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Bipartite quantum channels using multipartite cluster-type entangled coherent states
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We propose a particular encoding for bipartite entangled states derived from multipartite cluster-type entangled
coherent states (CTECSs). We investigate the effects of amplitude damping on the entanglement content of this
bipartite state, as well as its usefulness as a quantum channel for teleportation. We find interesting relationships
among the amplitude of the coherent states constituting the CTECSs, the number of subsystems forming the
logical qubits (redundancy), and the extent to which amplitude damping affects the entanglement of the channel.
For instance, in the sense of sudden death of entanglement, given a fixed value of the initial coherent state
amplitude, the entanglement life span is shortened if redundancy is increased.
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I. INTRODUCTION

In an early stage of quantum mechanics, entanglement
was mainly related to fundamental questions [1]. More
recently, due to seminal articles on dense coding [2] and
teleportation [3], it began to be recognized as a resource for
performing communication tasks. Since then, entanglement
and its properties have been deeply investigated and several
applications in many contexts have been found. Most of the
knowledge built so far concerns the bipartite scenario, but
it is well known that a full understanding of multipartite
entanglement is required if we want to make the most of
quantum correlations. One of the main differences between
bipartite and multipartite entanglement is the existence of
inequivalent classes of entanglement [4]. One-way quantum
computing is a particular instance of application of multipar-
tite entanglement [5]. This computation model is based on
local measurements on an initially prepared highly entangled
multipartite state called a cluster state [6]. Several schemes
for cluster state generation have then been suggested, using
different physical settings. We may cite proposals in linear
optics and spontaneous down-conversion [7], cavity QED [8],
hybrid cavity QED with linear optics [9], trapped ions [10],
and superconducting qubits [11], just to name a few.

A natural development in the study of entangled states was
the introduction of nonorthogonal states for the subsystems,
in special bosonic coherent states. It is important to remark
that such entangled states had previously appeared in the rich
quantum optics literature [12]. After the work of Sanders [13],
such states began to be referred to as entangled coherent states
(ECSs). In [14], the entanglement properties of the Bell-type
ECSs, also called the quasi-Bell states, were discussed. A
remarkable fact pointed out in [14] is that some of those
quasi-Bell states are in fact maximally entangled in C2 ⊗ C2,
irrespective of the amplitude of the coherent states. More
recently, similar properties belonging to multipartite ECSs
have been discussed [15]. It is also important to mention that
encoding in finite-dimensional spaces in terms of coherent
states has also been previously considered for teleportation
[16,17], Bell inequalities violation [18], and entanglement
purification [19].

Different constructions of cluster-type ECSs were indepen-
dently proposed in [20] and [21]. The construction presented

in [21] has motivated the appearance of many generation
schemes in the literature, specially in cavity QED [22] and
the traveling optical fields domain [23]. Quite recently, appli-
cations of cluster-type entangled coherent states (CTECSs)
for quantum communication have also appeared [24,25].
Given this strong interest in the CTECSs, we consider here
a special codification procedure where a CTECS involving
2p subsystems is regarded as an encoded bipartite entangled
state; that is, it is shared by two parties. We then analyze the
bipartite entanglement shared between the two parties, as well
as the reliability for teleportation of the established quantum
channel.

The article is organized as follows. In Sec. II we describe
a particular encoding using CTECSs which leads to the
establishment of a quantum channel shared by two parties.
In Sec. III we consider amplitude damping in this channel. In
Sec. IV we follow the approach presented in [16] to define an
orthonormal basis useful for entanglement analysis. In Sec. V
we analyze the bipartite entanglement and also the fidelity
of teleportation. In Sec. VI we summarize our results and
conclude.

