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We consider a system composed of a two-level system (i.e., a qubit) and a harmonic oscillator in the ultrastrong-
coupling regime, where the coupling strength is comparable to the qubit and oscillator energy scales. Special
emphasis is placed on the possibility of preparing nonclassical states in this system. These nonclassical states
include squeezed states, Schrödinger-cat states, and entangled states. We start by comparing the predictions of a
number of analytical methods that can be used to describe the system under different assumptions, thus analyzing
the properties of the system in various parameter regimes. We then examine the ground state of the system
and analyze its nonclassical properties. We finally discuss some questions related to the possible experimental
observation of the nonclassical states and the effect of decoherence.
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I. INTRODUCTION

The two-level system (or qubit) and the harmonic oscillator
are the two most basic, and perhaps most often studied, com-
ponents of physical systems. The paradigm of a qubit coupled
to a harmonic oscillator has also been analyzed by numerous
authors over the past few decades [1,2]. Physical systems that
can be described by this model include natural atoms coupled
to optical or microwave cavities [2], superconducting qubits
coupled to superconducting resonators [3–5], quantum dots
or Cooper-pair boxes coupled to nanomechanical resonators
[6–8], electrons interacting with phonons in a solid [9], and
some models of chaotic systems [10].

In the early work on cavity quantum electrodynamics
(QED) in atomic systems, the achievable atom-cavity coupling
strengths were smaller than the atomic and cavity decay rates,
usually limiting observations to only indirect signatures of
the theoretically predicted phenomena. Recently, the strong-
coupling regime, where the coupling strength is larger than the
decay rates in the system, has been achieved [11]. In addition
to atomic systems, the strong-coupling regime has been
achieved in superconducting circuit-QED systems [3,4], and
superconducting-qubit-nanomechanical-resonator systems are
approaching this regime [7]. In fact, superconducting systems
are suited for achieving the so-called ultrastrong-coupling
regime, where the qubit-oscillator coupling strength is com-
parable to the qubit and oscillator energy scales [12]. One
can expect to find new phenomena in this regime that are not
present in the weak- or moderately strong coupling regimes.
Indeed there have been a number of theoretical studies on
this system analyzing some of its rich static and dynamical
properties [13–18].

One reason why superconducting systems are well suited
for the implementation of qubit-oscillator experiments is
the flexibility they allow in terms of designing the differ-
ent system parameters. For example, in the two earliest
experiments on circuit QED, Chiorescu et al. [3] used a
low-frequency oscillator, while Wallraff et al. [4] realized
a resonant qubit-oscillator system. Subgigahertz qubits have
also been realized in recent experiments [19], and there should
be no difficulty in fabricating high-frequency oscillators.
Therefore, all possible combinations of qubit and oscillator

frequencies are accessible, in principle. One advantage of
superconducting qubits over natural atoms is the additional
control associated with the tunability of essentially all the
qubit parameters [20], as will be discussed in more detail in
the following. This tunability contrasts with the situation en-
countered with natural atoms, where the atomic parameters are
essentially fixed by nature. This advantage can be seen clearly
in the recent experiments where Fock states and arbitrary oscil-
lator states were prepared in a superconducting qubit-oscillator
system [21,22]. We shall see, however, that the additional
controllability comes at the price of having to deal with addi-
tional coupling channels to the environment, and this unwanted
coupling can increase the fragility of nonclassical states.

In this paper we present analytical arguments and numerical
calculations pertaining to the strongly coupled qubit-oscillator
system from the point of view of the potential for preparing
nonclassical states in this setup. These states include squeezed
states or superpositions of macroscopically distinct states
(i.e., Schrödinger-cat state) in the oscillator, as well as qubit-
oscillator entangled states [23]. In this study, we shall consider
all the different combinations of qubit and oscillator frequen-
cies. We shall also analyze in some detail the effect of the
tunability in the qubit parameters on the behavior of the system.

The paper is organized as follows: In Sec. II we introduce
the Hamiltonian that we shall use throughout the paper. In
Sec. III we discuss various analytical methods that can be
used to study the system under different assumptions, and
we compare the predictions of these methods. In Sec. IV we
present results of numerical calculations that demonstrate the
properties of the energy eigenstates of the system, including
the nonclassical properties of the ground state. In Sec. V we
discuss the possibility of preparing and detecting the three
types of nonclassical states of interest. In Sec. VI we discuss
the effect of decoherence on the robustness of nonclassical
states. Section VII contains some concluding remarks.

II. HAMILTONIAN

The system that we consider here is a qubit coupled to a
harmonic oscillator, as illustrated in Fig. 1. Rather than worry
about deriving the model from a microscopic description of an
electric circuit (see, e.g., Refs. [12,24,25]), we shall assume
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qubit coupling oscillator

FIG. 1. Schematic diagram of the system under consideration. A
qubit with energy separation Eq between its ground and excited states
(|g〉 and |e〉) is coupled to a harmonic oscillator with characteristic
frequency ω0. The coupling strength is given by g or λ, depending on
the language used to describe the oscillator.

that the description of the system as being composed of these
two physical components with a coupling term of the standard
form is an accurate description.

The Hamiltonian of the system is given by

Ĥ = Ĥq + Ĥho + Ĥint, (1)

where

Ĥq = −�

2
σ̂x − ε

2
σ̂z,

Ĥho = p̂2

2m
+ 1

2
mω2

0x̂
2, (2)

Ĥint = gx̂σ̂z,

σ̂x and σ̂z are the usual Pauli matrices (with σ̂z|↑〉 = |↑〉,
σ̂z|↓〉 = −|↓〉), and x̂ and p̂ are the position and momentum
operators of the harmonic oscillator. The parameters � and
ε are the gap and bias which characterize the qubit, m is the
oscillator’s effective mass, ω0 is the oscillator’s characteristic
frequency, and g is the qubit-oscillator coupling strength. Note
that in contrast to atomic cavity QED systems, where ε = 0,
this parameter is easily tunable in present-day experiments
using superconducting qubits. We shall therefore treat ε as
a tunable parameter. (It is worth noting here that most past
studies on the ultrastrong-coupling regime have focused on
the case ε = 0; however, see Ref. [17].) For definiteness, we
shall take � and g to be positive.

It is convenient for some calculations to express the
oscillator Hamiltonian using the creation (â†) and annihilation
(â) operators:

â = X̂ + iP̂ ,

â† = X̂ − iP̂ ,
(3)

X̂ =
√

mω0

2h̄
x̂,

P̂ = 1√
2h̄mω0

p̂,

which give

Ĥho = h̄ω0â
†â + 1

2
h̄ω0,

Ĥint = λ(â + â†)σ̂z, (4)

λ = g

√
h̄

2mω0
.

The coupling strength can therefore be quantified either
through g or λ.

We shall refer to the eigenstates of Ĥq as the qubit’s
ground and excited states, denoted by |g〉 and |e〉, respectively,
keeping in mind the caveat that this identification becomes less
meaningful for strong qubit-oscillator coupling. The energies
of these two states are ±Eq/2, where Eq = √

�2 + ε2. It
is also useful to define an angle θ that characterizes the
relative size of the σ̂x and σ̂z terms in the qubit Hamiltonian:
tan θ = ε/�. The eigenstates of Ĥho are given by |n〉, where
n = 0, 1, 2, . . . , with energies given by nh̄ω0 (up to the ground
state energy h̄ω0/2, which we ignore from now on). The integer
n represents the number of excitations, to which we shall refer
as photons, in the oscillator.

III. COMPARISON OF DIFFERENT ANALYTICAL
METHODS

In this section we describe some analytical methods that can
be used to determine the properties and behavior of the system
based on different assumptions (which are valid in different
parameter regimes), and we compare the predictions of the
different methods.

A. Weak coupling

The simplest limit is probably the weak-coupling limit
[2], where λ � Eq, h̄ω0. Strictly speaking, one also needs
to consider the number of photons in the oscillator when
determining whether the weak-coupling condition is satisfied.
However, since in this paper we focus on a system that remains
close to its ground state, we assume a small number of photons
in the oscillator. In the weak-coupling limit, one can think of
the qubit and oscillator as being well-defined, separate physical
systems that interact weakly and can exchange excitations with
one another [1].

In the limit of small λ, one can treat Ĥint as a small
perturbation in the total Hamiltonian. The energy eigenstates in
the absence of this perturbation are given by |n, g〉 = |n〉 ⊗ |g〉
and |n, e〉 = |n〉 ⊗ |e〉, with energies nh̄ω0 ± Eq/2 (recall that
we ignore the h̄ω0/2 term in the oscillator’s energy).

When there are no degeneracies in the noninteracting
system (i.e., in the Hamiltonian given by Ĥq + Ĥho), the
addition of the perturbation Ĥint has only a small effect on
the behavior of the system. This perturbation only slightly
modifies the energy levels and eigenstates of the Hamiltonian.

