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State transfer in static and dynamic spin chains with disorder
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We examine the speed and fidelity of several protocols for state or single excitation transfer in finite spin chains
subject to diagonal and off-diagonal disorder. We find that, for a given chain length and maximal achievable
interspin exchange (XY ) coupling strength, the optimal static spin-coupling protocol, implementing the fastest
state transfer between the two ends of the chain, is more susceptible to off-diagonal (XY coupling) disorder, as
compared to a much slower but robust adiabatic transfer protocol with time-dependent coupling strengths.
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I. INTRODUCTION

Faithful transfer of quantum states between physical qubits
of an integrated quantum register is one of the important
prerequisites for scalable quantum computation. Typically,
qubit-qubit interactions are short range and implementing
quantum logic gates between qubits located at distant sub-
registers would involve interconnecting them via quantum
channels, or wires [1], which may consist of arrays of coupled
quantum dots [2,3] or superconducting qubits [4–6], atoms in
optical lattices [7,8], or other realizations of spin chains.

Quantum channels of permanently coupled spins would
require no dynamical manipulations during the state trans-
fer, but might be susceptible to noise and imperfections.
Conversely, dynamically manipulated networks can be more
robust with respect to certain kinds of disorder, but are more
involved, requiring time-dependent external control. Here we
reconsider critically several protocols for achieving efficient
and dependable—ideally perfect—state transfer in disordered
spin chains subject to physically constrained maximally
achievable interspin coupling rates. The present work is an
extension of our earlier studies [2,3] of perfect state transfer
to more realistic scenarios with the aim of quantifying and
neutralizing the influence of static (or slowly changing) noise
inevitably present in any imperfect physical realization of the
spin chain resulting in diagonal and off-diagonal disorder.

After outlining the model, we examine the speed and
reliability of several state transfer protocols first for ideal and
then for noisy spin chains, followed by conclusions.

II. THE MODEL

The Hamiltonian for a spin chain of length N has a general
form [9]

H = 1

2

N∑
j=1

hj σ̂
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(1)

where σ̂
x,y,z

j are the Pauli spin operators at position j , hj

determines the energy separation between the spin-up and
spin-down states playing the role of the local “magnetic
field,” and Jj is the nearest-neighbor spin-spin interaction
which can be static or time dependent. From now on we
set the anisotropy parameter � = 0; Eq. (1) reduces then to
the Hamiltonian of the XX model, which is isomorphic to

the Hubbard Hamiltonian for spinless fermions or hard-core
bosons [9],

H =
N∑

j=1

hj â
†
j âj −

N−1∑
j=1

Jj (â†
j âj+1 + â

†
j+1âj ), (2)

where â
†
j (âj ) is the particle creation (annihilation) operator

at site j with energy hj and Jj now plays the role of tunnel
couping between adjacent sites j and j + 1.

Our objective here is to transfer an arbitrary single-qubit
state |ψ〉 = α|0〉 + β|1〉 between the two ends of the spin
chain. To that end, we assume that all the spins can be prepared
in the “ground” state |↓〉j ≡ |0〉j and at a certain initial time
tin = 0 the first site of the chain is initialized to |ψ〉1. Ideal
transfer would imply that at a well-defined final time tout the
last site of the chain is in state |ψ〉N , up to a certain relative
phase factor between the amplitudes of states |0〉N and |1〉N
(see later in this article).

Since the Hamiltonian (1) [or (2)] preserves the num-
ber of spin [or particle] excitations, we need to consider
only the zero |0〉 ≡ ∏N

j=1 |0〉j and single-excitation | j〉 ≡
σ̂+

j |0〉 [â†
j |0〉] subspaces of the total Hilbert space. Then

the system initially in state |�in〉 = α|0〉 + β|1〉 evolves in
time as |�(t)〉 = U (t)|�in〉 = α|0〉 + β

∑N
j=1 Aj (t)| j〉, where

U (t) = T exp[ 1
ih̄

∫ t

0H (t ′)dt ′] is the (time-ordered, T ) evo-
lution operator. Apparently, only the states in the single-
excitation subspace {| j〉} evolve in time with the corre-
sponding amplitudes Aj (t) ≡ 〈 j |U (t)|1〉, while the vacuum
(or ground) state |0〉 remains unchanged. Thus perfect state
transfer would be achieved for the amplitude |AN (tout)| = 1,
provided its phase φ = arg(AN ) is fixed and known, φ = φ0,
and therefore can be amended.

