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Controlling the transport of single photons by tuning the frequency of either one or two cavities in
an array of coupled cavities
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We theoretically study how to control transport, bound states, and resonant states of a single photon in a
one-dimensional coupled-cavity array. We find that the transport of a single photon in the cavity array can be
controlled by tuning the frequency of either one or two cavities. If one of the cavities in the array has a tunable
frequency, and its frequency is tuned to be larger (or smaller) than those of other cavities, then there is a photon
bound state above (or below) the energy band of the coupled-cavity array. However, if two cavities in the array
have tunable frequencies, then there exist both bound states and resonant states. If the frequencies of the two
cavities are chosen to be much larger than those of other cavities, and the hopping couplings between any two
nearest-neighbor cavities are weak, then a single photon with a resonant wave vector can be trapped in the region
between the two frequency-tunable cavities. In this case, a quantum supercavity can be formed by these two
frequency-tunable cavities. We also study how to apply this photon transport control to an array of coupled
superconducting transmission line resonators.

DOI: 10.1103/PhysRevA.81.042304 PACS number(s): 03.67.Hk, 03.65.−w, 05.60.Gg

I. INTRODUCTION

In a quantum network based on photons [1], the nodes can
be regarded as information-processing stations (e.g., quantum
computers), while the links between any two nodes are
provided by the information carriers (e.g., photons). Due to the
high-speed transmission and low dissipation in optical fibers,
photons are considered to be excellent information carriers
(both for classical and quantum transmissions).

In recent years, with the development of nano-optics,
numerous photonic information-processing proposals have
been implemented by using on-chip solid-state devices, such
as semiconducting microcavities (e.g., Ref. [2]) and super-
conducting transmission line resonators (e.g., Refs. [3–8]).
Therefore, how to realize on-chip single-photon devices
(e.g., Refs. [9–11]) has become an increasingly important
research area. For example, single-photon switches (e.g., Refs.
[12–16]), which control single-photon transport at will (e.g.,
Refs. [17,18]), play an important role in this area.

Coupled-cavity arrays (CCAs) [19–30] are one type of
photonic system that has been proposed to process photonic
quantum information. Compared with the usual waveguides,
which have only a linear dispersion relation, the nonlinear
dispersion of CCAs can result in the emergence of bound states
of single photons. Many proposals have been put forward to
realize quantum switches in CCAs, which could be used to con-
trol single-photon transport. For example, the reflection and
transmission of single photons in a one-dimensional coupled
resonator waveguide can be controlled by a tunable two-level
system inside one of the cavities [14]. Moreover, controllable

single-photon transport in a one-dimensional CCA with a
tunable hopping coupling has recently been studied [16].

In this paper, we study another approach to realize con-
trollable single-photon transport in a one-dimensional CCA,
considering either one frequency-tunable cavity (FTC) or two
FTCs. This work is motivated by recent mostly experimental
results on frequency-tunable transmission line resonators (e.g.,
Refs. [31–37]), where the frequencies of the resonators can
be changed by varying either the boundary condition of
the electromagnetic wave or the magnetic flux through the
SQUIDs used to construct the transmission line resonators.
In contrast to Refs. [14,27], here the photon transport is
controlled by tuning the frequency of the cavity, and there is no
additional two-level system, placed inside one of the cavities,
to control photon transport. Therefore, this proposal seems to
be simpler and easier to implement experimentally than those
in Refs. [14,27]. By changing the frequency of either one FTC
or two FTCs, the reflection and transmission of a single photon
in the coupled-cavity array can be controlled. We also study
the photon bound states and photon resonant states [38] in this
coupled-cavity array.

For the coupled-cavity array with one frequency-tunable
cavity, if the frequency of the frequency-tunable cavity is larger
than that of other cavities, there is a bound state above the
energy band of the corresponding bosonic tight-binding model
[39]; while the bound state is below the energy band when the
frequency of the frequency-tunable cavity is smaller than that
of other cavities.

For the CCA with two FTCs, we find that there exist bound
states around the FTCs. Moreover, when the frequencies of the
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two FTCs are much larger than those of other cavities and the
hopping couplings between any two nearest-neighbor cavities
are weak, for resonant wave vectors, a single photon can be
in resonance with the CCA and then remain trapped in the
cavities between the two FTCs. A single photon in resonance
with the CCA behaves as a photon inside a supercavity [27].

This paper is organized as follows: In Sec. II, we study
controllable single-photon transport and bound states in a
CCA with one FTC. In Sec. III, we study controllable
single-photon transport, bound states, and resonant states
in the CCA with two FTCs. In Sec. IV, we present a
possible experimental implementation of our proposal using
superconducting transmission line resonators. A summary is
given in Sec. V.