When Eq ≈ h̄ω0, the states |n, g〉 and |n − 1, e〉 are nearly
degenerate (note that there is one such pair of nearly degenerate
states for each value of n), and the perturbation term couples
them. In particular, the relevant matrix elements are given
by 〈n, g|Ĥint|n − 1, e〉 = λ

√
n cos θ , 〈n, g|Ĥint|n, g〉 = 〈n −

1, e|Ĥint|n − 1, e〉 = 0 and 〈n − 1, e|(Ĥq + Ĥho)|n − 1, e〉 −
〈n, g|(Ĥq + Ĥho)|n, g〉 = Eq − h̄ω0. In other words the effec-
tive Hamiltonian that one needs to consider is given by

Ĥeff =
(

δ/2 λ
√

n cos θ

λ
√

n cos θ −δ/2

)
, (5)

where δ = Eq − h̄ω0. Using this Hamiltonian, one can analyze
the behavior of the system. In particular, when Eq = h̄ω0, an
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excitation oscillates back and forth between the qubit and
oscillator with frequency 2λ

√
n cos θ , which is commonly

referred to as the Rabi frequency.
Degeneracies also occur when Eq = kh̄ω0, with k being any

integer. In this case, one can go to higher orders in perturbation
theory and obtain analytic, though sometimes cumbersome,
expressions describing the properties and dynamics of the
system. We shall not go any further in analyzing this situation
here [26].

Note that the same results as those just explained (for
the case Eq ≈ h̄ω0) can be obtained by taking the term Ĥint

in the Hamiltonian and replacing it by its rotating-wave-
approximation (RWA) form

Ĥint,RWA = λ cos θ (âσ̂+ + â†σ̂−), (6)

where σ̂± are the qubit raising and lowering operators (σ̂+|g〉 =
|e〉 etc.). This approximation therefore ignores the so-called
counter-rotating terms in Ĥint, which are proportional to â†σ̂+
and âσ̂−, as well as a term proportional to (â + â†)(|e〉〈e| −
|g〉〈g|) that appears when ε 	= 0. These terms would change
the number of excitations in the system, thus mixing states
that have a large energy separation (under the assumption λ �
Eq, h̄ω0), and energy conservation suppresses such processes.
The RWA therefore approximates the original Hamiltonian
by one where the state |n, g〉 is coupled only to the state
|n − 1, e〉, which would lead to exactly the same algebra
and results mentioned previously. Some of the recent studies
on ultrastrong coupling have analyzed the effects of the
counter-rotating terms on the system dynamics [16,18].

B. High-frequency, adiabatically adjusting oscillator

The next limit that we consider is that where the oscillator’s
characteristic frequency ω0 is large compared to the qubit’s
energy splitting (i.e., h̄ω0 
 Eq) and also compared to the
coupling strength (h̄ω0 
 λ). In this case one can say that
the oscillator remains in its initial energy eigenstate (i.e.,
ground state, first excited state, etc.), and this state follows
adiabatically any changes in the qubit’s state. This case was
analyzed theoretically in Refs. [14,15].

The procedure for adiabatically eliminating the high-
frequency oscillator from the problem is straightforward. One
starts by noting that the qubit is coupled to the oscillator

through the operator σ̂z. As a result, one can think of the
oscillator as always monitoring the qubit observable σz and
adjusting to be in the instantaneous energy eigenstate that
corresponds to that value of σz. (Note here that if the qubit is
in a superposition of two different σz states, each part of the
superposition—with a well-defined value of σz—will have the
oscillator in the corresponding energy eigenstate.)

We therefore start by assuming that the qubit has a well-
defined value of σz, equal to ±1. The oscillator now feels the
effective Hamiltonian (calculated from Ĥho and Ĥint)

Ĥho,eff|σz=±1 = h̄ω0â
†â ± λ(â + â†). (7)

This Hamiltonian corresponds simply to the original oscillator
Hamiltonian with a constant force term applied to it. This force
term can be eliminated using the transformation

â′ = â ± λ

h̄ω0
, (8)

which gives

Ĥho,eff|σz=±1 = h̄ω0â
′†â′ − λ2

h̄ω0
. (9)

These steps can also be carried out in the language of the
operators x̂ and p̂:

Ĥho,eff |σz=±1 = p̂2

2m
+ 1

2
mω2

0x̂
2 ± gx̂,

x ′ = x ± g

mω2
0

,

(10)
p′ = p,

Ĥho,eff|σz=±1 = p̂′2

2m
+ 1

2
mω2

0x̂
′2 − g2

2mω2
0

.

The energy levels of the oscillator are given by nh̄ω0 −
λ2/(h̄ω0), independently of the qubit’s state. There will
therefore not be a qubit-state-dependent energy that we need
to take into account when we turn to analyzing the behavior of
the (slow) qubit. The oscillator’s energy eigenstates, however,
are slightly dependent on the state of the qubit. In particular,〈

nσz=+1

∣∣mσz=+1
〉 = 〈

nσz=−1

∣∣mσz=−1
〉 = δnm (11)

and

〈
nσz=+1

∣∣mσz=−1
〉 =

⎧⎪⎨⎪⎩
e−2λ2/(h̄ω0)2( − 2λ

h̄ω0

)m−n
√

n!
m!L

m−n
n

[(
2λ
h̄ω0

)2]
, m � n,

e−2λ2/(h̄ω0)2( 2λ
h̄ω0

)n−m
√

m!
n! L

n−m
m

[(
2λ
h̄ω0

)2]
, m < n,

(12)

where δnm is the Kronecker delta, and L
j

i are the associated
Laguerre polynomials.

Having obtained the states of the high-frequency oscillator
and the properties of these states, one can now turn to the
slow part of the system, namely the qubit. We take any given
value for the index n, which specifies the oscillator’s state, and

we use it to construct an effective qubit Hamiltonian for that
value of n. Since there are two qubit states for each value of
n, the effective Hamiltonian will be a 2 × 2 matrix operating
in the space defined by the states {|ñ,↑〉, |ñ,↓〉} (where we
use the tildes in order to emphasize that the oscillator’s state
is different from the state |n〉 of the free oscillator). The four
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relevant matrix elements can be calculated straightforwardly
as

〈ñ,↑|Ĥq|ñ,↑〉 = −〈ñ,↓|Ĥq|ñ,↓〉 = −ε

2
,

(13)〈ñ,↑|Ĥq|ñ,↓〉 = 〈ñ,↓|Ĥq|ñ,↑〉

= −�

2
e−2λ2/(h̄ω0)2

L0
n

[(
2λ

h̄ω0

)2
]

.

The qubit is therefore described by the effective Hamiltonian

Ĥeff = −1

2

(
ε �̃

�̃ −ε

)
, (14)

where �̃ is given by Eq. (13) and can be thought of as the
renormalized value of the gap �.

The exponential and Laguerre-function factors are both
slightly smaller than one for small values of λ/(h̄ω0). The
qubit therefore experiences a small reduction in the coupling
(or ‘tunneling’) between the states |↑〉 and |↓〉 in the weak-
coupling limit (λ � h̄ω0). This decrease in the renormalized
value of � can be understood in terms of the qubit having to
“pull” the oscillator with it as it tunnels between the states |↑〉
and |↓〉, which would slow down the tunneling process. Note
that the renormalized gap depends on the number of photons
in the oscillator, which can lead to beating dynamics and other
interesting phenomena that occur when several values of n are
involved [14,15].

If we keep increasing λ/(h̄ω0), without worrying about
satisfying the condition λ � h̄ω0, we find that the Laguerre
polynomial and therefore the renormalized qubit gap vanish at
n different λ/(h̄ω0) values (e.g., for n = 2 there are two values
of λ for which the renormalized gap vanishes). At these points,
the states |ñ,↑〉 and |ñ,↓〉 are completely decoupled. Apart
from this feature, the renormalized gap decreases as a Gaussian
function with increasing λ/(h̄ω0). Note that while increasing
λ there is no point that can be seen as a “critical point” with a
sudden change in behavior. This situation contrasts with what
happens in the two calculations that we shall discuss in the
next two sections, and the meaning of the term critical point
will become clearer there.

One might expect that the adiabatically-adjusting-oscillator
approximation would break down when λ is comparable to,
or larger than, h̄ω0 (meaning that h̄ω0 is not the largest
energy scale in the Hamiltonian). The arguments in the
previous paragraph might therefore seem of little significance.
It turns out, however, that the results discussed here hold,
even when λ > h̄ω0. The reason why the approximation of an
adiabatically adjusting oscillator is still valid in this case is that
even though large changes in the oscillator’s states can occur
when the qubit’s state changes, these large changes involve
very slow processes that are governed by the renormalized
gap. The oscillator can therefore adjust adiabatically to these
slow processes. In other words, the condition that h̄ω0 be
the largest energy scale in the Hamiltonian is a sufficient but
not necessary condition for the validity of the adiabatically-
adjusting-oscillator approximation.

