum teleportation
has pivotal applications in the accomplishment of quantum
information processing (QIP) tasks. Significantly, teleporta-
tion can be harnessed as a resource to perform universal
quantum computation [5]. This model for computation is
indeed a prominent example of the emerging paradigm of
measurement-based quantum computation (MQC) [6] and is
the focus of ongoing experimental work [7]. While most of the
schemes to implement teleportation focused on quantum optics
and cavity quantum electrodynamics setups [8,9], proposals in
solid-state scenarios have been put forward more recently [10].

A topical issue in the current quest for reliable ways to
process quantum information is the pressing need for schemes
able to work in limited-control situations. For instance, a
general feature of MQC models of quantum computation [6],
in particular those based on teleportation [5], is the replacement
of time-controlled gating [2] with simple local measurements
in order to process quantum information. Recently, a number
of schemes for the generation of entangled states based on
scattering processes have been put forward [11–18]. Such
methods fit quite naturally into the scenario of limited-control
QIP. Scattering is indeed a typical process occurring under
low-control conditions: Two or more particles are prepared
and collided and, once the scattering event has taken place,
measurements are performed, hence without any direct access
to the interaction process. In such proposals, the typical
strategy to establish entanglement is to scatter flying mediators,
such as electrons or photons, between remote noninteracting
quantum scattering centers, such as magnetic impurities or
artificial atoms. The centers’ cross-talk mediated by the flying
particles allows the distribution of entanglement between
them. Suitable postselection of the mediators’ internal-state,
working conditions yielding additional symmetries and the
use of a stream of scattering particles (rather than single ones)

typically optimize entanglement generation. Major advantages
of these strategies are the remarkable resilience against static
disorder and nonoptimal parameters [13,15], decoherence
affecting the centers [16], and, as anticipated, only mild control
required over interaction times, which is inherited from the
very nature of scattering processes. Very recently, it has been
demonstrated [16,17] that efficient entanglement generation
can be achieved even by fully relaxing any preparation and
postselection of the mediators’ internal quantum state: Mere
injection of a manifold of unpolarized mobile particles that
have trespassed the scattering region, as recorded by a
Geiger-like detector [19], can suffice to distribute maximum
entanglement [16,17]. The latest achievements have shown
that such a strategy can be modified so as to deterministically
establish maximum entanglement [18].

So far, the work carried out along this line has essentially
focused on generation of entangled states [11–18]. A natural
question to ask is whether the implementation of tasks useful
for QIP other than mere preparation of nonclassical states can
benefit from the attractive advantages of such scattering-based
strategies. One of the simplest tasks in this category, and one
which is extremely useful in a QIP context, is to move quantum
information encoded in static qubits from one place to another.
A possibility of accomplishing this is through teleportation.
Indeed, while it is quite natural to expect that a stream of mobile
particles scattering between distant centers correlate them so
as to establish entanglement, the possibility that processes of
this sort can carry out a genuine quantum algorithm, such as
teleportation, does not appear a foregone conclusion. On the
other hand, the ability to prepare and measure entangled states
is known to allow for teleportation. In particular, although
the measurement of maximally entangled states is in general
quite a demanding task, it is now well established that
teleportation can be accomplished by getting around direct
joint measurements [9]. This typically occurs when ancillary
degrees of freedom are added to the particles between which
teleportation is to be performed and made to interact with them.
At the end of the interaction process, one can map certain local
measurements onto the ancillary systems into effective, and
thus indirect, Bell-state measurements [9,20].

In this paper, we show that teleportation of quantum
states between noninteracting parties can be performed via
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a scattering-based strategy. In particular, we demonstrate
that the injection of a manifold of scattering particles along
with standard Geiger-like detection are enough to teleport an
arbitrary quantum state between two remote scattering centers
with the assistance of an ancillary center. Our scheme in fact
does not require us to take any action over either the centers or
the internal degrees of freedom of the flying particles. Hence,
it fits particularly well into a scenario where only limited or
no access to quantum registers is available.

The motivation behind our focusing on teleportation is
twofold. First, as discussed, this phenomenon has several
important applications [5]. Second, it particularly well em-
bodies a paradigmatic process where quantum information
flows over space. One would not expect that such a task could
be successfully implemented through scattering events, where
a number of quantum degrees of freedom such as those of
the involved scattering mediators enter the dynamics. The
counterintuitiveness of our scheme is further strengthened by
the lack of any requirement over the internal quantum state of
the mobile particles: As we show later, these are each sent in a
maximally mixed state and without requiring any postselection
of their internal state once they are scattered. More specifically,
we use a suitable quantum map that describes how the quantum
state of the centers is changed by their interaction with each
scattering particle and illustrate how repeated applications
of such a map, corresponding to the passage of a stream
of mediators, makes teleportation effective with significant
probability.