We may quantify the performance of the scheme by
the transfer fidelity Fψ = 〈ψ |ρN |ψ〉, where ρN ≡ Tr �N
(|�〉〈�|) = (1 − |β|2|AN |2 )|0〉〈0| + |β|2|AN |2|1〉〈1| + αβ∗
A∗

N |0〉〈1| + α∗βAN |1〉〈0| is the reduced density operator
for the N th site of the chain [10]. We then have
Fψ = |α|2 + |β|2(1 − 2|α|2)|AN |2 + 2|α|2|β|2|AN | cos(φ ),
while the mean transfer fidelity F , obtained by averaging Fψ

over all possible |ψ〉 and after compensating for φ0, is given
by [10]

F = 1

2
+ |AN |2

6
+ |AN | cos(φ − φ0)

3
. (3)

1050-2947/2010/81(4)/042307(6) 042307-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.042307


PETROSYAN, NIKOLOPOULOS, AND LAMBROPOULOS PHYSICAL REVIEW A 81, 042307 (2010)

Thus, for the amplitude |AN | = 1 but completely random
phase φ, the fidelity is equal to the classical value of F = 2/3,
while for |AN | = 0 we have F = 1/2 corresponding to a
random guess of the qubit state |0〉 or |1〉.

III. STATE TRANSFER PROTOCOLS

The state or excitation transfer in a spin chain described by
Hamiltonian (1) [or (2)] is mediated by the nearest-neighbor
couplings Jj . Clearly, in any practical realization of the
spin chain there will be some upper limit for achievable
coupling strength, Jmax ≡ max{Jj }, determined by physical or
technological constraints. On a fundamental level, this follows
from the fact that the energy of the system is bounded, which,
in turn, limits the speed of the state transfer, tout >∼ N/Jmax

[11,12].

A. Noiseless spin chains

Let us first recall the key facts pertaining to an idealized spin
chain with no disorder. We assume uniform on-site energies
hj := 0 ∀ j ∈ [1, N], while the individual couplings Jj can
be freely controlled, subject to the constraint Jj � Jmax.

(a) Perhaps conceptually the most straightforward approach
to the state transfer between the two ends of the chain is to
apply a sequence of SWAP operations implemented by π pulses
between the pairs of neighboring sites. To that end, with all
the couplings Jj set initially to zero, we switch on J1 for time
t1 = π/(2J1), then J2 for time t2 = π/(2J2), etc., until the N th
site is reached. At the end of each step, the corresponding
state amplitude is Aj (tj−1) = −i sin(Jj−1tj−1)Aj−1(tj−2) =
(−i)j−1 for j = 2, . . . , N . If all the couplings’ strengths
can be pulsed to the maximal possible Jmax, and there
are N − 1 steps, the total transfer time is tout = (N −
1)π/(2Jmax) � (π/2)(N/Jmax) (N � 1) with the final state
amplitude AN (tout) = (−i)N−1, that is, |AN (tout)| = 1 and
φ0 = (−π/2)(N − 1) (mod 2π ).

(b) We next consider a spin chain with static couplings Jj

arranged in an appropriate way to facilitate the perfect state
(or excitation) transfer. By “static” we mean that during the
transfer the coupling strengths are fixed, but to initiate (at time
tin) and to terminate (at time tout) the transfer process at least J1

and JN−1 should be quickly switched on and off, respectively.
(Alternatively the state initialization of the first site at tin and
state retrieval from the last site at tout should be accomplished
very fast, on a time scale that is short compared to J−1

1,N−1.)
Among the many [1]—in fact, infinitely many [13]—possible
static protocols for perfect state transfer, we focus here on the
one proposed in [2,14], and much earlier [15] and in a different
context (that of population transfer in laser-driven multilevel
atomic or molecular systems [16]), which was shown to be the
optimal one [12] in terms of the transfer time. In this so-called
spin-coupling protocol, the coupling constants are arranged
according to Jj = J0

√
(N − j )j , which makes the system

formally analogous to a spin-J in a magnetic field.1This leads

1Recall from the theory of angular momentum that a spin-J
particle in a constant magnetic field exhibits nondispersive (Larmor)
precession about the field direction. With the quantization direction

to the equidistant energy spectrum λk = 2J0k − J0(N + 1),
with k = 1, 2, . . . , N , and consequently perfectly periodic
oscillations of the single excitation between the two ends of
the chain, according to

Aj (t) =
(

N − 1
j − 1

)1/2

[−i sin (J0t)]
(j−1) cos (J0t)

(N−j ).