C. High-frequency, adiabatically adjusting qubit

We now take the limit where Eq is much larger than
both h̄ω0 and λ (a case for which some analysis was given
in Ref. [15]). Similarly to what was done in Sec. III B, we
now say that the qubit remains in the same energy eigenstate
(ground or excited state), and this state changes adiabatically
following the dynamics of the slow oscillator. We therefore
start by finding the energy eigenstates of the (fast-adjusting)
qubit for a given state of the (slow) oscillator. Since the
interaction between the qubit and the oscillator is mediated
by the oscillator’s position operator x̂, we start the calculation
by assuming that x has a well-defined value and treat the
effective Hamiltonian (obtained from Ĥq and Ĥint)

Ĥq,eff|x = −�

2
σ̂x − ε

2
σ̂z + gxσ̂z. (15)

The eigenvalues and eigenstates of this Hamiltonian are given
by

Eq,1|x = −1

2

√
�2 + (ε − 2gx)2,

|gx〉 = cos
ϕ

2
|↑〉 + sin

ϕ

2
|↓〉,

Eq,2|x = 1

2

√
�2 + (ε − 2gx)2, (16)

|ex〉 = sin
ϕ

2
|↑〉 − cos

ϕ

2
|↓〉,

tan ϕ = �

ε − 2gx
.

We can now take these results and use them to analyze the
behavior of the oscillator. We note here that since the variable
x appears inside the square root in these expressions, the
operators x̂ and p̂ lead to a more transparent analysis than
the operators â and â†. We therefore use the operators x̂ and p̂

for the remainder of this calculation.
Since the qubit’s energy depends on the oscillator’s position

x, the oscillator’s effective potential now acquires a new
contribution (which depends on the qubit’s state):

Veff(x) = 1

2
mω2

0x
2 ± 1

2

√
�2 + (ε − 2gx)2. (17)

The plus sign corresponds to the qubit being in the excited
state, and the minus sign corresponds to the qubit being in
the ground state. In addition to this effect of the qubit on the
oscillator, the qubit’s state changes as the oscillator’s position
changes, and the oscillator’s kinetic-energy term will also be
modified in principle (an effect similar to the renormalization
of � encountered in Sec. III B). However, for a sufficiently
high frequency qubit, changes in the qubit’s state will be small
(see the Appendix), and consequently the change in the kinetic-
energy term can be neglected.

We now note that the effective potential in Eq. (17) is no
longer a harmonic potential. The second term describes one of
the two branches of a hyperbola, depending on the qubit’s state.
It will therefore not be possible to derive general analytical
results, and we have to start considering some special cases.
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In the limit Eq 
 g|x| for the relevant values of x, the
effective potential in Eq. (17) can be approximated by

Veff(x) ≈ 1

2
mω2

0x
2 ±

(√
�2 + ε2

2
− εgx − g2x2

√
�2 + ε2

)

= 1

2
mω̃2

0

(
x ∓ εg

mω̃2
0Eq

)2

± Eq

2
, (18)

where

ω̃2
0 = ω2

0 ± 2
g2

mEq
. (19)

The oscillator’s effective potential is modified in two ways
depending on the qubit’s state. First, the location of the min-
imum is shifted to the left or right by a distance proportional
to ε/Eq = sin θ (an effect that is absent when the qubit is
biased at the degeneracy point, where ε = 0). Second, the
oscillator’s frequency is renormalized: According to Eq. (19),
the oscillator’s effective frequency is increased for the qubit’s
excited state and reduced for the qubit’s ground state. (This
phenomenon is the basis of the so-called quantum-capacitance
and quantum-inductance qubit-readout techniques [27].)

An interesting result appears when one considers the case
where the qubit is in its ground state and

2g2

mω2
0Eq

> 1 or
4λ2

h̄ω0Eq
> 1. (20)

In this case the renormalized frequency becomes imaginary.
This result signals the presence of a critical point above which
there is an instability in the system. In particular, our expansion
of the square root in Eq. (18) is no longer valid, the reason being
that x would increase indefinitely under this approximation and
the condition Eq 
 g|x| would be violated.

The instability obtained here would raise questions about
the validity of the assumption of an adiabatically adjusting
qubit above the critical point. Nevertheless, we shall not worry
about this point now, and we continue the calculation. As a
first step, we note that Veff(x) in Eq. (17) is well behaved at
|x| → ∞. In particular,

Veff(x) = 1

2
mω2

0x
2 ±

∣∣∣gx − ε

2

∣∣∣ when |x| 
 �

g
,
|ε|
g

.

(21)

We can therefore proceed with the calculation using the
effective potential given in Eq. (17).

In order to make a few more statements about the case of
strong coupling (i.e., above the critical point), it is useful to
start with the case ε = 0 and include a finite bias afterward.
When ε = 0, the oscillator’s effective potential takes the form

Veff(x) =
⎧⎨⎩

(
1
2mω2

0 ± g2

�

)
x2 ± �

2 , x � �/g,

1
2mω2

0x
2 ± |gx|, x 
 �/g.

(22)

For the case with the qubit in its excited state (i.e., when
one has the plus signs in these expressions), the effective
potential is a slightly nonharmonic potential, and one can
expect the oscillator states to look more or less like the usual
harmonic oscillator states. For the case with the qubit in its
ground state, and when 2g2/(mω2

0�) � 1, one also has a

slightly nonharmonic potential. For the qubit’s ground state
and 2g2/(mω2

0�) > 1 (which implies crossing the critical
point), the oscillator’s effective potential is a double-well
potential. The locations of the minima can be obtained by
setting dVeff/dx = 0 with Veff given by Eq. (17): The minima
are located at ±x0, with

x0 =
√

g2

m2ω4
0

− �2

4g2
. (23)

If one goes well beyond the critical point, this expression
reduces to

x0 ≈ g

mω2
0

, (24)

with minimum potential energy [measured relative to Veff(0)]

Vmin = Veff(±x0) − Veff(0) ≈ − g2

2mω2
0

(25)

and curvature

d2Veff

dx2

∣∣∣∣
x=±x0

≈ mω2
0. (26)

Note that this curvature is identical to that of the free oscillator
(i.e., when g = 0).

One can use these expressions to estimate the energy
separation between the ground state and first excited state
above the critical point. These two states will be the sym-
metric and antisymmetric superpositions of the ground states
localized around the two minima in the double-well potential.
The distance between the two minima is given by 2x0 from
Eq. (24), and the height of the energy barrier separating the
two minima is given by −Vmin from Eq. (25). Using the
Wentzel-Kramers-Brillouin (WKB) formula, one finds that
the energy separation between the two lowest states (and also
within similar pairs of higher energy levels) is exponential
in the parameter

√−mVminx0/h̄, which is proportional to
g2/(mω3

0h̄), or alternatively λ2/(h̄ω0)2. This scaling is the same
as the one obtained in Sec. III B.

We now introduce ε to the problem. Far below the critical
point, the effect of ε can be obtained easily from Eq. (18):
The location of the minimum in the single-well effective
potential is slightly shifted to the left or right. More care is
required above the critical point, where one has the double-well
effective potential. In this case, a finite value of ε breaks the
symmetry between the left and right wells, thus giving an
energetic preference for one of the two wells. In order to
cause localization in the energy eigenstates, ε has to be larger
than the energy separation within one of the energy-level
pairs just discussed; that is, ε needs to be larger than a
quantity that is exponentially small in g2/(mω3

0h̄). Clearly,
this localization happens at smaller values of ε as one goes
deeper into the bistability region. This result means that
the superpositions involving both wells become increasingly
fragile with increasing coupling strength.

Finally, we note that above the critical point, one finds that
the condition Eq 
 g|x| can no longer be satisfied for any of
the energy eigenstates. Therefore, one might expect that the
present approximation cannot be trusted. As we discussed in
Sec. III B, however, these results hold even when λ > Eq. In
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that case the energy eigenstates are either localized close to one
of the local minima or involve very slow tunneling between
the two wells of the effective double-well potential. The qubit
can adjust adiabatically to such slow tunneling processes. It is
worth mentioning here that when λ is the largest energy scale
in the Hamiltonian, the approximations of this section and
Sec. III B are both valid, and either one of the two approaches
can be used to answer any given question.

D. Semiclassical calculation

A semiclassical calculation can go as follows (with alterna-
tive semiclassical calculations found in [10,13,15]): The five
different variables x, p, σx , σy , and σz are treated as classical
variables whose dynamics obeys the Hamiltonian in Eqs. (1)
and (2), without the hats. These variables obey the constraint
C = σ 2

x + σ 2
y + σ 2

z = 1. One can therefore find the ground
state relatively easily by minimizing the Hamiltonian under
this constraint. Minimizing the function H̃ = H − µC, with
µ being a Lagrange multiplier, results in the set of equations

dH̃

dx
= mω2

0x + gσz = 0,

dH̃

dp
= p

m
= 0,

dH̃

dσx

= −�

2
− 2µσx = 0, (27)

dH̃

dσy

= −2µσy = 0,

dH̃

dσz

= −ε

2
+ gx − 2µσz = 0,

which are to be solved under the constraint σ 2
x + σ 2

y + σ 2
z = 1.