Significantly, our scheme is free from any requirement
over the Hibert space dimension of each scattering center.
It therefore allows for teleportation of the quantum state of
qudits (i.e., particles having a d-dimensional Hilbert space
with d � 2). Here, we make a proposal for teleportation in a
solid-state setting that is not restricted only to transmission of
qubits.

The present paper is structured as follows. In Sec. II
we introduce the setup and Hamiltonian and briefly outline
the approach we used to tackle the problem. In Sec. III,
the central section of this work, we present our teleportation
protocol and illustrate its effectiveness through some plots. In
Sec. IV, we discuss more in detail the features of our approach,
introduce the aforementioned quantum map, and demonstrate
the working principle of the scheme. In Sec. V we address some
issues that may arise in an experimental implementation, such
as the resilience of the protocol performances against static
disorder and imperfect setting of resonance conditions. We also
comment on the feasibility of one of the few requirements of
the scheme, that is, the need for switching off some couplings
at certain stages of the teleportation process.

Finally, in Sec. VI we draw our conclusions.

II. SETUP

We consider a one-dimensional (1D) wire along the x axis
where spin-1/2 mobile particles e can propagate. In practice,
e can be embodied by either a conduction electron traveling
in a quasi-1D semiconductor nanowire or carbon nanotube
(see [21] and references therein) or a photon propagating
along a 1D solid-state waveguide such as a GaAs/GaN
nanowire sustaining two frequency-degenerate orthogonally

polarized modes [15,16]. Three spin-s quantum scattering
centers, labeled 1, 2 and 3, lie at x = x1 = 0, x = x2 = d12,
and x = x3 = d12 + d23, respectively [where d12 (d23) is the
distance between centers 1 and 2 (2 and 3)]. In the case of
electrons, the centers can be embodied by quantum impurities
such as magnetic impurities or quantum dots (QDs) [12,15,16],
whereas in the photonic implementation these can be realized
through multilevel artificial atoms such as InAs/GaInN QDs
[15,16] or nitrogen-vacancy centers in diamond [22] (in the
case that s = 1/2 these are three-level �-type atoms with
a twofold degenerate ground state and one virtually excited
state [15,16]). Finally, a Geiger-like detector D located at one
end of the setting fires whenever it records the presence of a
mobile particle e regardless of its spin state. The whole setup
is sketched in Fig. 1.

Whenever a mobile particle e is at x = xi (i = 1, 2, 3), its
spin interacts with that of the corresponding center according
to the Hamiltonian

Ĥ = Ĥkin + V̂ (1)

with

V̂ =
∑

i=1,2,3

Ji σ̂ · Ŝi δ(x − xi) (2)

for the electronic setup and

V̂ =
∑

i=1,2,3

Ji (σ̂x Ŝix + σ̂y Ŝiy) δ(x − xi) (3)

for the photonic setting. In Eqs. (1)–(3), σ̂ and Ŝi are the
(pseudo-)spin operators of e and the ith center, respectively,
Ĥkin is the kinetic Hamiltonian of e, and the Jis are interaction
strengths (in units of frequency times length). Throughout
this paper we set h̄ = 1. When e is embodied by a photon its
pseudo-spin σ̂ is that associated with the Hilbert space spanned
by two orthogonal polarization states (for its rigorous defini-
tion see Ref. [15]). Concerning the kinetic Hamiltonian, for
the implementation using electrons we have Hkin = p̂2/(2m∗)
(where p̂ is the momentum operator and m∗ is the effective
mass), whereas in the case of photons Hkin coincides with Hph

of Ref. [15].

FIG. 1. (Color online) Proposed setup for the implementation
of our scheme. A mobile quantum particle e can propagate along
the x axis. Three spin-s scattering centers, labeled 1, 2, and 3, lie
at x = x1 = 0, x = x2 = d12, and x = x3 = d12 + d23, respectively.
Whenever e is at x = xi (i = 1, 2, 3), its spin interacts with that of
the corresponding center i. The protocol allows one to teleport an
unknown quantum state |φ〉 between particle 1 (Alice) and particle 3
(Bob).

042318-2



TELEPORTATION BETWEEN DISTANT QUDITS VIA . . . PHYSICAL REVIEW A 81, 042318 (2010)

Notice that in the electronic (photonic) implementation
the spin-spin coupling between e and the centers is of the
Heisenberg (XY isotropic) type. Despite this difference, the
scheme is effective in both cases. We also point out that, as
witnessed by Eqs. (2) and (3), there is no direct coupling
between the centers, which are however indirectly coupled via
the mediating scattering particle e.