II. COUPLED CAVITY ARRAY WITH ONE
FREQUENCY-TUNABLE CAVITY

As schematically shown in Fig. 1, we consider a one-
dimensional coupled-cavity array, which consists of a chain
of N cavities. We assume that N is a large enough number,
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FIG. 1. (Color online) Schematic diagram of a one-dimensional
coupled-cavity array (CCA). (a) A lattice model for the CCA. Each
disk represents a cavity (labeled by the integer below each dot) with
frequency shown right above each cavity. The larger disk (located at
the site j = 0) represents the frequency-tunable cavity. (b) The energy
levels of the CCA. (c) Coupled superconducting transmission line
resonator array. The central cavity located at the site j = 0 is shown in
orange. This central cavity has a tunable frequency (1 + λ)ωc, where
λ is the detuning parameter used to control the transport of single
photons through this coupled-cavity array. If λ > 0 (λ < 0), then there
is a photon bound state above (below) the energy band of the coupled-
cavity array. Thus, the central cavity acts as a tunable “impurity.” The
arrows on the far left (right) schematically indicate the incoming
(outgoing) photons. The blue dots represent the remaining cavities
which are not shown here. The integers below each cavity label each
one of them.

so periodic boundary conditions become reasonable. For
specificity, and without loss of generality, we assume that N

is an odd number. The distance between any two nearest-
neighbor cavities is d0. The cavities, except the central one
(i.e., the 0th cavity), have the same resonant frequency ωc. The
central 0th cavity has the resonant frequency (1 + λ)ωc, where
λ is used to characterize the detuning between the 0th cavity
and other identical cavities, which we assume can be varied for
controlling the photon transport properties in this system. The
frequency of the 0th cavity can be larger (λ > 0) or smaller
(λ < 0) than those of other cavities. Any two nearest-neighbor
cavities are coupled via a homogeneous hopping interaction
of strength J . The Hamiltonian (with h̄ = 1) of the CCA reads

Ĥ
(1)
CCA = λωcâ

†
0â0 +

N−1
2∑

j=− N−1
2

ωcâ
†
j âj

−
N−1

2∑
j=− N−1

2

J (â†
j âj+1 + â

†
j+1âj ), (1)

where âj (â†
j ) is the annihilation (creation) operator of the

j th cavity. The superscript “1” in Ĥ
(1)
CCA denotes that the CCA

contains one frequency-tunable cavity. The first two terms in
Eq. (1) are the “free Hamiltonian” of the CCA, while the
last term in Eq. (1) represents the hopping interaction, with
strength J , between any two nearest-neighbor cavities. For
instance, the term â

†
j âj+1 means that a photon is annihilated

in the (j + 1)th cavity and another photon is created in the j th
cavity. Hereafter, we only use

∑
j instead of the sum shown

in Eq. (1). Since the frequency (1 + λ)ωc of the 0th cavity
should be nonnegative, then λ � −1. For λ = 0, this Hamil-
tonian (1) reduces to the usual bosonic tight-binding (btb)
Hamiltonian

Ĥbtb = ωc

∑
j

â
†
j âj − J

∑
j

(â†
j âj+1 + â

†
j+1âj ), (2)

which can be diagonalized as

Ĥbtb =
∑

k

�kâ
†
kâk (3)

by using the discrete Fourier transform

âk = 1√
N

∑
j

exp(ikjd0) âj (4)

and the periodic boundary conditions, where

�k = ωc − 2J cos(kd0) (5)

is a nonlinear dispersion relation, which is an energy band.
Hereafter, the distance d0 between two neighboring cavities is
scaled as unity, and k = 2πnk/N (with −N/2 < nk � N/2)
are the photon wave vectors.

A. Controllable single-photon transport for one
frequency-tunable cavity

Since the total excitation number operator N̂ ≡ ∑
j â

†
j âj of

the CCA is a conserved observable, that is, [N̂, Ĥ
(1)
CCA] = 0, it

is reasonable to restrict our discussions to the single-particle
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excitation subspace for studying single-photon transport. A
general state in the single-excitation subspace can be written as

|ω〉 =
∑

j

cj |1j 〉, (6)

where the state |1j 〉 = |0〉 ⊗ · · · ⊗ |1〉j ⊗ · · · ⊗ |0〉 repre-
sents the case when the j th cavity has one photon, while other
cavities have no photons. Also, cj is the probability amplitude
of the state |1j 〉. Using the discrete scattering method studied
in Ref. [14] and the eigenequation Ĥ

(1)
CCA|ω〉 = ω|ω〉, we

obtain

−J (cj+1 − cj−1) = [ω − (1 + λδj0)ωc]cj , (7)

where δj0 is the Kronecker delta function.
Without loss of generality, we assume that a single photon

with frequency ω = �k is injected from the left side of the
CCA, and then the photon probability amplitudes cj are
assumed to have the following solutions:

cj =
{
eikj + re−ikj , j < 0,

seikj , j > 0,
(8)

where r and s are the photon reflection and transmission
amplitudes, respectively. Here “i” denotes the imaginary unit,
except when specified otherwise. It is easy to check that Eq. (8)
is the solution of Eq. (7) when j �= 0. Connecting Eq. (7) at
j = 0 with the continuity condition, 1 + r = s, for the wave
function, we obtain the photon reflection amplitude

r = λωc

2iJ sin k − λωc

, (9)

which leads to the photon reflection coefficient

R(k, λ) ≡ |r|2 = (λωc)2

4J 2 sin2 k + (λωc)2
. (10)

The reflection coefficient has three symmetric relations:
R(k, λ) = R(−k, λ), R(π/2 − k, λ) = R(π/2 + k, λ), and
R(k, λ) = R(k,−λ). In Fig. 2, the reflection coeffici-
ent R(k, λ), as a function of the detuning parameter λ, is plotted
for k = 0.01, π/8, π/4, and π/2. It can be seen from Fig. 2
that the photon reflection coefficient R(k, λ) can be tuned from
zero to one by changing the detuning parameter λ.