II. LOGICAL QUBITS ENCODING

We consider now a special instance of multimode ECSs,
which were introduced as CTECSs in [21]. Such states may
be considered as belonging to the 4p-dimensional space state
of qubits (C2)⊗2p, and they may be written as

|CTECS2p〉 = N1/2(|β〉⊗p|β〉⊗p − zp|β〉⊗p|−β〉⊗p

− zp|−β〉⊗p|β〉⊗p − z2
p|−β〉⊗p|−β〉⊗p

)
, (1)

where β is the complex amplitude of a coherent state (β is an
eigenvalue of the bosonic annihilation operator), N = 1

2 [2 +
(1 − z2

p)c2]−1 is the normalization constant, zp = (−i)p is a
relative phase, and c is the overlap,

〈βp|−βp〉 = e−2|β|2p ≡ c, (2)

between |±βp〉 ≡ |β〉⊗p = |±β, . . . ,±β〉 ≡ |±β〉1 ⊗ . . . ⊗
|±β〉p. With this definition, we have introduced a
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quasiorthogonal encoded logical basis which allows us to
rewrite (1) as

|CTECS2p〉 = N1/2(|βp, βp〉 − zp|βp,−βp〉
− zp|−βp, βp〉 − z2

p|−βp,−βp〉), (3)

which we will assume to be a bipartite entangled state shared
by two parties.

Physically speaking, each party possesses p subsystems,
and these p pairs of subsystems are collectively described
by the CTECSs. In the next sections, we will analyze the
usefulness of the bipartite state (3) as a quantum channel shared
by two parties, under a more realistic situation where damping
had turned it into a mixed state. As a last remark about (3), it is
easy to see that for p even the normalization constant does not
depend on the coherent amplitude β. However, the amplitude
β is relevant in another respect. Depending on the choices
for the coherent amplitude β and the number of pairs p in the
encoding, the logical ket basis may be effectively considered as
mutually orthogonal for any practical purposes. For instance,
if |β| = 3 and p = 1 or if |β| = 1 and p = 9, the overlap is
just about 10−8. Such an interplay between p and β, which are
completely independent quantities, leads to interesting results
when damping is included. This is the subject we are now
going to treat.

III. AMPLITUDE DAMPING

In any real situation one might expect to find complicated
decoherence mechanisms which are in general not easy
to model. Two important decoherence mechanisms are, for
instance, the amplitude and phase damping [26], usually
treated within the master equation framework [27]. As a first
account of decoherence, we will consider here the effects of the
amplitude-damping mechanism acting on the quantum channel
(3). Each subsystem will suffer the action of the coupling to a
vacuum environment. This may be modeled via a beam-splitter
transformation [28],

|β〉S |0〉E → |β√
η〉S |β

√
1 − η〉E, (4)

where S and E stand for system and environment, respectively,
η (transmissivity) is a real parameter ranging from zero to one,
and the kets refer to coherent or vacuum states. An example
of a physical situation which may be modeled by a beam-
splitter-type interaction is an optical field mode crossing an
optical fiber. The beam-splitter transmissivity in this case will
be an exponential energy loss during transmission through the
fiber, that is, η = e−λL, where λ is the fiber loss coefficient and
L the transmission distance [28]. From this example we then
note that η can be regarded as a physical parameter related
to the amplitude-damping process. Another example is given
by an electromagnetic cavity field mode initially prepared in a
coherent state. For nonideal cavities, photon leakage through
the walls follows a time evolution given by η = e−κt , where κ

represents the photon leakage rate.
Following the general description (4), we now study the

effect of damping, characterized by the exponential function
τ ≡ η = e−κt , on the initial state (3). Due to the interaction
with the environment, the initially pure quantum channel
(3) evolves to a mixed state. Turning back to the beam-
splitter transformation given previously (4), we trace out the

environment and obtain its action on each partition of (3):

|βp〉〈β ′
p| → c̃|β̃p〉〈β̃ ′

p|, (5)

where c̃ = cr2
, |β̃p〉 = |βp

√
τ 〉, τ = e−κt and r is a normalized

parametrization of time, related to τ as r = √
1 − τ [16].

Hence, it follows that for t = 0 we have τ = 1 and r = 0,
while for t → ∞, τ → 0 and r → 1. It is important to note
that the same result would have been obtained from the usual
master equation approach [16,18].