Thus, at time tout = π/(2J0) the amplitude of the final
state is AN (t) = [−i sin(J0tout)]N−1 = (−i)N−1. Note that the
strongest coupling is in the center of the chain: at j = N/2 for
N even, JN/2 = 1

2J0N ≡ Jmax; or at j = (N ± 1)/2 for N odd,
J(N±1)/2 = 1

2J0

√
N2 − 1 � Jmax (N � 1). Hence, the transfer

time expressed through Jmax is given by tout = (π/4)(N/Jmax),
which is twice as short as that for the sequential SWAP

protocol.
(c) The last protocol that we consider here is the adiabatic

state or excitation transfer between the two ends of the
spin chain using slowly varying couplings Jj [3,17]. This
is analogous to the stimulated Raman adiabatic passage
(STIRAP) techniques [18] extended to multilevel atomic or
molecular systems [19]. Assume that N is odd and the
individual couplings Jj can be selectively and indepen-
dently manipulated. In the single-excitation subspace, the
Hamiltonian (1) [or (2)] has the eigenstate

|�(0)〉 = 1√
N0

[J2J4 . . . JN−1|1〉 + (−1)J1J4 . . . JN−1|3〉
+ · · · + (−1)J J1J3 . . . JN−2|N〉], (4)

J ≡ 1

2
(N − 1),

with eigenvalue λ(0) = 0, which is conventionally called the
coherent population trapping (or dark) state [18,19]. Thus the
amplitude of initial state A1 is proportional to the product
of all the even-numbered couplings, while the amplitude
of final state AN is given by the product of all the odd-
numbered couplings, divided by the normalization parameter
N0 = (J2J4 · · · JN−1)2 + · · · + (J1J3 . . . JN−2)2. Therefore, if
all the even-numbered couplings are switched on first, the
zero-energy state (4) would coincide with the initial state |1〉.
This is then followed by adiabatically switching on all the odd-
numbered couplings, while the even-numbered couplings are
switched off, which will result in state (4) rotating toward the
final state |N〉. Assuming that these two families of couplings
are described by common shape functions, J2, J4, . . . , JN−1 =
Jeven(t) and J1, J3, . . . , JN−2 = Jodd(t), the amplitudes of the
initial and the final states are given by

A1(t) = [Jeven(t)]J√
N0(t)

, AN (t) = (−1)J
[Jodd(t)]J√

N0(t)
,

with N0(t) = ∑J
n=0[Jodd(t)]2n[Jeven(t)]2(J−n). Thus, complete

state or excitation transfer between the two ends of the chain

along an axis perpendicular to the magnetic field direction, the
matrix elements for the transitions |J , m〉 ↔ |J ,m + 1〉 between the
neighboring magnetic substates (m = −J , . . . ,J ) are proportional
to

√
(J − m)(J + m + 1). Setting formally N = 2J + 1 and j =

J + m + 1 leads to the coupling constants Jj ∝ √
(N − j )j , as in

the text.
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FIG. 1. (Color online) Dynamics of single-excitation transfer in a spin chain of length N = 25 for (a) sequential SWAP, (b) spin-coupling, and
(c) adiabatic protocols. The top panels correspond to noiseless spin chains, σh = σJ = 0, yielding complete excitation transfer |AN (tout)|2 = 1
for all cases (a), (b), and (c). The graph above (c) shows the time dependence of couplings Jeven and Jodd normalized to Jmax [cf. Eq. (5)].
The bottom panels illustrate the results for noisy chains with σh = σJ = 0.15Jmax averaged over 1000 independent realizations, leading to
〈|AN (tout)|2〉 � 0.2, 0.42, and 0.96 for (a), (b), and (c), respectively. Time is measured in units of J−1

max and the evolution terminates at the
corresponding tout.