As Hamiltonian (1) does not contain any free-energy terms
involving spin degrees of freedom, the energy spectrum of the
unbound stationary states reduces to the energy–wave vector
dispersion relation associated with the wire Ek , namely the
spectrum of Hkin (where k > 0 is the magnitude of the e’s wave
vector). For an electron we have Ek = k2/(2m∗) = m∗v2

k/2
(where vk = k/m∗ is the group velocity), whereas for a photon
traveling along a waveguide with a linear dispersion law
Ek = vphk (where vph = vk is the photon group velocity). The
unbound stationary states associated with a given k > 0 can
be exactly calculated through standard methods by solving
the Schrödinger equation and imposing the matching of the
wave function at the xis [12,15,16]. The knowledge of such
states allows us to quantify in terms of suitable Kraus operators
[2,15,16] how the interaction with a scattering particle e later
detected at D changes the spin state of centers 1–3 [16].

III. PROTOCOL

We consider a stream of particles e to be incoming from the
left. Each of them impinges on centers 1–3, being eventually
scattered off, either reflected or transmitted. We assume that the
buffer time between the injection of two successive mediators
is large enough to ensure that the mobile mediators interact
with the centers one at a time. We call |↑〉e and |↓〉e the two
orthogonal (pseudo-)spin states of e. Each mediator e is sent
in the maximally mixed spin state ρe = 1e/2 = 1

2 (|↑〉e〈↑| +
|↓〉e〈↓|) and with wave vector k such that

kd12 = pπ (p = 1, 2, . . .), (4)

kd23 = qπ (q = 1, 2, . . .), (5)

which we will occasionally refer to as resonance conditions. As
each mobile particle reaches the interaction region x1 < x <

x3 multiple scattering and spin-flipping involving e and centers
1–3 take place, with e eventually scattered off, either reflected
or transmitted. We label with |mi = −s,−s + 1, . . . , s〉i the
2s + 1 eigenstates of Ŝiz (i = 1, 2, 3). Our protocol tele-
ports an arbitrary pure quantum state |φ〉 = ∑s

m=−s αm|m〉
(
∑

m |αm|2 = 1) from center 1, Alice, to center 3, Bob (see
Fig. 1). It is made out of the following three essential
steps:

(a) Centers 2 and 3 are prepared in the product state
|s,−s〉23. The overall initial state of 1–3 is thus |χa〉 =
|φ〉1|s,−s〉23.

(b) We set J1 = 0 and J2 = J3 = Jb and send n23 particles
e’s. We detect each particle at D.

(c) We set J3 = 0 and J1 = J2 = Jc and send n12 particles
e’s. We detect each particle at D.

Provided that n12 and n23 are large enough, this process
projects center 1 onto ρ1 = 11/(2s + 1) and center 3 onto ρ3 =
|φ〉3〈φ| (where 1i = ∑s

mi=−s |mi〉i〈mi | is the identity matrix of
the ith center). Some remarks are in order. First, there are no

strict constraints on n12 and n23. Moreover, if the involved
coupling strengths are large enough even n12 = n23 = 1 can
suffice to accomplish teleportation (later we will explain the
mechanism behind this). We also point out that after step (a) no
action over the spin degrees of freedom of either the centers or
the mediators is required to accomplish teleportation. As each
e may in general be reflected back without reaching D, steps
(b) and (c) are carried out probabilistically. Hence, the scheme
has an associated success probability P . This is the overall
conditional probability to detect at D n23 mobile mediators
during step (b) and n12 during step (c). Although, as mentioned,
n12 and n23 need to be large enough and the mediators are
sent one at a time, we will show that as n12 and n23 grow P

asymptotically converges to a finite value. We now comment
on the required setting of the coupling strengths. While in
general the protocol allows us to have Jb �= Jc, clearly such
a situation would in particular demand some implicit ability
to tune the coupling strength J2, which appears an unnatural
requirement given the limited-control scenario within which
our proposal is intended to take its place. However, one may
envisage a more realistic situation where the three coupling
strengths J1, J2, and J3 are all equal, even approximately
(later we show the resilience of the scheme to static disorder).
In such a case (corresponding to Jb � Jc) to carry out the
scheme we simply demand the ability to switch off the e-1 and
e-3 couplings during steps (b) and (c), respectively. (In Sec. V
we discuss how this can be achieved in both implementations.)