Therefore, the ideal quantum channel (3) under the action
of the amplitude-damping mechanism evolves to the following
mixed ECS:

�(t) = N
(|β̃p, β̃p〉〈β̃p, β̃p| − z∗

pc̃|β̃p, β̃p〉〈β̃p,−β̃p|
− z∗

pc̃|β̃p, β̃p〉〈−β̃p, β̃p| − z2
pc̃2|β̃p, β̃p〉〈−β̃p,−β̃p|

− zpc̃|β̃p,−β̃p〉〈β̃p, β̃p| + |β̃p,−β̃p〉〈β̃p,−β̃p|
+ |zp|2c̃2|β̃p,−β̃p〉〈−β̃p, β̃p| + z∗

pc̃|β̃p,−β̃p〉
× 〈−β̃p,−β̃p| − zpc̃|−β̃p, β̃p〉〈β̃p, β̃p|
+ |zp|2c̃2|−β̃p, β̃p〉〈β̃p,−β̃p| + |−β̃p, β̃p〉〈−β̃p, β̃p|
+ z∗

pc̃|−β̃p, β̃p〉〈−β̃p,−β̃p| − z2
pc̃2|−β̃p,−β̃p〉

× 〈β̃p, β̃p| + zpc̃|−β̃p,−β̃p〉〈β̃p,−β̃p| + zpc̃

× |−β̃p,−β̃p〉〈−β̃p, β̃p| + |−β̃p,−β̃p〉〈−β̃p,−β̃p|).
(6)

It is now easy to see that in the limit of r → 1 (infinite
time), state (6) becomes |0〉⊗p|0〉⊗p, completely losing its
entanglement. What is more interesting, though, is the fact
that depending on the values of the amplitude β and the
number of redundant physical qubits p, disentangling may
take place at finite times long before the channel is transformed
into |0〉⊗p|0〉⊗p. This is an example of the well-discussed
phenomenon of entanglement sudden death [29]. These results
will be shown in the next sections.

IV. ORTHONORMAL BASIS

The coherent state basis considered up to now is, strictly
speaking, formed by nonorthogonal states [see Eq. (2)]. For
evaluation of entanglement and fidelity of teleportation, it is
useful to span the system density operator on an orthogonal
basis. It is important to remark that there is no preferred
orthogonal basis to choose, because they all lead to the same
result [15]. In this work, we use the even and odd coherent
states [30] given by

|β±〉 = M
1/2
± (|β〉 ± |−β〉), (7)

where M± = 1
2 (1 ± e−2|β|2 )−1 are normalization constants.

For our purposes, we need the multimode generalization of
the even and odd coherent states [12],

|β±
p 〉 ≡ M

1/2
±,p(|βp〉 ± |−βp〉), (8)

where M±,p = 1
2 (1 ± c)−1 are the normalization constants.

Please notice that the notation may induce a misinterpretation,
that is, |β±

p 〉 
= |β±〉⊗p. If the right definition (8) is kept in
mind, there will be no trouble hereafter. We can now define
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the orthonormal kets,

|β̃±
p 〉 ≡ M̃

1/2
±,p(|β̃p〉 ± |−β̃p〉), (9)

where M̃±,p = 1
2 (1 ± c1−r2

)−1. Although the basis is now
time-dependent, orthogonality is maintained at all times, even
for t → ∞ [18]. It is straightforward to show that the logical
qubits |±β̃p〉 can be written in terms of {|β̃+

p 〉, |β̃−
p 〉} as

|±β̃p〉 = ã|β̃+
p 〉 ± b̃|β̃−

p 〉, (10)

where ã = 1
2M̃

−1/2
+,p , and b̃ = 1

2M̃
−1/2
−,p , with |ã|2 + |b̃|2 = 1.

We are now finally in position to obtain the matrix
representing the quantum channel (6) in the orthonormal basis
{|β̃+

p , β̃+
p 〉, |β̃+

p , β̃−
p 〉, |β̃−

p , β̃+
p 〉, |β̃−

p , β̃−
p 〉}. One can show that

it reads

�(t) =

⎛
⎜⎜⎜⎝

ã4 −ipã3b̃c̃ −ipã3b̃c̃ −ã2b̃2c̃2

−ipã3b̃c̃ ã2b̃2 ã2b̃2c̃2 ipãb̃3c̃

−ipã3b̃c̃ ã2b̃2c̃2 ã2b̃2 ipãb̃3c̃

−ã2b̃2c̃2 ipãb̃3c̃ ipãb̃3c̃ b̃4

⎞
⎟⎟⎟⎠ (11)

for p even and

�(t) = ã2b̃2

1 + c2

×

⎛
⎜⎜⎜⎜⎝

ã2

b̃2 (1 + c̃2) 0 0 2ipc̃

0 (1 − c̃2) 0 0

0 0 (1 − c̃2) 0

−2ipc̃ 0 0 b̃2

ã2 (1 + c̃2)

⎞
⎟⎟⎟⎟⎠

(12)

for p odd. Now, it is interesting to notice that the case p odd is
special because it is an instance of X states. These states have
some peculiar properties that are discussed in [31].