B. Bound states for one frequency-tunable cavity

A bound state may be formed when a particle is scattered
by a localized potential. In the present model, the on-site extra
energy λωc acts as a potential. Therefore, a priori, this system
may have bound states. First, we give a qualitative analysis of
the bound states in the CCA. We now apply the discrete Fourier
transform, defined in Eq. (4), to express the Hamiltonian (1)
in wave vector space as follows:

Ĥ
(1)
CCA =

∑
k

�kâ
†
kâk + λωc

N

∑
k,k′

â
†
kâk′ . (11)

In terms of the Hamiltonian in Eq. (11), we obtain the
Heisenberg’s equation of motion for the operator âk ,

i ˙̂ak = �kâk + λωc

N

∑
k′

âk′ . (12)
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FIG. 2. (Color online) The photon reflection coefficient R(k, λ)
vs the detuning parameter λ of the 0th cavity plotted for k =
0.01, π/8, π/4, and π/2, where the parameters are taken in units of
ωc, and J/ωc = 0.01. Recall that the on-site detuning of the central
(0th) frequency-tunable cavity is λωc. A relatively small amount of
detuning can make the reflection coefficient near one.

For small λ, we can assume that i ˙̂ak = ωkâk . By introducing
the operator b̂ ≡ ∑

k âk , we obtain

âk = λωc

N

1

ωk − �k

b̂. (13)

Making the summation

b̂ =
∑

k

âk = λωc

N

∑
k

1

ωk − �k

b̂, (14)

then the frequencies ωk are determined by the equation

λωc

N

∑
k

1

ωk − �k

= 1. (15)

Equation (15) can be solved numerically. In Fig. 3, the func-
tions f1(ω) = λωc

∑
k[1/(ω − �k)]/N and f2(ω) = 1 are

plotted for λ > 0 and λ < 0. The values of ω corresponding to
the crossing points of both curves f1(ω) and f2(ω) are the solu-
tions ωk that satisfy Eq. (15). Obviously, when λ > 0 there is a
bound state above the energy band, while for λ < 0 there is
a bound state below the energy band. These bound states are
shown as black circles in Fig. 3.

In the following, we analytically study the bound states.
Since we choose the frequency-tunable cavity as the coordinate
origin, the Hamiltonian (1) of the system is symmetric around
the 0th cavity. The eigenstates of the Hamiltonian (1) have
either symmetric or asymmetric parities. For the asymmetric
case, we have the relation cj = −c−j , which implies c0 = 0.
Therefore, the frequency change of the frequency-tunable
cavity will not affect the asymmetric eigenstates. For the
symmetry case, we assume the following solution:

cj = A |µ|j , (16)

042304-3



LIAO, GONG, ZHOU, LIU, SUN, AND NORI PHYSICAL REVIEW A 81, 042304 (2010)

0.8 1 1.2
−3

−1

1

3

ω/ωc

f1(ω)

f2(ω)

0.8 1 1.2
−3

−1

1

3

ω/ωc

f1(ω)

f2(ω)

(b)

(a) λ=0.2

f i
(ω

)
f i

(ω
)

λ=−0.2

FIG. 3. (Color online) The functions f1(ω) = λωc

∑
k[1/(ω −

�k)]/N (blue) and f2(ω) = 1 (red) vs the scaled frequency ω/ωc.
The values of ω corresponding to the crossing points between the
curves for the functions f1(ω) and f2(ω) are the frequencies ωk . In
other words, the ωks satisfy f1(ωk) = f2(ωk). Here, the parameters are
chosen as N = 21, ωc = 1, and J/ωc = 0.01. Note that (a) and (b) use
λ = 0.2 and λ = −0.2, respectively, and this is their only difference.
Obviously, for λ = 0.2 (λ = −0.2), there is a bound state (shown as a
black circle) above (below) the energy band (0.98 < ω/ωc < 1.02).

where µ is a parameter introduced to describe the bound state
of the Hamiltonian (1).

Substituting the solution (16) into Eq. (7), we obtain

−Jµ2 + λωcµ + J = 0. (17)

Equation (17) has two solutions,

µ± = −λωc ±
√

4J 2 + (λωc)2

−2J
. (18)

When λ > 0, we choose the solution µ+; while for the
case λ < 0 we choose the solution µ−. The corresponding
eigenfrequencies are

ω± = ωc ±
√

4J 2 + (λωc)2. (19)

The relations ω+ > ωc + 2J and ω− < ωc − 2J mean that the
bound state is above and below the energy band, respectively,
as shown in Figs. 3(a) and 3(b). These analytical results are
consistent with our previous analysis in Eqs. (11)–(15) and
Fig. 3. Note that µ+(|λ|) = −µ−(−|λ|), so |cj |2 is the same
for the two bound states. In Fig. 4, we plot |cj |2 as a function
of the lattice parameter j . Figure 4 shows that a single photon
is mainly localized around the central (0th) frequency-tunable
cavity.
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FIG. 4. (Color online) Photon probability |cj |2 vs the location j

of the cavity. The cj s are introduced in Eq. (6). Other parameters
are taken as ωc = 1, |λ| = 0.2, and J/ωc = 0.01. In this case, since
|cj |2 is peaked at the cavity located at j = 0, then a single photon is
localized around the central (0th) frequency-tunable cavity.