As a further figure of merit to quantify the performance of
our scheme we use the fidelity of the state of center 3 with
respect to the state to be teleported, F . Later, in Sec. IV, we
will illustrate the approach we used to calculate F and P .

In Figs. 2(a) and 2(b) we address the electronic setup [cf.
Eq. (2)], set Jb = Jc = 1.5vk , s = 1/2 (spin-1/2 centers), and
plot the average fidelity and probability, F and P , respectively,
as functions of n12 and n23 (where we average over all possible
single-qubit pure states, with vk the group velocity of e).
When both n12 and n23 are large enough, teleportation is

FIG. 2. (Color online) Electronic setup, s = 1/2: average fidelity
F (a) and average success probability P (b) vs n12 and n23 for Jb =
Jc = 1.5vk . Electronic setup, s = 1: average fidelity F (c) and average
success probability P (d) vs n = n12 = n23 for Jb = Jc = 5vk . In each
of these plots we have set conditions (4) and (5).
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FIG. 3. (Color online) Electronic setup, s = 1/2: average fidelity
F (a) and average success probability P (b) vs the dimensionless
parameter J/vk for n =1 (black), n = 2 (red), n = 4 (yellow), n = 6
(green), and n = 10 (blue). We have set s = 1/2, n = n12 = n23, J =
Jb = Jc, and conditions (4) and (5). We point out that the parameter
J/vk is dimensionless since the dimensions of the coupling strength
J are a frequency times a length [see Eqs. (2) and (3), where its
product with Dirac delta functions appear], namely a velocity.

achieved with unit fidelity (F � 1) with success probability
approaching P = 1/8. (Later on we show a strategy to double
this probability.) The protocol’s performance is stable against
the number of injected mediators: The only requirement is to
send and detect at D a large enough number of mediators.
For the ratio J/vk = 1.5 set in Fig. 2 we need n23 � 6 and
n12 � 6 in order to have F � 0.95. Such a minimum number of
mediators can however be lowered by setting a larger coupling
strength J/vk . This is shown in Fig. 3, where for the case
s = 1/2 we take n12 = n23 = n, Jb = Jc = J and plot F and
P against n and J/vk . First, F and P asymptotically converge
to 1 and 1/8, respectively, regardless of the coupling strength
(which affects only the convergence rate). As J/vk grows
fewer mediators are needed to achieve teleportation down
to the minimum number n12 = n23 = 1 as we have checked
(not shown in the figure). Likewise, for the dependence on
n23 and n12, notice that no tight constraints over the coupling
strengths are required. Indeed, any coupling strength allows for
teleportation provided that a large enough number of particles
e are sent and detected at D.

A further advantage of the protocol is that its working
principle is independent of the center spin number s. Hence,
it allows for teleportation of quantum states of qudits, that is,
particles whose spin space dimension is d = (2s + 1). This
is illustrated in Figs. 2(c) and 2(d) in the case s = 1 for the
electronic setup. We set n = n12 = n23, J/vk = 5 and plot the
average fidelity and probability, F and P , respectively, against
n. While F → 1 as n grows, P converges to 1/27. Once again,
notice the mild dependence on n, provided that the number of
injected particles is large enough. Although not shown here,
we have checked that a dependence on J/vk qualitatively
analogous to that obtained for s = 1/2 is exhibited in this
case as well.

Finally, although the plots shown in this section refer to the
electronic setup, we have checked that analogous behaviors
are exhibited in the case of the photonic setup [cf. Eqs. (1)
and (3)].

IV. APPROACH AND WORKING PRINCIPLE
OF THE SCHEME

As anticipated in Sec. II, all of the spin-dependent reflection
and transmission probability amplitudes can be derived by

imposing boundary conditions on the wave function and its
derivative at x = x1, x2, and x3 (the procedure being the natural
extension to the case of three centers of the method adopted in
Refs. [12,15,16]). Knowledge of such coefficients allows us to

define suitable Kraus operators R̂
m′

e
me

(T̂
m′

e
me

) that describe how
the spin state of the centers is changed upon scattering by a
particle e injected in the spin state |m′

e =↑,↓〉e and reflected
(transmitted) in the state |me =↑,↓〉e [15,16]. For a given
initial spin state of e |m′

e =↑,↓〉e such Kraus operators fulfill∑
me=↑,↓

(
R̂

m′
e †

me
R̂

m′
e

me
+ T̂

m′
e†

me
T̂

m′
e

me

) = 1123, (6)

where 1123 = 111213 (with 1i the identity operator in the spin
space of center i). Although not explicitly shown by our

notation, R̂
m′

e
me

and T̂
m′

e
me

implicitly depend on the coupling
strengths Jis, the wave vector k, and the distances d12

and d23 [23].
The interaction of centers 1–3 with one particle e injected

in the spin state ρe = 1e/2 and wave vector matching Eqs. (4)
and (5), which is successfully detected at D once it has been
scattered off (see Fig. 1), changes a centers’ initial state ρ0

into [2,16]