can be achieved by applying first the Jeven couplings and then
the Jodd couplings, the two sets of couplings partially overlap-
ping in time. At time tout, when Jodd(tout) � Jeven(tout) � 0,
the amplitude of the final state is AN (tout) = (−1)J , that
is, |AN (tout)| = 1 and φ0 = (−π )(N − 1)/2 (mod 2π ). Of
course the adiabatic following of the zero-energy eigenstate (4)
holds true if, during the transfer process, the nonadiabatic tran-
sitions out of |�(0)〉 are negligible, which requires that the rate
of change of the coupling strengths be small compared to the
energy separation between |�(0)〉 and all the other eigenstates.
We can estimate the energy separation between the eigenstates
in the vicinity of maximal overlap between the even and
odd couplings, Jeven � Jodd = J . The energy spectrum of the
chain with homogeneous coupling, Jj = J∀j ∈ [1, N − 1],
is λk = −2J cos[kπ/(N + 1)] [2,3]. The eigenstate with zero
energy λ(0) is the one with k = (N + 1)/2 ≡ k0, and the nearest
eigenstates with indices k = k0 ± 1 have energies λk0±1 =
±2J sin[π/(N + 1)] � ±2Jπ/N (N � 1). With J <∼ Jmax,
the excitation transfer time tout, being roughly equal to the
couplings’ switching time, should then satisfy the condition
tout � N/(2πJmax).

To summarize the results for noiseless spin chains, the
transfer time tout for all three protocols scales with the
number of sites N and the maximal intersite coupling Jmax

as (N/Jmax). The fastest is the spin-coupling protocol with
tout = (π/4)(N/Jmax). It is followed by the sequential SWAP

protocol, for which tout � (π/2)(N/Jmax). Finally the slowest

is the adiabatic protocol tout � C(N/Jmax), with C � 8 being
a safe estimate2 for smooth coupling functions that we use:

J
odd
even

(t) = Jmax
1

2

[
1 ± erf

(
t − 1

2 tout ± 2σt√
2σt

)]
, (5)

with σt = 1
8 tout. Note that the phase of the final-state amplitude

for all three protocols is given by φ0 = (−π/2)(N − 1)
(mod 2π ), which should be compensated for after the transfer.
The single-excitation transfer for all three protocols is
illustrated in the top panels of Fig. 1.

B. Disordered chains

Employing numerical simulations, we now examine the
robustness of the previously described state transfer protocols

2We note that the smallest value of C leading to good adiabatic
following is quite sensitive to the choice of the coupling functions
Jodd(t) and Jeven(t) and their overlap. (For the particular choice of
the coupling functions, even for C = 5 we attain good adiabatic
following with excitation transfer |AN (tout)|2 >∼ 0.98.) Moreover, with
increasing the chain length N , min(C) slowly grows with N , because
the latter determines not only the energy separation 2Jπ/N of the
nearest eigenstate from the zero-energy eigenstate but also the number
of further detuned eigenstates to which nonadiabatic transitions could
occur, albeit with even lesser probabilities.
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in spin chains with varying degrees of disorder. We note that for
the spin-coupling scheme, related analysis has been performed
in [20].

The physical origin of disorder may be twofold: (i) fabrica-
tion imperfections of the particular system realizing the spin
chain, and (ii) noise of the external controls, which is assumed
to vary slowly enough on the time scale of state transfer tout, as
is typically the case in most experimental situations pertaining
to coupled quantum dots [21], superconducting qubits [22],
or atoms [23]. We shall distinguish diagonal and off-diagonal
disorder. The diagonal disorder corresponds to random on-site
energies, or equivalently the local magnetic fields hj , normally
distributed around 〈hj 〉 = 0 with variance σ 2

h (without loss of
generality, we assume that the energies of the first and the last
sites of the chain are exempt from disorder, h1 = hN = 0, since
otherwise the state |ψ〉 would dephase even before and after
the transfer). The off-diagonal disorder introduces randomness
in the intersite coupling strengths Jj → Jj (1 + δJj ), where
δJj are normally distributed around 〈δJj 〉 = 0 with variance
σ 2

J . Consistent with the aforementioned description, we treat
the disorder as static during each realization of the numerical

experiment for the particular protocol, but completely uncor-
related between different realizations. The results presented
below are obtained by averaging over many (typically 1000)
independent realizations.