The first four equations lead to x = −gσz/(mω2
0), p = 0, µ =

−�/(4σx), and σy = 0. The constraint gives σx = ±√
1 − σ 2

z .
One is therefore left with the equation

− ε

2
− g2σz

mω2
0

± �σz

2
√

1 − σ 2
z

= 0, (28)

which can be reexpressed as

− ε

�
−

(
2g2

mω2
0�

± 1√
1 − σ 2

z

)
σz = 0. (29)

This equation cannot be solved in closed form, in general.
However, one can make some general statements about the
solution (see Fig. 2). For the plus sign [Fig. 2(a)], the second
term in Eq. (29) is a monotonically decreasing function that
approaches +∞ when σz → −1 and approaches −∞ when
σz → 1. There is therefore one solution to the equation in that
case. It turns out that this solution does not correspond to the
ground state (a fact that can be seen as simply a result of
comparing the energies of the different solutions). The ground
state is obtained when using the minus sign. In this case,
there are three possibilities: The first possibility is to have
2g2 < mω2

0�. In this case [Fig. 2(c)], we find that the second
term in Eq. (29) is a monotonically increasing function that
approaches −∞ when σz → −1 and approaches +∞ when
σz → 1. There is therefore only one solution to Eq. (29). The

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 2. (Color online) Graphical solution of Eq. (29) (left) and the
associated effective potentials from Sec. III C (right) in the different
possible cases. The horizontal lines in the left panels represent the
first term in Eq. (29), and the function f (σz) is the second term in
the equation. The circles mark the stable solutions of Eq. (29), and
the dots in the right panels mark the minima in the effective potential
of Sec. III C [i.e., Eq. (17)]. The magenta stars in panels (e) and
(f) mark an unstable stationary point (i.e., a local maximum in the
effective potential). Panels (a) and (b) correspond to the plus signs
in Eqs. (17) and (29), and panels (c)–(h) correspond to the minus
signs. In panels (c) and (d), the coupling is below the critical point
(i.e., 2g2 < mω2

0Eq). In panels (e) and (f), the coupling is above the
critical point and ε is small. In panels (g) and (h), the coupling is
above the critical point and ε is large.

second and third possibilities for the solutions of Eq. (29)
occur when 2g2 > mω2

0�. In this case [Figs. 2(e) and 2(g)],
the second term in Eq. (29) develops a local maximum and
a local minimum between σz = −1 and σz = 1. Depending
on the value of ε, there can be either one or three solutions.
In particular, when ε = 0, the three solutions are given by
σz = 0, which turns out to be an unstable stationary point,
and σz = ±

√
1 − (mω2

0�/2g2)2, which are two degenerate
ground states. [It is easy to verify that this result agrees with
Eq. (23).]

One can intuitively understand the effect of having a finite
value of ε using the language of Sec. III C. For ε = 0, one
has an effective trapping potential for the variable x, and this
potential has the shape of a harmonic-oscillator-like single-
well potential when 2g2 < mω2

0� and a double-well potential
when 2g2 > mω2

0�. This situation explains the existence of
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one ground state when 2g2 < mω2
0� and two degenerate

ground states when 2g2 > mω2
0�. The effect of adding ε to the

problem is to create a tilt in the effective trapping potential;
a positive value of ε favors the negative-x solution (where
here we have in mind the ground-state solution). If the tilt is
weak, one has a global minimum in the deeper well and a local
minimum in the shallower well. If the tilt exceeds a certain
critical value, the shallow well is eliminated, and one recovers
a single-well potential.

We make a final note on the fact that we started the
calculation by raising a question related to the ground state
but found multiple solutions. The reason for this result is the
fact that Eq. (27) locates all stationary points, and not only
the ground state. The calculation therefore identifies both the
ground state and also high-energy stationary points that are
either dynamically unstable or dynamically stable but can still
relax to lower energy states.

E. Concluding remarks

We conclude this section with some remarks on the concep-
tual ideas and predictions of the different analytical methods.
The standard perturbation-theory procedure is well suited for
the weak-coupling limit. One can use it to systematically
obtain accurate approximations for the energy eigenstates and
dynamics of the system. The two approximations involving
one subsystem, either the qubit or the oscillator, adjusting
adiabatically to the slow dynamics of the other one are
based on the conceptual picture of the separation between
different time scales in the problem. As formulated here, they
involve only one level of approximation, in contrast to the
order-by-order expansion involved in perturbation theory. The
time-scale-separation-based approximations can, however, be
constructed formally as the lowest order approximation in
a systematic procedure sometimes referred to as adiabatic
elimination of fast variables [28] or Van Vleck perturbation
theory [29]. The semiclassical calculation treats the dynamical
variables classically and is at first sight not related to any
specific approximation related to the system parameters.

The weak-coupling approximation is suited for studying
the excitation-exchange dynamics between the qubit and
oscillator, but it does not give any hint of an instability in
the system. The main result of the adiabatically-adjusting-
oscillator approximation is the renormalized qubit gap. Apart
from the oscillatory behavior in the gap, the Gaussian-function
decrease at large λ/(h̄ω0) values is a signature of the strong
entanglement between the qubit and the oscillator in the
energy eigenstates. Nevertheless, no “critical point,” that is,
a point that is associated with a sudden change in any of the
effective qubit parameters (particularly the renormalized gap),
is obtained in that calculation. The adiabatically-adjusting-
qubit approximation predicts a reduced effective oscillator
frequency for weak coupling (and assuming that the qubit
is in its ground state), and a qualitative change in behavior
upon crossing the critical point

4λ2

h̄ω0Eq
= 1. (30)

Above the critical point, the energy eigenstates can
be highly entangled qubit-oscillator states. As in the

adiabatically-adjusting-oscillator approximation, the separa-
tion between neighboring energy levels is found to follow a
Gaussian-function dependence in the parameter λ/(h̄ω0). The
adiabatically-adjusting-oscillator and adiabatically-adjusting-
qubit approximations give different predictions regarding the
typical value of λ at which the Gaussian-function decrease
in energy separation starts: The former gives λ ∼ h̄ω0 and
the latter gives λ ∼ √

h̄ω0�. The semiclassical calculation
produces the same critical-point condition as the adiabatically-
adjusting-qubit approximation. Even though the semiclassi-
cal calculation naturally cannot produce any entangled-state
solutions, its results can be used as a starting point for
studying quantum superpositions of the different semiclassical
solutions.

One could understand the reason for the absence of a critical
point in the case of a high-frequency oscillator as having to do
with the pairing of energy levels. In this case, the energy levels
form pairs all the way from λ = 0 to λ → ∞. In contrast, in the
case of a high-frequency qubit the low-lying levels are equally
spaced for small values of λ. As λ increases, the energy levels
start approaching each other while remaining equally spaced,
a situation that corresponds to a decreasing renormalized
oscillator frequency. At the point where the energy levels are
expected to collapse to a single, highly degenerate energy level,
they pair up and the different pairs start moving away from each
other. The energy levels now resemble those of an increasingly
deep double-well potential. Thus the energy levels and energy
eigenstates exhibit two qualitatively different structures below
and above the critical point.

It is worth mentioning that the adiabatically-adjusting-
oscillator and adiabatically-adjusting-qubit approximations
start with similar, or symmetric, reasoning. The asymmetry
in the results is mainly due to the different dependence in the
energy levels and energy eigenstates of the fast subsystem on
the state of the slow subsystem. In the case of a fast qubit, the
qubit’s energy produces the largest effect on the slow oscillator.
In the case of a fast oscillator, the oscillator’s energy does not
depend on the state of the qubit, and only the changes in the
energy eigenstates lead to effective changes to the behavior of
the slow qubit.

One might wonder why the results of the semiclassical
calculation agree with those of the high-frequency-qubit
approximation. This agreement can be understood by noting
first that the oscillator has continuous variables, such that it
is conceivable that certain states will be described to a good
approximation using classical variables. (In this context one
can think of coherent states, which to a good approximation
behave classically.) When the qubit’s frequency is high, it
is also conceivable that the qubit’s state, which for example
follows the instantaneous ground state, can be described by
the classical variables that specify the instantaneous ground
state. In this case, one can expect the semiclassical calculation
to give good results. One can also use this argument to
conclude that a phase-transition-like singularity will occur in
the limit h̄ω0/Eq → 0, where the semiclassical calculation
can be expected to give exact results. In contrast, in the limit
of a low-frequency qubit, the dynamics will necessarily be
described by the coupling of two discrete quantum states, and
this situation cannot be described well using a semiclassical
approximation.
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In the context of discussing the phase-transition-like bi-
furcation in this system, it is worth mentioning a related
system with a true phase transition: the Dicke model [30].
If one replaces the single qubit by a large number of qubits
with equal values of Eq, all coupled to the same cavity
with the same value of λ, then by taking the appropriate
thermodynamic limit (N → ∞, λ2N = λ̃2) one finds a phase
transition between states similar to those just discussed [31].
The critical point is given by the condition 4λ̃2 = h̄ω0Eq, in
analogy to the critical-point condition discussed in Secs. III C
and III D. In contrast to the single-qubit case, however, the
phase transition now occurs regardless of the relation between
the qubit and oscillator frequencies. Note that the qubits
behave collectively as a single large spin in this case (and for
low-lying states a large spin behaves similarly to a harmonic
oscillator), such that the entire system can be approximated
by two coupled oscillators. Note also that the semiclassical
calculation arises naturally in this case: When the effective
spin has an infinite number of allowed states, it is natural to
make a classical approximation where fluctuations in the spin
are small compared to the total size of the available state space.