	(1) = E(ρ0) =
⎛
⎝1

2

∑
m′

e=↑,↓

∑
me=↑,↓

T̂
m′

e
me

ρ0T̂
m′

e †
me

⎞
⎠/

P (ρ0), (7)

where

P (ρ0) = Tr

⎡
⎣1

2

∑
m′

e=↑,↓

∑
me=↑,↓

T̂
m′

e
me

ρ0T̂
m′

e †
me

⎤
⎦ (8)

is the associated probability. Equation (7) defines a quantum

map in the spin space of 1–3 in terms of Kraus operators T̂
m′

e
me

’s
[16]. When n � 1 mobile particles are successively detected
at D, the final spin state of the centers is obtained by n-time
application of the map (7) as

	(n) = E (n)(ρ0) = E [E [· · [E︸ ︷︷ ︸
n

(ρ0)], (9)

with overall conditional probability

P (n)(ρ0) =
∏

µ=1,n

P (	(µ−1)) (10)

with 	(0) = ρ0.
More specifically, our protocol consists of iterated applica-

tions of two quantum maps E23 and E12 during steps (b) and
(c), respectively (cf. Sec. III). Map E23 (map E12) is map (7)
with the setting J1 = 0, J2 = J3 = Jb (J3 = 0, J1 = J2 = Jc)
along with Eqs. (4) and (5). The initial spin state of 1–3
is |χa〉〈χa| = |φ〉1〈φ| |s,−s〉23〈s,−s| [step (a) in Sec. III].
Hence, at the end of step (c) (cf. Sec. III) the final centers’
state is

ρf = E (n12)
12

[
E (n23)

23 (|χa〉〈χa|)
] = E (n12)

12 ◦ E (n23)
23 (|χa〉〈χa|), (11)

with success probability

Pφ =
∏

ν=1,n12

P12(ς (ν−1))
∏

µ=1,n23

P23(	(µ−1)), (12)
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FIG. 4. Photonic setup, s = 1/2: average fidelity F (a) and
average success probability P (b) against �k (in units of k0) for
J3b = J1c = J2 = 2vph (symmetrical couplings, solid line) and J2 =
2vph, J3b = 0.9%J2, and J1c = 1.01%J2 (asymmetrical couplings,
dashed line). Only the carrier wave vector k0 of each mobile particle
fulfills conditions (4) and (5). F and P are normalized to their
values for �k = 0 and the symmetrical pattern of coupling strengths
J3b = J1c = J2 = 2vph.

where 	(0) = |χa〉〈χa|, 	(µ) = E (µ)
23 (|χa〉〈χa|), ς (0) = 	(n23),

and ς (ν) = E (ν)
12 (	(n23)).

The fidelity of the final state of center 3 with respect to the
state to be teleported |φ〉 is computed as

Fφ = 〈φ|3Tr12
[
E (n12)

12 ◦ E (n23)
23 (ρ0)

]|φ〉3, (13)

where Tr12 stands for the partial trace over 1 and 2.
Average fidelity and probability F and P in Figs. 1 and 2

(Sec. III) and in Figs. 3 and 4 (Sec. V) are obtained by
averaging over all possible pure states [24] for a given spin
number s. For s = 1/2, this family of states has the form
|φ〉 =cos ϑ/2|↑〉 + eiϕ sin ϑ/2|↓〉 (ϑ = [0, π ], ϕ = [0, 2π ]).
For s = 1, we use the four-angle parametrization of a pure
state belonging to the generalization of the Poincaré sphere to
the case of a qutrit [25].

We call |�−
s 〉j l = ∑

m=−s,s(−1)η(2s + 1)−1/2|m,−m〉j l

the spin-s singlet state of centers j − l [j, l = 1, 2, 3, η =
m + 1/2 (η = m) for m a semi-integer (integer)]. For s = 1/2
we retrieve the standard Bell state |�−〉j l . Moreover, we define
two-center interaction operators V̂j �=l (j, l = 1, 2, 3), whose
form for the electronic setup [cf. Eq. (2)] is

V̂j �=l = J σ̂ · [Ŝj δ(x − xj ) + Ŝl δ(x − xl)], (14)

whereas for the photonic setup [cf. Eq. (3)] we have

V̂j �=l = J
∑

β=x,y

σ̂β[Ŝjβ δ(x − xj ) + Ŝlβ δ(x − xl)]. (15)

Hence, at steps (b) and (c) the interaction term in Eq. (1)
reduces to V̂23 (with J = Jb) and V̂12 (with J = Jc), respec-
tively.