C. Links to localized excitations in solids

Periodic solid-state systems exhibit bands. Adding local-
ized defects to a translationally invariant structure induces
localized states around those defects. In general, adding a
defect (i.e., anything that breaks translational symmetry, such
as an impurity or an interface) is enough to create gap states
outside the continuous bands. Thus, gap states outside the
bands are linked to localized states.

Figure 3 in this work is related to Fig. 9.9 on p. 395
of Madelung’s classic textbook [40] on solid-state physics.
Indeed, Eq. (9.37) in [40] is related to Eq. (15) in our paper.
The links between them is that a defect added to a periodic
structure tends to localize excitations around the defect, and
this localized state corresponds to gap states.

III. COUPLED CAVITY ARRAY WITH TWO
FREQUENCY-TUNABLE CAVITIES

As schematically shown in Fig. 5, we now consider the
case when there are two FTCs in the CCA. These two FTCs
are located in the −dth and the dth cavities, respectively. The
Hamiltonian can now be written as

Ĥ
(2)
CCA = λ1ωcâ

†
−d â−d + λ2ωcâ

†
d âd + ωc

∑
j

â
†
j âj

− sJ
∑

j

(â†
j âj+1 + â

†
j+1âj ), (20)

where λ1 and λ2 are, respectively, used to describe the
frequency of the −dth and the dth cavities, and J is the hopping
coupling strength between any two nearest-neighbor cavities.
The superscript “2” in Ĥ

(2)
CCA means that the CCA contains two

frequency-tunable cavities.

A. Controllable single-photon transport for two
frequency-tunable cavities

For the CCA with two frequency-tunable cavities, the total
excitation number operator N̂ ≡ ∑

j â
†
j âj is also a conserved

observable. Similar to Eq. (6), the eigenstates of the system
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FIG. 5. (Color online) Schematic configuration of a one-
dimensional coupled-cavity array with two frequency-tunable cav-
ities. (a) A lattice model for the CCA. Each disk represents a cavity
(labeled by the integer below each cavity and with frequency shown
right above it). The two larger disks (located at the sites j = ±d)
represent the two frequency-tunable cavities. (b) The energy levels
of the CCA. (c) Schematic diagram of a coupled superconducting
transmission line resonator array. The two detuned cavities have fre-
quencies (1 + λ1)ωc and (1 + λ2)ωc. The two detuning parameters, λ1

and λ2, control the transport of single photons in the array of coupled
cavities. The incoming photon can be localized at the cavities located
at j = ±d , forming localized bound states (in Fig. 8). Alternatively,
when the photon wave vector is in resonance, the photon can be
confined in the region between these two cavities, as shown in Fig. 9.

can now be written as |ω〉 = ∑
j cj |1j 〉, where the coefficients

cj are determined by the equation

−J (cj−1 + cj+1) = [ω − ωc(1 + λ1δ−d,j + λ2δd,j )]cj .

(21)

For simplicity, and without loss of generality, in the following
we assume that the parameters for the two frequency-tunable
cavities are identical (i.e., λ1 = λ2 = λ0).

For a photon with frequency ω = �k , the functions exp(ikj )
and exp(−ikj ) are the solutions of the Eq. (21) when j �= −d

and j �= d. Therefore, the general form of the solution for
Eq. (21) is assumed as

cj =

⎧⎪⎨
⎪⎩

eikj + re−ikj , j < −d,

Aeikj + Be−ikj , −d < j < d,

seikj , j > d.

(22)

Substituting the solution (22) into Eq. (21) and using the
continuity condition at j = −d and j = d,

e−ikd + reikd = Ae−ikd + Beikd, (23a)

Aeikd + Be−ikd = seikd , (23b)
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FIG. 6. (Color online) Photon reflection coefficient R plotted vs
the detuning parameter λ0 for k = 0.1π , 0.2π , and 0.3π , where ωc =
1, d = 5, and J/ωc = 0.01. Here we consider two frequency-tunable
cavities located at j = −d and j = d . A relatively small amount of
detuning can make the photon reflection coefficient near one.

we obtain the photon reflection amplitude

r = λ0ωce
−i(2d−1)k[J (1 + e4ikd )(e2ik − 1)

+ λ0ωc(e4ikd − 1)eik]
{
J (e2ik − 1)

× [J (e2ik − 1) − 2λ0ωce
ik] − λ2

0ω
2
c (e4ikd − 1)e2ik

}−1
.

(24)

In Fig. 6, the photon reflection coefficient R(k, λ0) = |r|2 is
plotted as a function of the parameter λ0 for different wave
vectors k = 0.1π , 0.2π , and 0.3π . Figure 6 shows that the
reflection coefficient R(k, λ0) can be tuned from zero to one
by changing the detuning parameter λ0.