IV. NUMERICAL CALCULATIONS

In this section we present results of numerical calculations
that demonstrate the properties of the system in the different
parameter regimes. In particular, we perform calculations for
the resonant case, the high-frequency-oscillator case, and the
high-frequency-qubit case. We also vary the qubit bias ε, or
alternatively the angle θ , in order to analyze its effect on the
properties of the system.

A. Energy-level spectrum

In Fig. 3 we plot the energies of the lowest ten levels as
a function of the coupling strength λ in the resonant case
h̄ω0 = Eq. When ε = λ = 0, the ground state is nondegenerate
and each higher energy level is doubly degenerate. The
separation between the levels is h̄ω0, which is also equal
to Eq. As λ increases, the energy levels shift up or down,
and several avoided crossings are encountered. In the large-λ
limit, all energy levels become doubly degenerate (i.e., they
form pairs), including the ground state. The separation between
the different pairs of energy levels in this limit is again h̄ω0.
These results agree with the picture of the effective double-well
potential of Sec. III C. For a small but finite bias ε (i.e., small
but finite θ ) and small coupling strength λ, the overall energy
level structure is similar to that in the ε = 0 case, except that
the levels do not approach each other as much at the avoided
crossings. In the large-λ limit, there are no degeneracies: The
energy levels are separated by the alternate distances ε and
h̄ω0 − ε. This structure reflects the small asymmetry in the
double-well potential caused by a small tilt. For large θ (i.e.,
sin θ ∼ 1), all features in the spectrum are suppressed, except
for the overall decrease in the energy with increasing λ.

In order to examine the strong-coupling limit more closely,
in Fig. 4 we plot the energy-level separation between the lowest
two energy levels. The results agree with the predictions of
Eq. (13): deep in the strong-coupling regime, the separation
within the pairs of energy levels is given by E2n+2 − E2n+1 ∼
(λ/h̄ω0)n exp[−2(λ/h̄ω0)2] for ε = 0 and by ε for ε 	= 0.

FIG. 3. (Color online) Lowest ten energy levels in the resonant
case (i.e., when h̄ω0/Eq = 1). The rescaled energy En/(h̄ω0) with
n = 1, 2, . . . , 10 is plotted as a function of the rescaled coupling
strength λ/(h̄ω0). Panels (a), (b), and (c) correspond to θ = 0, π/6
and π/3, respectively [recall that θ = arctan(ε/�)].

In Fig. 5 we plot the energies of the lowest ten levels as a
function of λ in the case of a high-frequency oscillator (i.e.,
when Eq � h̄ω0). As explained in Sec. III B, if one considers
a pair of energy levels (e.g., the lowest two energy levels),
one has a modified effective qubit Hamiltonian. When λ = 0,
one recovers the bare qubit Hamiltonian. As λ increases, the
effective qubit gap � decreases and approaches zero in the
limit λ/(h̄ω0) → ∞. In Fig. 6 we plot the separations within
the four lowest pairs of energy levels. The effective gap follows
the shape of a Gaussian function times a Laguerre polynomial,
vanishing at the zeros of the Laguerre polynomial. As θ is
increased from zero (i.e., as the ratio �/ε decreases), the
dependence of the energy-level separation on the coupling
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FIG. 4. (Color online) The separation between the lowest two
energy levels in the resonant case (i.e., when h̄ω0/Eq = 1). In
(a), the rescaled energy separation (E2 − E1)/(h̄ω0) is plotted as
a function of the rescaled coupling strength λ/(h̄ω0). The blue,
solid line corresponds to θ = 0; the green, dashed line corresponds
to θ = π/6; and the red, dash-dotted line corresponds to θ =
π/3. In (b), the same data are plotted on a logarithmic scale
in order to make a comparison with the formula E2 − E1 = �

exp{−2(λ/h̄ω0)2} from Eq. (13): x and y on the axis labels refer
to the axis labels in (a). The black, dotted line shows the asymptotic
behavior of the above formula. The good fit between the blue and
black lines means that the numerical results agree with the results
of Sec. III. (We could extend the range of agreement by plotting
log[log(�/h̄ω0) − log(y)]; however, we are mostly interested in
demonstrating the agreement for large values of x, where this
modification would have little effect on the shape of the blue curve.)
Similar figures can be generated for the other values of h̄ω0/Eq.
However, we do not show such figures here.

strength becomes weaker (a phenomenon that can be seen by
comparing the different panels in Fig. 6). Note that the location
of the peaks does not change, but the effect of the gap on the
energy levels becomes smaller with increasing θ .

In Fig. 7 we plot the energies of the lowest ten levels as
a function of λ in the case of a high-frequency qubit (i.e.,
when Eq 
 h̄ω0). The most dramatic effects occur for θ = 0.
The ground-state energy remains essentially constant between
λ = 0 and λ = √

h̄ω0�/2. Beyond this point the ground-state
energy decreases indefinitely with increasing λ. Furthermore,
below the critical point, the low-lying energy levels approach
each other with increasing λ as if they were going to collapse
to one point, as would be expected for a vanishing ω̃0. Above
the critical point, the energy levels form pairs whose intra-
pair separation decreases with increasing λ. This scenario is
suppressed as θ is increased. There is no longer any sign of a

FIG. 5. (Color online) Lowest ten energy levels in the case of
a high-frequency oscillator; h̄ω0/Eq = 10. Here we only show the
results for θ = 0, because the overall appearance of the plots is
independent of θ . More details can be seen in Fig. 6.

critical point, and the energy-level separations are independent
of λ.

B. Squeezing, entanglement, and “cat-ness” in the ground state

One obvious possibility for the preparation of squeezed,
entangled, or Schrödinger-cat states in the case of ultrastrong
coupling is to have a ground state that exhibits one of these
unusual properties. With this point in mind, in this section we
analyze the oscillator’s squeezing and cat-ness as well as the
qubit-oscillator entanglement in the ground state for different
choices of system parameters.

As a first step, we plot the Q function and the Wigner
function of the oscillator’s state in the ground state of the
coupled system. The Q function is given by

Q(X,P ) = 1

π
〈X + iP |ρosc|X + iP 〉, (31)

where ρosc is the oscillator’s reduced density matrix af-
ter tracing out the qubit from the ground state, ρosc =
Trq{|�GS〉〈�GS|} with |�GS〉 being the ground state of the
combined system, and the bra and ket in this formula are
coherent states:

|α〉 = exp{αâ† − α∗â}|0〉. (32)

The state |0〉 represents the vacuum state with the oscillator in
its ground state. The Wigner function is given by

W (X,P ) = 1

2πh̄

∫ ∞

−∞

〈
X + 1

2
X′

∣∣∣∣ ρosc

∣∣∣∣X − 1

2
X′

〉
eiPX′

dX′,

(33)

where the bra and ket are now eigenstates of the position
operator x̂ (i.e., they are highly localized in configuration
space). The Q and Wigner functions for a sequence of λ values
are shown in Fig. 8.

Beyond the pictorial description shown here, a quantifier for
both the squeezing and catness of the oscillator’s state is the
set of two squeezing parameters in the x and p quadratures as
well as the product of the quadrature variances. (Note here that
the oscillator’s state is always mirror-symmetric with respect
to the x axis in the setup under consideration, giving 〈p̂〉 = 0.)
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FIG. 6. (Color online) The rescaled energy separation (E2n+2 −
E2n+1)/Eq within the lowest four pairs of energy levels [i.e., for n = 0
(blue, solid line), 1 (green, dashed line), 2 (red, dash-dotted line), and
3 (black, dotted line)], as a function of λ/(h̄ω0). As in Fig. 5, we
take h̄ω0/Eq = 10. In panels (a), (b), and (c), θ = 0, π/6, and π/3,
respectively. Note that the minimum value on the y axis is given by
sin θ and is different in the three panels.

After making the appropriate conversion into dimensionless
variables, these quantifiers are given by

sx = 4〈(X̂ − 〈X̂〉)2〉 − 1,

sp = 4〈(P̂ − 〈P̂ 〉)2〉 − 1,
(34)

K = 〈(x̂ − 〈x̂〉)2〉〈(p̂ − 〈p̂〉)2〉

= h̄2

4
(1 + sx)(1 + sp).

The parameter K is equal to h̄2/4 for a minimum-uncertainty
state (including both coherent and quadrature-squeezed states)
and is larger than that lower bound for any other state (in-
cluding Schrödinger-cat and qubit-oscillator entangled states).