It can be straightforwardly demonstrated [12,15,16] that if
conditions (4) and (5) are set then V̂23|�−

s 〉23 = V̂12|�−
s 〉12 =

0; that is, the singlet |�−
s 〉23 (|�−

s 〉12) gives rise to an effective
quenching of the interaction between e and the involved centers
at stage (b) [stage (c)]. Remarkably, this occurs regardless of
the spin state of the mobile particle e, which can in particular
be sent even in the maximally mixed state 1e/2 [12,16], as we
have assumed so far. Such effective quenchings necessarily
entail that [26]

E23(|�−
s 〉23〈�−

s |) = |�−
s 〉23〈�−

s |, (16)

E12(|�−
s 〉12〈�−

s |) = |�−
s 〉12〈�−

s |, (17)

with probabilities P23(|�−
s 〉23〈�−

s |) = P12(|�−
s 〉12〈�−

s |) = 1.
In other words, such singlets are fixed points of the respective
quantum maps. As there are no other states belonging to the
spin space of centers 2 and 3 (1 and 2) with the same
features [16] we conclude that the successive detections
of a large enough number of mobile particles at D

achieves an effective projective measurement of the singlet
|�−

s 〉23〈�−
s |(|�−

s 〉12〈�−
s |). Such behavior is harnessed to

establish maximum entanglement between centers 2 and
3 at step (b) (see Sec. III) starting from the initial state
|χa〉 = |φ〉1|s,−s〉23 prepared at step (a). Provided that n23

is large enough, such a product state is projected onto
|χb〉 = |φ〉1|�−

s 〉23 with probability P23 = |〈�−
s |s,−s〉|2 =

(2s + 1)−1 [recall that for any m = −s, . . . , s we have
〈�−

s |m,−m〉 = (−1)m(2s + 1)−1/2]. In the final stage (c),
provided that n12 is large enough, the effective projection of
|χb〉 onto |�−

s 〉12 is accomplished, which yields

12〈�−
s |χb〉 = 1

2s + 1
|φ〉3, (18)

up to an irrelevant phase factor. The initial state |φ〉 of center
1 is therefore teleported to center 3. The success probability
associated with the latter projection is thus P12 = 1/(2s +
1)2 so that the overall success probability is P = P12P23 =
1/(2s + 1)3 [for s = 1/2 (s = 1) we obtain P = 1/8 (P =
1/27)]. Notice that our proposal can in fact be effectively
mapped into the seminal protocol by Bennett et al. [1].

The reason why the number of required mediators to
make teleportation effective decreases as the coupling strength
grows is analogous to the mechanism behind entanglement
generation via the map (7) [16,17]. The larger the coupling
strength the more efficient is singlet-state discrimination via
detection of transmitted particles. This is because for any
two-center spin state other than the singlet the transmittivity
of particle e decreases as the coupling strength is made larger.
Hence, fewer transmitted electrons need to be recorded at D

in order to discriminate |�−
s 〉 [12,16,17].

We stress that, although probabilistic, our protocol is of a
conclusive nature and basically implements the teleportation
task according to the very seminal protocol by Bennett et al.
(aside from the ability to discriminate only one maximally
entangled state). Therefore, at the end of stage (b), if
successful, centers 2 and 3 are in a maximally entangled pure
state, which provides the essential resource for teleportation.
At the end of stage (c), if successful, centers 1 and 2 are
projected onto a maximally entangled pure state to accomplish
quantum-information transfer. In other words, teleportation is
in fact achieved through effective preparation and projection
onto pure entangled states.

V. IMPLEMENTATION ISSUES

As discussed in the previous section, the mechanism behind
the scheme harnesses the singlet-induced spin-spin quenching,
that is, V̂12|�−

s 〉12 = V̂23|�−
s 〉23 = 0. Such behavior does not

take place for any pattern of the parameters entering the
dynamics. Indeed, in order for it to occur we require that
conditions (4) and (5) be fulfilled and that J2 = J3 (J1 = J2)
at step (b) [at step (c)]. These constraints ensure that dur-
ing stage (b) [stage (c)] the coupling of centers 2 and 3
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(1 and 2) to each particle e occurs symmetrically, which entails
singlet-state induced quenching of the scattering potential V

in Eq. (1), as can be straightforwardly proved [12,15,16]. From
the experimental perspective, a natural question to ask is the
following: How resilient is the teleportation scheme against an
imperfect setting of such a symmetrical situation? Here, we
thus scrutinize the robustness against an imperfect setting of
conditions (4) and (5) as well as static disorder affecting the
coupling strengths.