Figure 1 compares the single-excitation transfer for the
three protocols (a), (b), and (c) in ideal and disordered spin
chains of length N = 25. In the noiseless chain we have perfect
transfer |AN (tout)|2 = 1, while in the presence of diagonal
and off-diagonal disorder characterized by standard deviations
σh = σJ = 0.15Jmax, the averaged transfer probabilities are
reduced to 〈|AN (tout)|2〉 � 0.2, 0.42 and 0.96 for the cases of
(a), (b) and (c), respectively. Thus, among the three transfer
protocols, the sequential SWAP scheme is the most susceptible
to noise, especially to the off-diagonal disorder which leads
to deviations of the subsequent pulse areas from the required
value of π ; in this particular example, the off-diagonal disorder
alone is responsible for at least 70% reduction of the transfer
probability (see also the insets in Fig. 2). The spin-coupling
scheme is somewhat more robust with respect to noise,
with both diagonal and off-diagonal disorder comparably
contributing to the reduction of the transfer probability by
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FIG. 2. (Color online) Averaged (over 1000 realizations) fidelity 〈F 〉 in noisy spin chains for (a) sequential SWAP, (b) spin-coupling, and
(c) adiabatic protocols. The top panel shows the dependence of 〈F 〉 on the diagonal disorder σh with σJ = 0 (upper plots) and on the off-diagonal
disorder σJ with σh = 0 (lower plots), for the chains of lengths N = 15, 25, 51. The inset in each graph displays the corresponding transfer
probabilities 〈|AN (tout)|2〉. The bottom panel shows 〈F 〉 versus both σh with σJ in spin chains with N = 25. σh,J are measured in units of Jmax.
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about 20% and 40%, respectively. Finally, the adiabatic
transfer scheme is very tolerant to noise, as far as the transfer
probability is concerned, but is quite slow; in fact it can tolerate
even more disorder at the expense of slowing it further down
(equivalent to increasing C).

The probability of excitation transfer alone is not enough
to fully characterize the state transfer, since, for example,
|AN (tout)|2 = 1 but completely random phase φ amounts to
classical information transfer only, and the resulting fidelity
for quantum state transfer is merely F = 0.66. We therefore
quantify the performance of the system subject to varying
levels of noise using fidelity 〈F 〉 of Eq. (3) averaged over many
independent realizations of protocols (a), (b), and (c). Figure 2
summarizes the results of our numerical simulations for the
chains of lengths N = 15, 25, and 51. Unsurprisingly, the
longer the chain the lower the fidelity of the state transfer is. We
find that, for the same values of diagonal σh and/or off-diagonal
σJ disorder, the sequential SWAP scheme yields lower fidelity
than the spin-coupling scheme. Moreover, both schemes are
somewhat more susceptible to the off-diagonal disorder. The
behavior of the fidelity for the adiabatic transfer scheme is,
however, profoundly different: it is very robust with respect
to the off-diagonal disorder σJ , but much more sensitive to
the diagonal disorder σh: already for σh >∼ 0.1Jmax the fidelity
〈F 〉 � 0.66 (but then decreases slowly with increasing σh).
This is despite the fact that the transfer probability 〈|AN (tout)|2〉
remains above 0.9 up to σh,J <∼ 0.25Jmax; that is, the excitation
transfer is very efficient up to large values of both diagonal and
off-diagonal disorder, as attested in the insets of Fig. 2(c). The
adiabatic transfer protocol is so sensitive to diagonal disorder
because it is slow: during the long transfer time tout even little

noise in the on-site energies σh accumulates to large random
phase φ spread over σφ ∼ σhtout.

IV. CONCLUSIONS

We have critically examined the state and excitation transfer
in disordered spin chains using the sequential SWAP, spin-
coupling, and adiabatic transfer protocols. We have found
that, depending on the character of disorder, namely, the
diagonal disorder corresponding to random on-site energies (or
magnetic fields) or off-diagonal disorder leading to variations
in intersite couplings, either the fast spin-coupling protocol
or the slow adiabatic transfer protocol is more suitable for
high-fidelity transfer of quantum states between the two ends
of the spin chain.

The results obtained pertain to spin chains of fixed,
moderate lengths. We note some of the recent relevant studies
of disordered spin chains of varying lengths which elucidated
the bounds on information transfer speed [24] and distance [25]
and possible ways for improvement [26,27].

Reliable quantum channels, based on, for example, spin
chains, are indispensable for achieving scalable and efficient
quantum information processing in solid-state systems with
fixed qubit positions and finite-range interqubit interactions.
Our results therefore have important implications for attaining
scalability in such systems.
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