(a)

(b)

(c)

FIG. 7. (Color online) Lowest ten energy levels in the case of
a high-frequency qubit; h̄ω0/Eq = 0.01. In panels (a), (b), and (c),
θ = 0, π/6, and π/3, respectively. The insets show enlarged views
of the weak-coupling and strong-coupling regions.

In Fig. 9 we plot the momentum-squeezing parameter as a
function of the coupling strength λ. For small values of λ, the
squeezing increases with increasing λ. However, as λ increases
further and the ground state becomes more and more entangled,
the squeezing is lost. The maximum achievable squeezing
is largest for the case of a high-frequency qubit, h̄ω0 � �.
Indeed, as explained in Sec. III C, the oscillator’s effective
potential becomes flatter and flatter as one approaches the
critical point, leading to a momentum-squeezing parameter
close to −1.

As |sp| increases, one can ask whether the oscillator’s
state is a quadrature-squeezed, minimum-uncertainty state or
whether it deviates from this ideal squeezed state. The answer
to this question can be obtained by analyzing the parameter
K . We do not show any plots of this parameter here. The
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FIG. 8. (Color online) The Q function (left) and the Wigner
function (right) of the oscillator’s state in the ground state of
the combined system. Here we take h̄ω0/� = 0.1 and ε = 0. The
different panels correspond to λ/(h̄ω0) = 0.5 (a,b), 2 (c,d), 2.5 (e,f),
and 3.5 (g,h). For clarity, we adjust the color scheme in the different
panels such that the highest point is always black. The red and yellow
colors also correspond to positive values. The white color corresponds
to zero value. The blue color represents negative values of the Wigner
function. The oscillator’s state goes from a coherent state with no
photons (i.e., the vacuum state) in the absence of coupling to a
squeezed state for low to moderate coupling strengths and then to
a qubit-oscillator entangled state for very strong coupling. Note that
the state in panels (g) and (h) is highly nonclassical, in particular
highly entangled, even though this fact cannot be seen in the Q and
Wigner functions.

main results are as follows: For the case ε = 0, K increases
slowly and remains close to h̄2/4 as sp increases, but near
the maximum squeezing point, K starts increasing rapidly and
diverges for λ/(h̄ω0) → ∞. For finite values of ε, K increases
slightly above h̄2/4, but then turns and goes back to h̄2/4 as sp

returns to zero in the strong-coupling limit.
We have seen that squeezed states are obtained for weak to

moderate coupling. The question now is what states we have
for strong coupling. The Q functions and the sp and K results
just discussed do not distinguish between a Schrödinger-cat
state in the oscillator and a qubit-oscillator entangled state.
The Wigner function has negative values for moderately
strong coupling [Figs. 8(d) and 8(f)], indicating nonclassical
states of the Schrödinger-cat type. (Note that quadrature-
squeezed states have nonnegative Wigner functions.) In

(a)

(b)

(c)

FIG. 9. (Color online) The momentum-squeezing parameter sp

as a function of λ/(h̄ω0) for h̄ω0/� = 0.1 (a), 1 (b), and 10 (c). The
different curves correspond to ε/� = 0 (blue, solid line), 0.1 (green,
dashed line), 0.5 (red, dash-dotted line), and 1 (black, dotted line).
The oscillator’s state becomes squeezed as the coupling strength λ

increases, but then it reaches a maximum and returns to zero as the
qubit and oscillator get entangled in the strong-coupling regime. Note
that the maximum achievable squeezing decreases with increasing
h̄ω0/�.

order to distinguish more clearly between Schrödinger-
cat states in the oscillator and qubit-oscillator entangled
states, we now analyze the entanglement properties in the
ground state.

The entanglement is quantified by the entropy S of the
qubit’s state. This quantity is obtained by calculating the
ground state of the combined system |�GS〉, using it to
obtain the qubit’s reduced density matrix in the ground state
ρq = Trosc{|�GS〉〈�GS|}, and then evaluating the entropy of
that state S = −Tr{ρq log2 ρq}.
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(a)

(b)

(c)

FIG. 10. (Color online) The qubit’s entropy S (which quantifies
the qubit-oscillator entanglement) in the ground state as a function
of λ/(h̄ω0). The ratio h̄ω0/� is 0.1 in (a), 1 in (b), and 10 in (c), and
the different curves in each panel correspond to ε/� = 0 (blue, solid
line), 0.1 (green, dashed line), 0.5 (red, dash-dotted line), and 1 (black,
dotted line). For ε = 0 the qubit-oscillator entanglement increases
from zero to one as λ is increased, regardless of the relation between
h̄ω0 and Eq. However, the entanglement drops rapidly (especially for
large values of λ) as ε is increased, that is, when the qubit is moved
away from the degeneracy point.

In Fig. 10 we plot the qubit’s ground-state entropy as a
function of λ. For ε = 0 the entropy increases from zero to
one as λ increases from zero to values much larger than all
other parameters in the problem. Demonstrating the fragility
of the entangled states in the large-λ limit, Fig. 10 shows that
the entanglement drops rapidly (especially for large values of
λ) when ε is increased.

FIG. 11. (Color online) The value of λ/� at which the qubit’s
ground-state entropy has the values 0.1 (red, lower solid line) and
0.5 (blue, upper solid line) plotted as a function of h̄ω0/� (on a
logarithmic scale). Here we take ε = 0. The straight lines are given
by the formulas λ = √

h̄ω0Eq/2 (dotted line) and λ = h̄ω0 (dashed
line), which we have obtained in Sec. III. For small values of h̄ω0/�,
the onset of entanglement occurs when λ = √

h̄ω0Eq/2. For large
values of h̄ω0/�, the onset of entanglement occurs when λ ∼ h̄ω0,
in agreement with the dependence explained in Sec. III.

By comparing Figs. 9 and 10, we can see that the rise in the
qubit-oscillator entanglement is correlated with the reversal of
the squeezing. One therefore goes from a squeezed state in
the oscillator to a qubit-oscillator entangled state. We do not
find any set of parameters where the ground state contains an
unentangled Schrödinger-cat state in the oscillator.

The numerical results show that the case h̄ω0 � Eq is most
suited for the preparation of squeezed states, as can be seen by
comparing the maximum achievable squeezing in the different
parameter regimes. The opposite case (h̄ω0 
 Eq) is most
suited for the preparation of entangled states, as seen from
the extreme fragility of these states for the case h̄ω0 � Eq.
In fact, all the nonclassical properties of the ground state are
suppressed as ε is increased from zero to values larger than �.
We shall return to this point in Sec. VI.

In Fig. 11 we examine the value of λ at which the qubit’s
ground-state entropy has the values of 0.1 and 0.5. These
curves serve as indicators for the onset of qubit-oscillator
entanglement, which is related to the instability encountered in
the semiclassical calculation. For a high-frequency qubit, the
sharp rise in entanglement occurs at λ = √

h̄ω0Eq/2, which
agrees with the instability condition of Secs. III C and III D.
For a high-frequency oscillator, the entanglement rises to
large values when λ ∼ h̄ω0, in agreement with the analysis
of Sec. III B.

V. PREPARATION AND DETECTION OF NONCLASSICAL
STATES THROUGH IN SITU PARAMETER AND STATE

MANIPULATION

We have seen in Sec. IV that oscillator-squeezed states and
qubit-oscillator entangled states can occur naturally as ground
states of the strongly coupled system. Schrödinger-cat states
in the oscillator, that is, not involving entanglement with the
qubit, do not occur as ground states of this system.

One method that has been proposed for the generation
of oscillator Schrödinger-cat states in the context of cavity
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QED [2] can be considered here as well: One prepares a
qubit-oscillator entangled state of the form

1√
2

(|α〉 ⊗ |q1〉 + |−α〉 ⊗ |q2〉), (35)

with |q1〉 and |q2〉 being any two orthogonal qubit states and
|±α〉 being coherent states of the oscillator with a large value
of |α|. One now measures the qubit in the (|q1〉 ± |q2〉)/

√
2

basis. Depending on the outcome of the measurement, the
state of the oscillator is projected into one of the two states

1√
2

(|α〉 ± |−α〉), (36)

each of which is a Schrödinger-cat state. Since the ground state
well above the critical point is approximately given by

1√
2

(|α〉 ⊗ |↓〉 + |−α〉 ⊗ |↑〉), (37)

with α = x0, this procedure could also be implemented in
the system under consideration. (We shall also give an
alternative procedure in the following.) Hence all three types
of nonclassical states that we consider in this paper can be
generated in principle.

One important question that arises in the case of strong
qubit-oscillator coupling is whether it is possible to detect
the nonclassical states in spite of the always-present strong
coupling. The answer is yes, in principle. An important point
to note in this context is that, as shown in Secs. III and IV, the
energy eigenstates of the system are approximately product
states when the qubit is biased far from the degeneracy point,
that is, for large values of ε. One could therefore say that,
for certain procedures, the qubit and oscillator can be made
to effectively decouple from each other by biasing the qubit
away from the degeneracy point.