We model an imperfect setting of conditions (4) and (5)
by assuming that the wave vector of an injected mediator
k is selected according to a Gaussian distribution around a
carrier wave vector k0 with standard deviation �k. Resonance
conditions in Eqs. (4) and (5) are thus exactly fulfilled only by
the carrier wave vector k = k0 (i.e., the ideal case addressed
in Secs. III and IV is recovered by setting �k = 0). As a
paradigmatic instance, we consider the photonic setup [see
Sec. II, Eqs. (1) and (3)] and set s = 1/2, n12 = n23 = 8 (a
case in which the mediator’s velocity is independent of k

according to vk = vph). In the ideal situation (see Sec. III)
by taking Jb = Jc = 2vph and resonance conditions (4) and
(5) we obtain the average fidelity and probability, respectively,
as F � 0.96 and P � 0.13. We call J3b and J1c the values of
J3 and J1 during steps (b) and (c), respectively [during step
(b) J1 = 0, whereas during step (c) J3 = 0; see Sec. III]. In
Fig. 5 we take J2 = 2vph and plot F and P against �k for the
symmetrical pattern J3b = J1c = J2 and the asymmetrical one
J3b = 0.9%J2 and J1c = 1.01%J2 (i.e., for deviations of J3b

and J2c of, respectively, 10% and 1% from their ideal values).
First, notice that the scheme’s performances are only slightly
affected in the case of the asymmetrical pattern of coupling
strengths: While the average fidelity is basically insensitive to
such imperfect settings the maximum deviation of probability
is �3% for �k/k0 up to �5% and �10% for �k/k0 between
�5% and �10%. As for the dependence on �k, both F and P

monotonically decrease as the wave vector uncertainty grows.
For values of �k/k0 up to 10%, the maximum decrease of F

(P ) is �20% (�90%). However, for �k/k0 up to �3% the
maximum decrease of F is lower than 5%, whereas that of P is
�30%. Overall, the protocol therefore exhibits quite a striking
resilience against static disorder in the pattern of coupling
strengths and a reasonable tolerance against an imperfect
matching of resonance conditions (4) and (5). The outcomes
of this analysis are in line with similar studies carried out
to test the resilience of some scattering-based entanglement
generation schemes [13] and provide further evidence of the
low level of control required by scattering-based methods to
perform QIP tasks.

We now comment on the switch-off of the coupling between
the mobile particle e and center 1 (center 3) required at step
(b) [step (c)] (see Sec. III). In an electronic implementation
using electrostatically defined single-electron QDs [21] to
embody the centers the Heisenberg-type coupling in Eq. (2)
arises from the exchange interaction between the bound and
propagating electrons. In such a case, the QD orbitals, and
hence the exchange interaction, can be controlled, and thus
switched off, by tuning gate voltages. Alternatively, as the
dots lie close to the wire along which each particle e can
travel (without the need for being embedded within it) one can
envisage the setup depicted in Fig. 5. It is made out of three

FIG. 5. (Color online) Alternative electronic setting. All of the
centers and one of the wires lie on the z = 0 plane, whereas the other
wire lies on a z = z0 plane (z0 �= 0). A path detector is placed at the
end of each wire.

centers, two wires, and two detectors. The centers are arranged
on the z = 0 plane according to an L geometry. A wire on the
z = 0 plane lies close to centers 1 and 2 but far from center
3, whereas another wire lies on a plane z = z0 �= 0 close to
centers 2 and 3 but far from 1. One detector is placed at the
end of each wire. The advantage of this setup is that if an
electron is injected in the z = 0 (z = z0) wire then it interacts
only with centers 1 and 2 (2 and 3). The teleportation protocol
would work analogously to the one for the setup in Fig. 1, the
only modification being that at stage (b) [stage (c)] the injected
electrons would flow through the wire on the z = z0 (z = 0)
plane.

In a photonic implementation using multilevel QDs to
embody the centers [15,16] the switch-off of the effective
XY coupling between e and one of the centers in Eq. (3)
can be obtained by setting the photon-QD interaction far off
resonance (e.g., via a Zeeman shift of the involved QD levels).