B. Bound states and resonant states for two
frequency-tunable cavities

To study the bound states of the CCA with two frequency-
tunable cavities, we assume

cj =

⎧⎪⎨
⎪⎩

Ae−ikj , j < −d,

Beikj + Ce−ikj , −d < j < d,

Deikj , j > d.

(25)

From Eq. (21) at j = −d, and the condition for the continuity
of the wave function at j = −d (namely: Aeikd = Be−ikd +
Ceikd ), we obtain

A

B
= i2J sin k

λ0ωc

exp(−2ikd), (26a)

C

B
= (i2J sin k − λ0ωc)

λ0ωc

exp(−2ikd). (26b)

From Eq. (21) at j = d, and the continuity condition at j = d

(that is, Beikd + Ce−ikd = Deikd ), we obtain

C

B
= λ0ωc

i2J sin k − λ0ωc

exp(2ikd), (27a)

D

B
= −i2J sin k

i2J sin k − λ0ωc

. (27b)
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Obviously, the right-hand sides of Eqs. (26b) and (27a)
should be equal; then we obtain

(λ0ωc)2 exp(4ikd) = (λ0ωc − i2J sin k)2, (28)

which implies

exp(2ikd) = ±
(

1 − i2J

λ0ωc

sin k

)
. (29)

This Eq. (29) is important here because it determines the wave
vector of the photon states (either bound states or resonant
states). In the following, we will discuss the existence of bound
states in this system for the two cases shown in Eq. (29).
These will be denoted as the positive root and negative root,
respectively, of Eq. (28). Also note that λ0 takes two values
(±|λ0|) because the frequency detuning of the cavities at j =
±d can be either positive or negative.

1. Positive root of Eq. (29)

We now assume that the wave vector k = x + iy, with y �
0. It should be pointed out that the parameter y can take the
value y = 0 to include the possibility for the existence of some
interesting resonant states. Since the energy of the photon must
be a real parameter (i.e., cos k = cos x cosh y − i sin x sinh y

is real), this condition can be satisfied in the following three
cases:

(1) x = 2nπ , with n ∈ Z (where hereafter, Z denotes the
set of integers). In this case, y is determined by the equation

exp(−2dy) = 1 + 2J

λ0ωc

sinh y. (30)

The solutions of the transcendent equation (30) (and other
transcendent equations in the following) are determined
through the numerical method briefly sketched in Fig. 7.

The coefficient relations in Eqs. (26) and (27) are

A

B
= −D

B
= exp(2dy) − 1,

C

B
= −1. (31)

When λ0 > 0, from Fig. 7(a), we can see that Eq. (30) has only
a “zero solution,” y = 0, then A = D = 0 and C = −B, so
the corresponding wave function cj = 0. When λ0 < 0, from
Fig. 7(b), we know that Eq. (30) has two solutions: One is zero,
and the other one is a positive number denoted by y0 > 0. For
the zero solution, the wave function is cj = 0. For the solution
y0 > 0, we have A = −D = (e2dy0 − 1)B and C = −B. The
corresponding wave function (25) becomes

cj =

⎧⎪⎨
⎪⎩

B(e2dy0 − 1)ey0j , j < −d,

−2B sinh(y0j ), −d < j < d,

−B(e2dy0 − 1)e−y0j , j > d,

(32)

where B is determined by the normalization condition. Obvi-
ously, the wave function (32) is asymmetric (i.e., cj = −c−j ),
so it is an odd-parity state. Using the parameters ωc = 1,
J/ωc = 0.01, d = 5, and |λ0| = 0.2, we obtain y0 = 2.998.
The photon probability corresponding to the wave function
(32) is plotted in Fig. 8, which shows that the probability to
find a single photon (32) is mostly around the two frequency-
tunable cavities.
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FIG. 7. (Color online) The functions exp(±2dy) and 1 ±
2J sinh y/(|λ0|ωc) plotted as a function of y. The wave vector
k = x + iy, with y � 0 here. The intersection points shown inside
the black circles give the nonzero solutions of the transcendental
equation (29). The parameters used here are ωc = 1, J/ωc = 0.01,
d = 5, and |λ0| = 0.2. Equation (29) determines the wave vector of
the photon states (either bound states or resonant states).

(2) x = (2n + 1)π , with n ∈ Z. In this case, y is determined
by the equation

exp(−2dy) = 1 − 2J

λ0ωc

sinh y, (33)

and the coefficient relations in Eqs. (26) and (27) are the same
as those in Eq. (31). When λ0 < 0, from Fig. 7(a), we can see
that Eq. (33) has only a zero solution, y = 0, then A = D = 0
and C = −B. The corresponding wave function is cj = 0.
When λ0 > 0, from Fig. 7(b), it can be seen that Eq. (33) has
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FIG. 8. (Color online) Photon probability |cj |2 of each coefficient
of the normalized wave function given by Eqs. (6) and (32). The
parameters chosen here are ωc = 1, J/ωc = 0.01, d = 5, and y0 =
2.998, and with a detuning |λ0| = 0.2 for the cavity at j = ±d . The
photon is now localized and bound at the two detuned cavities located
at j = ±d = ±5.
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two solutions: One is zero, and the other is a positive number
denoted by y0 > 0. For the zero solution, the wave function is
cj = 0. For the solution y0 > 0, then A = −D = (e2dy0 − 1)B
and C = −B. The corresponding wave function becomes

cj =

⎧⎪⎨
⎪⎩

B(e2dy0 − 1)ei(2n+1)πj ey0j , j < −d,

−2Bei(2n+1)πj sinh(y0j ), −d < j < d,

−B(e2dy0 − 1)ei(2n+1)πj e−y0j , j > d.