We now discuss some possible procedures for the ex-
perimental observation of the different nonclassical states.
Since all three types of nonclassical states occur in the case
of a high-frequency, adiabatically adjusting qubit, we focus
on this case. An experiment could start by preparing the
ground state with the qubit biased at the degeneracy point.
Under suitable conditions, this step could be achieved by
biasing the qubit at the degeneracy point and letting the
system relax to its ground state. The state would then be
either a squeezed state or an entangled state, depending on
the coupling strength. One could then move the qubit away
from the degeneracy point for measurement purposes. If the
change is slow on the time scales of both the qubit and the
oscillator, the system will remain close to its ground state,
adiabatically following the bias-point shift. (There might be
substantial excitation out of the ground state in the double-well
regime where the separation between the lowest energy levels
is small; however, this situation will come to an end when the
double-well potential transforms into a single-well potential.)
If the system follows its instantaneous ground state during
the bias-point sweep, the nonclassical state will be lost. The
sweep therefore has to be fast at least compared to the period
of the oscillator. If the sweep is adiabatic with respect to
the qubit but fast with respect to the oscillator, the qubit will
follow the change adiabatically, while the oscillator will be
frozen in its initial state. In the case where the initial ground

state is a squeezed state, one would achieve the effective
qubit-oscillator decoupling while preserving the squeezed
state for the measurement step of the experiment. In the case
where the initial ground state is (approximately) the entangled
state given in Eq. (37), the qubit will end up in its ground state
at the final bias point, and this state will be independent of
the state of the oscillator. As a result, the oscillator is left in a
Schrödinger-cat state. If the bias-point sweep is fast on both
the qubit and oscillator time scales, both subsystems will be
frozen in their initial state during the sweep, such that one ends
up with an entangled state at the end of the sweep.

The state of the oscillator can be reconstructed using
Wigner tomography, which could be implemented following
the experiment in Ref. [21]. In that experiment, the oscillator
was put into resonance with a qubit that was initialized
in its ground state, and the excitation probability of the
qubit as a function of time was determined by performing
an ensemble of measurements. By decomposing the signal
into its Fourier components, it was possible to extract the
occupation probabilities of the different photon-number states.
When combined with the ability to shift the oscillator’s state
(through the application of a classical driving signal) before
the measurement, full Wigner tomography becomes possible.
In the case of a low-frequency oscillator, the transfer of
excitations between the qubit and the oscillator can be induced
by driving the red or blue sideband, as was done in the
experiment of Ref. [3]. Since, as already explained, the qubit
is effectively decoupled from the resonator when ε 
 �, the
exchange of excitations between the qubit and the oscillator
would not be efficient at the measurement bias point, which
seems to pose a dilemma for the proposed experiment. This
difficulty can be circumvented, however, by using a second,
weakly coupled qubit for measurement purposes.

Wigner tomography can be used to demonstrate squeezed
and Schrödinger-cat states in the oscillator. Qubit-oscillator
entangled states could be demonstrated by measuring the
correlation between the states of the qubit and oscillator.
Starting from the ground state, if the qubit is measured and
found to be in the state |↑〉, the oscillator must be in the state
|−α〉, with α = x0. If the qubit is found to be in the state |↓〉,
the oscillator must be in the state |α〉. The observation of only
these correlations, however, is insufficient for establishing the
presence of quantum correlations. For that purpose one has
to perform measurements in more than one set of bases. The
additional qubit basis can be (|↑〉 ± |↓〉)/√2: If the qubit is
found to be in the state (|↑〉 + |↓〉)/√2, the oscillator must
be in the state (|α〉 + |−α〉)/√2, and a similar relation holds
for the minus signs. The two states (|α〉 ± |−α〉)/√2 can be
distinguished through the fact that the state with the plus sign
contains only even photon numbers while the state with the
minus sign contains only odd photon numbers.

Finally, it should be noted that, after the bias-point sweep,
the resulting state would not be a stationary state and would
therefore have a time dependence. This time dependence
has to be taken into account in the measurement sequence.
Furthermore, when the qubit is biased such that it is in one
of the two σ̂z eigenstates, say |↑〉, the effective oscillator
potential will be shifted from the point x = 0, and one must
take into account this shift when analyzing the post-sweep
dynamics.
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VI. DECOHERENCE

We now turn to the question of how coupling to the
environment affects the prospects of preparing and observing
nonclassical states in the system under consideration. Follow-
ing a standard procedure [28,32,33], we analyze the effects
of the environment by first determining the energy eigenstates
of the system in isolation and then analyzing the relaxation
and dephasing rates that govern the decoherence between
the different energy eigenstates. For our purposes it will be
sufficient to consider Markovian decoherence dynamics.

Since our preparation of nonclassical states required biasing
the system at the point ε = 0, we focus on this case. In Secs. III
and IV, we found two types of low-lying energy eigenstates,
depending on the coupling strength. For small values of
λ, where the ground state involves a squeezed state of the
oscillator, the energy eigenstates are slightly modified from the
energy eigenstates in the absence of qubit-oscillator coupling.
For large values of λ, the low-lying energy eigenstates are
superpositions similar to that given in Eq. (37). As we shall
see in the following, there is a qualitative difference in how
these two types of states are affected by the environment.

The relaxation rate i→j and the dephasing rate ϕ,ij

involving states i and j are given by [28,32]

i→j = π

2
S

(
Ei − Ej

h̄

)
× |〈i|Â|j 〉|2,

(38)
ϕ,ij = πS(0) × |〈i|Â|i〉 − 〈j |Â|j 〉|2,

where S(ω) is the environment’s spectral density of the relevant
environment operator at frequency ω, and Â is the system
operator through which the system couples to the environment.

In order to go further with the analysis, we need to specify
the operator Â that describes the coupling to the environment;
there is one such operator for each decoherence channel.
It was mentioned in the introduction that the availability
of the tuning parameter ε can be seen as an advantage of
solid-state qubits in comparison to natural atoms in cavity
QED. However, this property also opens an additional channel
for noise and the environment to couple to the system. The
operator associated with the parameter ε is σ̂z, and the
coupling through this operator is typically the most detrimental
for superconducting qubit circuits. We therefore start by
considering this decoherence channel.

For coupling through the operator σ̂z, the relaxation and
dephasing rates are proportional to the quantities |〈i|σ̂z|j 〉|2
and |〈i|σ̂z|i〉 − 〈j |σ̂z|j 〉|2, respectively. For ε = 0 and small
λ (and avoiding the resonant case), the energy eigenstates
are approximately product states with the qubit being in an
eigenstate of σ̂x , to which we refer as |±〉, and the oscillator
having a certain number of photons n. These quantities are
then approximately given by the corresponding values for the
qubit states:

〈n,+|σ̂z|n′,−〉 = δn,n′ ,
(39)〈n,+|σ̂z|n′,+〉 = 〈n,−|σ̂z|n′,−〉 = 0.

These expressions suggest that the system relaxes with a
rate equal to that of the isolated qubit. The vanishing of the
dephasing rate in this approximation has the same origin as
its vanishing for an isolated qubit at the degeneracy point,

namely the fact that the energies are insensitive to variations
in ε to first order. This property points out an important
requirement for these expressions to be valid: The energy-level
separation must be much larger than the transverse fluctuations
in the Hamiltonian. These fluctuations, which are transverse
at the degeneracy point, are responsible for dephasing away
from the degeneracy point. As a result, in order to obtain the
degeneracy-point protection from dephasing, the energy-level
separation must be large compared to the dephasing rate when
the latter is calculated away from the degeneracy point:

ϕ,ij = πS(0) × |〈n,↑|σ̂z|n,↑〉 − 〈n′,↓|σ̂z|n′,↓〉|2
= 4πS(0). (40)

This parameter is typically of the order of 100 MHz, which
corresponds to a dephasing time of 10 ns. At the degeneracy
point, an isolated qubit is protected from this noise because
the qubit’s gap is typically larger than 1 GHz, and the
qubit-environment coupling is transverse to the qubit Hamil-
tonian. Similarly, mildly squeezed states (whose energy-level
separations are comparable to those of the simple product
states of the uncoupled system) should be protected from
dephasing caused by the weak, transverse coupling to the
environment. The situation is quite different for large values of
λ, where the low-lying states are highly entangled states with a
very small separation within an energy-level pair. For example,
when ε = 0, the lowest two energy eigenstates are given by

1√
2

(|α〉 ⊗ |↓〉 ± |−α〉 ⊗ |↑〉), (41)

with α = x0. The energy separation between these states can
be obtained from the WKB calculation of Sec. III C. When
ε exceeds this (possibly very small) energy separation, the
energy eigenstates are simply the product states |α〉 ⊗ |↓〉 and
|−α〉 ⊗ |↑〉. In order for the entangled states to be robust
against fluctuations in ε, their energy-level separation (at
ε = 0) must be much larger than the qubit’s dephasing rate of
about 100 MHz. Since the qubit and oscillator frequencies can
be of the order of 1 GHz, one could obtain an entangled ground
state that is separated from the first excited state by 100 MHz or
more. For example, taking λ = h̄ω0 = � = 1 GHz, we obtain
a qubit ground-state entropy of 0.85 and an energy separation
of 138 MHz. However, it would be highly desirable to reduce
the qubit decoherence rates, and in principle this should be
possible in the future using better materials and circuit designs.