As for whether unavoidable decoherence processes affect
the centers, although its detailed analysis is beyond the scopes
of this work we expect our protocol to be quite robust against
this. First, as discussed in Sec. IV our procedure in fact
relies upon effective projective measurements of two-center
singlet states, which motivates such expectation in the case
that the distance between the centers is not much larger than
the environmental correlation length. Second, in the case of
not too weak coupling strengths the scheme can be effective
with only a few injected mobile particles (see Fig. 3 and
related discussion; for issues related to decoherence see also
the discussion in Ref. [16]).

VI. CONCLUSIONS

In this work we have presented a general setting where
teleportation of an unknown qudit state between two remote
scattering centers is achieved solely via repeated injections of
unpolarized mobile particles undergoing multiple scattering
along with path detection. Teleportation is carried out without
taking any action over the quantum internal state of the
two centers and the flying particles. No strict constraints
over coupling strengths and interaction times are demanded.
We only require each mediator to have enough time to
be scattered from the centers before injection of the next
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one and its wave vector to fulfill appropriate resonance
conditions, whose matching, though, is quite robust against
an imperfect setting and/or static disorder. Our scheme is
particularly well suited to scenarios with only very limited
access to quantum memories. The mechanism behind our
proposal essentially relies on resonance-induced symmetries
and the conditioning effect over the system’s dynamics
due to path detection. An implicit requirement is that the
interaction between each mobile particle and the centers occurs
coherently: Despite its counterintuitiveness this suffices to
make teleportation effective even though each flying particle
is injected in a maximally mixed state and without any
postselection over its internal state. In the case that the mobile
particles and centers are, respectively, embodied by photons
and multilevel atoms, whose interaction occurs according to
a Jaynes-Cummings-like model, the counterintuitiveness is
strengthened by the requirement that the polarization state of
each injected photon needs to be mixed to make teleportation
effective [27]. In some sense, our protocol shares some features
with measurement-based models of quantum computation.
Indeed, from the viewpoint of quantum information theory,
the harnessed resource is ultimately the entanglement be-
tween the centers established by their successive interactions
with the injected mediators. Here, however, the local mea-
surements, embodied by the path detection over the mobile
particles, have the twofold purpose of both creating such a
computational resource and processing information once it
has been built up.

Our scheme accomplishes spatial movement of quantum
information by scattering processes. We recall that we do
not require either a direct cross-talk between the centers or
a direct Bell-state measurement to be performed on them.
Furthermore, our work shows that in the case that the centers’
spin number is higher than 1/2 qubit mediators can allow
for transmission of a pure quantum state between two high-
dimensional entities.

We point out that the singlet-state extraction scheme in
Ref. [15], where polarized mobile mediators are postselected,
either reflected or transmitted, in their initial spin state
(i.e., spin-state instead of path postselection is carried out)
cannot be used to perform teleportation. The reason is that
in such a case the singlet is not the only fixed point of the

associated quantum map [15,27]. Its iterated application is thus
not equivalent to a Bell-state measurement within the whole
involved-centers’ spin space [i.e., the spin space of centers 2
and 3 at step (b) and that of 1 and 2 at step (a)] as it takes place
for the map in Eq. (7).

As for the success probability of the present scheme, we
point out that, although it is significant (P = 1/8 in the spin-
1/2 case), it is lower than those achieved by the most of the
probabilistic teleportation proposals appearing in the literature
[8,9] (where typically P = 1/4 or P = 1/2). It should be re-
marked, though, that the level of control required by the present
proposal is extremely low. Furthermore, the latest findings on
setups analogous to those addressed here [18] have shown that
a suitable modification of the schemes in Refs. [16,17] can
allow for deterministic singlet-state preparation. This strategy
can deterministically replace steps (a) and (b) of our procedure
(see Sec. III), that is, the entire entanglement-preparation
stage [28]. In such a case, the teleportation protocol would
have an associated success probability P = 1/(2s + 1)2 [for
s = 1/2, P = 1/4; see discussion related to Eq. (18)].

Our proposal uses iterated applications of a quantum map to
perform QIP tasks other than generation of nonclassical states.
We believe this feature may be enlightening for the design of
QIP protocols (even in physical scenarios different from those
addressed here) that can work in situations of limited control,
especially within the framework of computation models where
quantum information is processed through measurements
rather than gate-based operations. Furthermore, our scheme
shows a fully scattering-based strategy to perform a quantum
algorithm of pivotal importance in QIP theory [5]. As such,
we believe that it may represent a significant milestone for
future developments of a scattering-based model of quantum
computation, a topic which has been the focus of recent
findings in the context of quantum random walks [29].
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