(34)

The wave function in Eq. (34) is asymmetric for j , so it is an
odd-parity state. The square of the module of the wave function
in Eq. (34) is the same as that of the wave function in Eq. (32).

(3) y = 0. The motivation for studying the case y = 0 is
to investigate whether there exist some interesting resonant
states. In this case, x is determined by the equations

cos(2dx) = 1, (35a)

− 2J

λ0ωc

sin x = 0. (35b)

The solution of Eq. (35a) is x = mπ/d, with m ∈ Z. For
Eq. (35b), the solutions are x = lπ , with l ∈ Z, for a general
2J/(λ0ωc), or any x when λ0ωc � 2J , i.e., 2J/(λ0ωc) ≈ 0.
Connecting the solutions for the two Eqs. (35a) and (35b), we
obtain two solutions for the case of y = 0: (a) x = lπ , then
the coefficient relations in Eqs. (26) and (27) become

A

B
= D

B
= 0,

C

B
= −1, (36)

and therefore the wave function is cj = 0; (b) when
λ0ω � 2J , in this case, we choose x = mπ/d, then the
coefficient relations in Eqs. (26) and (27) are the same as
those in Eq. (36). The wave function becomes

cj =

⎧⎪⎨
⎪⎩

0, j < −d,

2iB sin
(

mπj

d

)
, −d < j < d,

0, j > d,

(37)

Obviously, the resonant state (37) is an odd-parity state with
parameter j . The square of the module of the wave function in
Eq. (37) is plotted in Fig. 9(a). We find that, when λ0ωc � 2J

(i.e., the frequencies of the −dth and dth cavities are very
largely detuned from those of other cavities and the hopping
coupling J between two nearest-neighbor cavities is weak), the
photon with wave vector mπ/d (m ∈ Z) can produce a reso-
nance in the region between the two FTCs, once it is injected
there. Therefore, this resonant photon state is confined between
the two cavities located at j = ±d, as shown in Fig. 9(a).

2. Negative root of Eq. (29)

We now write the wave vector as k = x + iy, with y � 0.
Since the energy of the photon must be real (i.e., cos k =
cos x cosh y − i sin x sinh y should be real), this condition can
be satisfied in the following three cases:

(1) x = 2nπ . In this case, y is determined by the equation

− exp(−2dy) = 1 + 2J

λ0ωc

sinh y, (38)

and the coefficient relations in Eqs. (26) and (27)
become

A

B
= D

B
= e2dy + 1,

C

B
= 1. (39)
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FIG. 9. (Color online) Plots of the photon probability |cj |2, given
in (a) Eq. (37) and (b) Eq. (45), vs the location j of each cavity. Here
the parameters are set as ωc = 1, m = 2, d = 5, and 2J/(λ0ωc) ≈ 0.
Now the photon is not bound at j = ±d , as in Fig. 8, but it is confined
in between j = ±d = ±5. This is because a single photon with wave
vector (a) 2π/5 and (b) π/2 is in resonance with the coupled-cavity
array between the two detuned cavities located at j = ±d = ±5.
These are resonant states.

In this case, when λ0 > 0, we know from Fig. 7(c) that Eq. (38)
has no positive solution. When λ0 < 0, from Fig. 7(d), we
know that Eq. (38) has a positive solution y1 > 0. Then A =
D = (e2dy1 + 1)B and C = B. Therefore, the wave function
becomes

cj =

⎧⎪⎨
⎪⎩

B(e2dy1 + 1)ey1j , j < −d,

2B cosh(y1j ), −d < j < d,

B(e2dy1 + 1)e−y1j , j > d.

(40)

The wave function in Eq. (40) is an even-parity state. Using
the parameters ωc = 1, J/ωc = 0.01, d = 5, and |λ0| = 0.2,
we obtain y1 = 2.998. We found that the difference between
y0 and y1 is very small, on the order of 10−12. Thus the photon
probability |cj |2 here looks like the one in Fig. 8.

(2) x = (2n + 1)π . In this case, y is determined by the
equation

− exp(−2dy) = 1 − 2J

λ0ωc

sinh y, (41)

and the coefficient relations in Eqs. (26) and (27) are the
same as those in Eq. (39). When λ0 < 0, from Fig. 7(c),
we can find that Eq. (41) has no positive solution. When
λ0 > 0, from Fig. 7(d), we know that Eq. (41) has one positive
solution y1. Then A = D = (e2dy1 + 1)B and C = B. So the
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corresponding wave function now becomes

cj =

⎧⎪⎨
⎪⎩

B(e2dy1 + 1)ei(2n+1)πj ey1j , j < −d,

2Bei(2n+1)πj cosh(y1j ), −d < j < d,

B(e2dy1 + 1)ei(2n+1)πj e−y1j , j > d.