Even though superconducting harmonic oscillators gener-
ally have much higher quality factors than superconducting
qubits, it is instructive to briefly discuss the effect of oscillator
decoherence. The oscillator typically couples to its environ-
ment through the same operator that describes its coupling
to the qubit. In the present problem, this operator is x̂, or
equivalently â + â†. In a free oscillator, the relevant matrix
element for purposes of determining the decoherence rates is
given by

〈n|(â + â†)|n′〉 = √
nδn−1,n′ + √

n + 1δn+1,n′ . (42)

Using the relations for the relaxation and dephasing rates in
Eq. (38), one finds that at low temperatures the effect of the
environment is to cause decay to the ground state through
the loss of photons; photons are lost one by one, with a rate
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that is proportional to the photon number. [Note that since
〈n|(â + â†)|n〉 = 0, no pure dephasing occurs in this system.]
The photon-loss process is described by the jump operator â. In
the strongly coupled qubit-oscillator system with the double-
well effective potential, the effect of the environment will be
drastically different from the simple photon-loss dynamics.
Since the effective potential near each one of the local minima
has the same shape as the free-oscillator potential, the energy
eigenstates |n,±〉 will be entangled states where the qubit is
either in the state |↑〉 or |↓〉, correlated with an oscillator wave
function that is given simply by the free-oscillator state |n〉
shifted to the left or right by a distance x0. One therefore finds
the matrix elements

〈n,±|(â + â†)|n′,±〉 = √
nδn−1,n′ + √

n + 1δn+1,n′ ,
(43)〈n,+|(â + â†)|n′,−〉 = 0.

The fact that the matrix elements in the first line coincide
with those of the free oscillator implies that the relaxation
rate will be equal to the free-oscillator relaxation rate. Note
that this process is no longer described by the jump operator
â, but rather by a properly shifted annihilation operator, â ±√

mω0/(2h̄)x0, depending on whether one is dealing with the
left or right well in the effective double-well potential. The
relaxation process does not change the state of the qubit, or any
superposition involving the left and right wells. Even though
the relation

〈n,±|(â + â†)|n,±〉 = 0 (44)

would suggest that no dephasing should occur between
the different energy eigenstates, the alternative basis with
localized states {|n,↑〉, |n,↓〉 gives

|〈n,↑|(â + â†)|n,↑〉 − 〈n,↓|(â + â†)|n,↓〉|2 = 8mω0

h̄
x2

0 .

(45)

This result implies that the coupling to the environment will
cause dephasing in any quantum superposition involving the
two wells, with a tendency to localize the wave function in
one of the wells. The rate of this process will be proportional
to the product of the environment’s power spectrum at zero
frequency and the combination of matrix elements as given
here. This last quantity is proportional to x2

0 , and it grows
indefinitely with increasing coupling strength. If we assume
that the power spectrum at zero frequency is comparable to
that at the oscillator frequency, the dephasing rate can be much
larger than the decay rate of the free oscillator because of the
largeness of the quantity |〈n,↑|(â + â†)|n,↑〉 − 〈n,↓|(â +
â†)|n,↓〉|2. For example, taking the oscillator’s decay rate to be
0.1–1 MHz and considering states where â and â† are of typical
size

√
5 (i.e., about five virtual photons in the ground state), we

find that the dephasing rate can be of the order of 10–100 MHz,
which is comparable to the σ̂z-mediated dephasing rate.

We finally discuss the question of temperature. We have
considered the possibility of preparing nonclassical states by
letting the system cool to its ground state. One must therefore
make sure that the energy-level separation between the ground
state and the first excited state is larger than the ambient
temperature. In superconducting circuits, the temperature is
typically around 20 mK, which can be converted to roughly 1

GHz in frequency units. The ground state must be separated
from the excited states by at least that amount in order to
achieve high-fidelity preparation of the ground state. Typical
qubit and oscillator frequencies are in the few-gigahertz range,
not much higher than typical temperatures. Squeezed ground
states in the oscillator should be separated from the excited
states by an energy comparable to the one present in the
uncoupled system, implying that the preparation of these states
should be possible. The entangled ground states that occur for
strong coupling, however, are separated from the first excited
states by energy gaps that decrease rapidly with increasing
qubit-oscillator coupling strength. If this energy gap becomes
smaller than the 1-GHz temperature level, one would not be
able to prepare the entangled ground state simply by letting
the system cool to such a state. However, one could let the
system cool to its ground state away from the degeneracy
point and then adiabatically shift the bias point to one with an
entangled ground state. Provided that the thermalization rate is
sufficiently low, it is not necessary to have a degeneracy-point
energy-level separation that is larger than the temperature.
The 1-GHz temperature level should therefore not be seen as
a fundamental obstacle to the preparation of entangled ground
states.

VII. CONCLUSION

We have analyzed the properties of a strongly coupled qubit-
oscillator system, focusing on the potential of this system for
the preparation of nonclassical states. These states include
squeezed states and Schrödinger-cat states of the oscillator, as
well as qubit-oscillator entangled states.

We have compared the predictions of four differ-
ent analytical approaches: the weak-coupling approxima-
tion, the adiabatically-adjusting-oscillator approximation, the
adiabatically-adjusting-qubit approximation, and the semi-
classical calculation. Each one of these four approaches
is well suited for analyzing the behavior of the system
under a certain set of assumptions. Thus the combination of
the results provides a rather thorough understanding of the
qubit-oscillator system in the regime of ultrastrong coupling.
We have also presented results of numerical calculations
that reinforce the results of the analytical derivations. These
results demonstrate the nonclassical properties of the energy
eigenstates, and especially the ground state, of the system.

We have discussed various possible experimental proce-
dures for the preparation and observation of nonclassical states.
All three types of nonclassical states that we discuss in this
paper can be prepared and detected in principle.

We have also analyzed the effect of coupling to the envi-
ronment on the system. We have shown that the decoherence
dynamics of the coupled qubit-oscillator system can be qualita-
tively different from the decoherence dynamics of the qubit or
oscillator in isolation. We have shown that nonclassical states,
particularly highly entangled states, are highly susceptible to
changes or fluctuations in the bias parameters. These results
lead to the conclusion that high degrees of control and low
noise levels will be required for the preparation of robust
nonclassical states in the ultrastrong-coupling regime.
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Note added in proof. Recently ultrastrong coupling between
a superconducting flux qubit and a coplanar waveguide
resonator has been demonstrated [34].
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APPENDIX: OSCILLATOR’S EFFECTIVE KINETIC
ENERGY IN THE CASE OF A HIGH-FREQUENCY QUBIT

In this appendix we briefly discuss the modification to the
oscillator’s kinetic energy in the case of a high-frequency
qubit (see Sec. III C). One could perform the calculation by
considering only the kinetic-energy term, without considering
the specific form of the trapping potential (i.e., by using the
completely delocalized momentum eigenstates as a basis for
the calculation). Such a calculation, however, turns out not to
lead to simple, transparent results. We therefore consider the
corrections that one would need to add to the kinetic-energy
term in the effective oscillator Hamiltonian starting from the
eigenstates of the free-oscillator Hamiltonian.

The eigenstates of the Hamiltonian Ĥho can be expressed
in the position basis as

|k〉 =
∫

dxψk(x)|x〉. (A1)

Taking into account the high-frequency, adiabatically adjusting
qubit, and for definiteness taking the case of the qubit’s ground

state, one can modify these eigenstates as follows:

|k̃〉 =
∫

dxψk(x)|x〉 ⊗ |g(x)〉

=
∫

dxψk(x)
∑
k′

ψ∗
k′(x)|k′〉 ⊗ |g(x)〉, (A2)

where |g(x)〉 has the same meaning as |gx〉 from Sec. III C. One
can now obtain the correction to the kinetic-energy term as

〈k̃| p̂2

2m
|l̃〉 − 〈k| p̂2

2m
|l〉

=
∫ ∫

dx1dx2

∑
k′l′

ψ∗
k (x1)ψk′(x1)

×ψ∗
l′ (x2)ψl(x2)〈k′| p̂2

2m
|l′〉(〈g(x1)|g(x2)〉 − 1). (A3)

The factor between parentheses represents the relative
correction to the kinetic-energy term in the Hamiltonian. This
factor can be estimated as

〈g(x1)|g(x2)〉 − 1 = cos

(
ϕ(x1) − ϕ(x2)

2

)
− 1

≈ − [ϕ(x1) − ϕ(x2)]2

8

∼
(

g(x1 − x2)

Eq

)2

∼ h̄g2

mω0E2
q

. (A4)

In deriving this expression we have taken the case ε/� � 1
(for which the relative correction is maximum) and taken x to
be of the order of the characteristic oscillator length. By com-
paring this expression to the relative correction in the potential-
energy term found in Sec. III C [i.e., g2/(mω2

0Eq)], one can see
that the kinetic-term correction is negligible when h̄ω0 � Eq.
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