With these matrices, we now proceed to analyze the
bipartite entanglement content and the extent to which the
quantum channel may be considered for teleportation.

V. ENTANGLEMENT STUDY

A convenient way to study bipartite entanglement is through
the concurrence. Once we have rewritten the state (6) in the
form (11) and (12), we may calculate the concurrence using
standard procedures. For even p, the matrix has in general no
null elements and then we must follow the general recipe [32]

C = max(0, λ1 − λ2 − λ3 − λ4), (13)

where the parameters λi (i = 1, . . . , 4) are the square roots
of the eigenvalues (in decreasing order) of the non-Hermitian
operator ��̃, written in the same basis (11), and

�̃ = (σy ⊗ σy)�∗(σy ⊗ σy) (14)

is the spin-flipped operator, �∗ being the complex conjugate of
(11). Performing the preceding calculations, the concurrence
for p even will read

C = 2ã2b̃2 max[0, c̃2 + 2c̃ − 1]. (15)

For odd p, the related matrix is much simpler (many zeros)
and we may easily obtain the concurrence from general results

r/rd

r/rd

|β|

|β|

C

C

FIG. 1. (Color online) Concurrence as a function of the renor-
malized time parameter r/rd and the initial coherent amplitude β for
p = 1 (top) and p = 10 (bottom).

found in [31]:

C = 2ã2b̃2

1 + c2
max[0, c̃2 + 2c̃ − 1]. (16)

We now plot the concurrence as a function of the initial
coherent amplitude β and the renormalized time parameter
r/rd , where rd = √

1 − e−1 is the normalized relaxation time
parameter. Please notice that this renormalized variable will
now take values in the interval [0, 1/rd ]. The concurrence
plots shown in Fig. 1 reveal the presence of the interesting
phenomenon entanglement sudden death (ESD) [29]. From
these plots, one can see that ESD happens for coherent
amplitudes greater than β about 0.7 (0.2), if the number
of physical qubits in the encoding of a logical qubit is
p = 1 (p = 10). On the contrary, for sufficiently small values
of β, implying nonorthogonality between |β〉 and |−β〉,
complete disentanglement takes place only for r → 1/rd

(infinite times). In fact, it goes to a multimode vacuum state,
as already discussed. On the other hand, the greater the initial
amplitude β, the sooner the ESD. By comparing both plots in
Fig. 1, one can also see the interesting fact that for weak
coherent state amplitudes (close to vacuum), the increase
of the redundancy p may be used to increase entanglement
in the channel. Such compromise between redundancy and
amplitude of the coherent states will become even more evident
now that we discuss the fidelity of teleportation.

The maximal fidelity of teleportation which may be
obtained by employing an usual bipartite state as a quantum
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channel is given by [33]

Fmax = 2fmax + 1

3
, (17)

where fmax is the fully entangled fraction [34]

fmax = max
|ψ〉

〈ψ |�|ψ〉, (18)

with the maximum taken over all bipartite maximally entan-
gled states. Here we follow the same procedure described
in [34] to calculate fmax. We write the quantum channel (6)
in the so-called magic basis |mi〉, which in our case is a
(time-dependent) encoded basis constituted by the multimode
even and odd coherent states:

|m1〉 = |	+
β,p〉 = 1√

2
(|β̃+

p , β̃+
p 〉 + |β̃−

p , β̃−
p 〉),

|m2〉 = i|	−
β,p〉 = i√

2
(|β̃+

p , β̃+
p 〉 − |β̃−

p , β̃−
p 〉),

(19)
|m3〉 = i|
+

β,p〉 = i√
2

(|β̃+
p , β̃−

p 〉 + |β̃−
p , β̃+

p 〉),

|m4〉 = |
−
β,p〉 = 1√

2
(|β̃+

p , β̃−
p 〉 − |β̃−

p , β̃+
p 〉).