(42)

This wave function (42) is an even-parity state. The square of
the module of the wave function in Eq. (42) is the same as that
of the wave function in Eq. (40).

(3) y = 0. In this case, x is determined by the equations

cos(2dx) = −1, (43a)
2J

λ0ωc

sin x = 0. (43b)

The solutions of Eq. (43a) are x = (2m + 1)π/(2d), and
the solutions of Eq. (43b) are x = lπ or any x when
λ0ωc � 2J . Therefore, the solutions meeting the two equa-
tions (43a) and (43b) at the same time are x = (2m +
1)π/(2d), when λ0ωc � 2J . Then the coefficient relations
in Eqs. (26) and (27) become

A

B
= D

B
= 0,

C

B
= 1. (44)

Therefore, the wave function now becomes

cj =

⎧⎪⎨
⎪⎩

0, j < −d,

2B cos
( (2m+1)πj

2d

)
, −d < j < d,

0, j > d.

(45)

This resonant state (45) is an even-parity state. The square of
the module of the wave function (45) is plotted in Fig. 9(b).
This figure shows that a single photon with wave vectors
(2m + 1)π/(2d) can be in resonance in the region between
the two frequency-tunable cavities. For the two cases of
resonant states given in Eqs. (37) and (45), the center
cavities between the two frequency-tunable cavities form a
supercavity [27]. We note that our approach is also valid for the
case λ1 �= λ2.

IV. PHYSICAL REALIZATION OF
FREQUENCY-TUNABLE SUPERCONDUCTING

TRANSMISSION LINE RESONATORS

In this section, we study several physical realizations of
a frequency-tunable coupled-cavity array by using supercon-
ducting transmission line resonators. In recent years, there
have been several theoretical proposals and experiments on
how to realize a frequency-tunable transmission line resonator
(e.g., Refs. [31–37]).

Typically, there are two physical mechanisms to tune the
resonant frequency of a superconducting transmission line
resonator. One method is to change the boundary condition
of the electromagnetic wave in a transmission line. By
changing the boundary condition, the effective wavelengths
(also effective frequencies) of the resonant modes are changed
[31–33].

Another method is to construct a transmission line resonator
by using a series of magnetic-flux-biased SQUIDs. Since
the effective inductor of a magnetic-flux-biased SQUID can
be tuned by changing the biased magnetic flux [34–36], the

1φ 2φ Nφ

C C C

1sφ

2sφJE

sC

LL

sφ

xΦ

0
0l

x

L

FIG. 10. (Color online) Circuit model of a frequency-tunable
transmission line resonator integrated with a SQUID [31].

inductance per unit length of the SQUID array is controllable.
Therefore, the resonant frequencies of the modes in the SQUID
array can be tuned by controlling the biased magnetic flux
threading through the SQUIDs.

In the following, we present a brief review of these two
methods already used to obtain frequency-tunable transmis-
sion line resonators. The original derivations of the two
methods have been given in Refs. [31,35], but for the sake
of completeness of this paper, here we briefly review the main
aspects of these.

A. Tuning the frequency of a superconducting transmission line
resonator: changing the boundary condition

We briefly summarize the mechanism for frequency tun-
ability of a superconducting transmission line resonator by
controlling its boundary condition [31]. The lumped element
circuit of a superconducting transmission line resonator with a
symmetric SQUID, which is equivalent to a chain of identical
LC circuits, is shown in Fig. 10. Here, φj is the phase variable
of the j th node; C and L are, respectively, the capacitance and
inductance of each LC circuit; φs1 and φs2 are the phase
variables across the left and right Josephson junctions in
the SQUID, respectively; and Cs is the capacitance of one
junction in the SQUID. The SQUID is equivalent to a junction
with an effective Josephson energy EJ (f ) = 2EJ cos(f/2).
Here EJ is the Josephson energy of one junction, f =
2π�x/�0, where �x is the flux through the loop of the SQUID
and �0 is the magnetic flux quanta. φs = (φs1 + φs2)/2 is the
net phase across the SQUID. Note that here the self-inductance
of the superconducting loop is neglected. When φs 
 1,
and the charging energy and Josephson energy satisfy the
condition EJ (f ) � Cs[�0/(2π )]2, then the SQUID can be
approximated as a harmonic oscillator [31]. For the phase
variable of the transmission line resonator, the wave equation
reads [31]

φ̈(x, t) − v2φ′′(x, t) = 0, (46)

where v = 1/
√

C0L0. Here C0 and L0 are, respectively, the
capacitance and inductance per unit length of the transmission
line resonator; and φ′′ refers to the second-order spatial
derivative. Note that here we have used the continuous variable
x instead of the discrete variable j .