Thus, fmax is simply the highest eigenvalue of the real part of
the quantum channel state, when it is written in the encoded
magic basis, and reads

fmax = 1

4
[1 + 4ã2b̃2c̃2 +

√
(ã2 − b̃2)4 + 16ã2b̃2c̃2] (20)

r/rd

r/rd

|β|

|β|

Fmax

Fmax

FIG. 2. (Color online) Maximal fidelity of teleportation as a
function of the renormalized time parameter r/rd and the initial
coherent amplitude β for p = 1 (top) and p = 10 (bottom).

when p is even, and

fmax = 1

2(1 + c2)
[1 − 2ã2b̃2(c̃ − 1)2 + c̃2] (21)

when p is odd.
We may now analyze the maximal fidelity of teleportation

attainable with the quantum channel (6) as a function of β and
r/rd . In Fig. 2, we observe that for sufficiently small values
of β, the quantum channel stays useful for teleportation for all
times under the action of damping (Fmax > 2/3 ∀ r/rd ).

It might be interesting to analyze more closely the role
played by the redundancy p when the amplitude β is fixed.
In Fig. 3 we show the maximal fidelity of teleportation for
two specific values of β. It is remarkable that depending on
r/rd , which essentially measures the duration of the action of
damping on the channel, it is more advantageous to have a large
or a small number of subsystems in the encoding (redundancy).
This number clearly depends on β and r/rd . For example, let us
consider the first plot (top) in Fig. 3, where we have considered
β = 0.5. One can see that for small values of r/rd , it is more
advantageous to have an encoding with high redundancy p,
while for high degradation of the channel (big values of r/rd ),
a small redundancy is more appropriate. However, it should
be stressed that r/rd cannot be made arbitrarily small in our

0.0 0.5 1.0
0.5

2/3

1.0

Fmax

r/rd

0.0 0.5 1.0
0.5

2/3

1.0

Fmax

r/rd

FIG. 3. (Color online) Maximal fidelity of teleportation as a
function of the renormalized time parameter r/rd for initial coherent
amplitudes β = 0.5 (top) and β = 1.0 (bottom), with p = 1 (red solid
line), p = 2 (green dashed line), and p = 10 (blue dot-dashed line).
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analysis due to the fact that the treatment of dissipation is
performed in the Markovian approximation.

It is worth noticing that, for odd p, one may prove
using (16), (17), and (21) that C = max[0, 2fmax − 1] =
max[0, 3Fmax − 2]. In this case, the fidelity of teleportation
can be seen as a kind of entanglement detector in the sense that
any entangled state leads to a fidelity that cannot be achieved
classically (Fmax > 2/3). Interestingly enough, this result is
also valid for the usual Werner state of two qubits [35]. In
spite of this, the fidelity of teleportation no longer works as an
entanglement detector for even p. For example, by considering
p = 2, β = 0.5, and r/rd = 1.1, one obtains C ≈ 0.028 > 0
(entangled state) and Fmax ≈ 0.65 < 2/3 (useless for quantum
teleportation). Therefore, there are now situations where the
channel is an entangled state, but it yields a fidelity of
teleportation lower than the best classical strategy. Such a
situation also appears in other quantum systems, for example,
in the evolved quantum state of two dipole-dipole coupled
qubits under the action of spontaneous emission [36].

VI. CONCLUSION

We have studied the use of a particular bipartition of a
CTECS as an entangled quantum channel after the action of
amplitude damping. We have constructed an orthonormal basis

with multimode even and odd coherent states which allowed
us to analyze the entanglement of the encoded state. We have
also verified that for ranges of values of the amplitude β

and the redundancy p, entanglement goes abruptly to zero,
indicating the occurrence of ESD. Moreover, in order to find
the extent to which such a quantum channel is reliable for
quantum information tasks, we have analyzed the maximum
fidelity of teleportation. We have also found that the coherent
state amplitude and the redundancy in the logical encoding
(controlled parameters) may be suitably chosen to increase the
fidelity of teleportation of that quantum channel.
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