In terms of the relation between the electric current and the
phase I (x, t) = −�0φ

′(x, t)/(2πL0), the boundary condition
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for this system is [31]

I (0, t) = 0, φ(l0, t) = φs(t), (47)

where l0 is the length of the transmission line resonator. The
wave equation (46) with the boundary condition (47) can
be solved by assuming the solution φ(x, t) = [A1 cos(kvt) +
A2 sin(kvt)] cos(kx). The Euler-Lagrange equation for the
phase variable φs leads to the following dispersion equation
[31]:

kl0 tan(kl0) =
(

2π

�0

)2

EJ (f )Lcav − 2Cs

Ccav
k2l2

0 , (48)

where Lcav = L0l0 and Ccav = C0l0. The wave vectors k of
the resonant modes in the transmission line resonator are the
solutions of the dispersion equation (48). Since the effective
Josephson energy EJ (f ) of the SQUID is tunable through
the bias magnetic flux �x , the wave vectors k can be tuned
continuously by controlling �x . This approach [31] to tune
cavities could be used to tune the frequency of either one
cavity or two cavities in our proposal.

B. Tuning the frequency of a superconducting transmission line
resonator: changing the effective inductance of a SQUID

Following Ref. [35], in Fig. 11(a) we show a device where
the center of the resonator is composed of a series array of
SQUIDs. A symmetric SQUID [in Fig. 11(b)] is equivalent
to an effective tunable inductance [shown in Fig. 11(c)].
From Kirchhoff’s current law and the Josephson current-phase
relation [35], then

I = Ic sin φ1 + Ic sin φ2, (49)

where Ic is the critical current of a single Josephson
junction, and φj (j = 1, 2) are the phases across the two
Josephson junctions. Introducing new phase variables φ =
(φ1 + φ2)/2 and φ1 − φ2 = φx , then I = Ic(φx) sin φ, where
Ic(φx) = 2Ic cos(φx/2). The phase can be expressed as φ =
arcsin[I/Ic(φx)]. An effective inductance Leff can be defined
[35] by the phase φ and current I ,

Leff = �0φ

2πI
, (50)

I
1φ

2φ
xΦ ⇔

effL

(a)

(b) (c)

FIG. 11. (Color online) (a) Circuit model of a series array of
SQUIDs. (b) Circuit model of a SQUID, which is equivalent to an
effective tunable inductor in (c).

which can be expressed as [35]

Leff(I, φx) = �0

2πI
arcsin

(
I

Ic(φx)

)
. (51)

Obviously, the effective inductance of the symmetric SQUID
can be controlled through two externally controllable pa-
rameters: the biasing current I and the external biasing flux
�x = �0φx/(2π ). Thus the resonant frequency of the modes
in a SQUID array becomes tunable because the inductance per
unit length of the center conductor of the transmission line
resonator is controllable. This approach [35] could also be
used to tune the frequency of either one cavity or two cavities
in our proposed system. This would allow the exploration of
the effect predicted here.

C. Experimental implementation of our proposal

Let us now provide some remarks on the experimental im-
plementation of our proposal. In our model, the key elements
are the frequency-tunable cavities, which have recently been
realized experimentally. For example, in Ref. [32], the resonant
frequency ωc of a transmission line resonator was tuned
from 2π × 4 GHz to 2π × 4.8 GHz (i.e., 0 � |λωc| � 2π ×
800 MHz). If we choose ωc ≈ 2π × 4 GHz, then 0 � λ � 0.2;
if we choose ωc ≈ 2π × 4.8 GHz, then −0.2 � λ � 0; and
similarly for λ0. In principle, the hopping coupling J between
two nearest-neighbor transmission line resonators can be tuned
[16]. In recent experiments (e.g., in Ref. [41]), the magnitude of
the hopping interaction is J ≈ 2π × 44 MHz ≈ 0.01ωc. This
hopping coupling J can be increased by using larger capacitors
to connect two transmission line resonators. Therefore, this
study seems to be within the reach of current (or near-future)
experiments.

Compared to the method using a two-level atom as a
controller, in Refs. [14,27], the present proposal avoids photon
dissipation due to the spontaneous emission of the atom.

It should be pointed out that we have neglected the
change of the hopping coupling J between the frequency-
tunable cavity and its nearest-neighbor cavities when the
frequency of the FTC is tuned. In practice, this dependence
exists.

V. SUMMARY

In conclusion, we have studied controllable single-photon
transport and single-photon states in a one-dimensional
coupled-cavity array with one or two frequency-tunable
cavities. We found that, by adjusting the frequency of the
frequency-tunable cavities, the coherent transport of a single
photon in the CCA can be realized. We have also shown that
there exist bound states in the CCA.

For a CCA with one FTC, when the frequency of the FTC
is larger than those of other cavities, there exists a bound state
above the energy band of the CCA. When the frequency of
the FTC is smaller than those of other cavities, there exists
a bound state below the energy band. In these two cases,
the bound states have even parity. Once the frequency of
the FTC is given, the CCA has only one bound state. This
result is different from that of a CCA coupled with a two-level
atom [14,27], in which there exists two bound states at the
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same time, one above the energy band and the other below the
energy band.

For a CCA with two FTCs, in the two cases that the
frequencies of the two FTCs are larger or lower than those
of other cavities, there exist two bound states, one of odd
parity and the other one of even parity. When the frequency
detuning λ0ωc of the two FTCs is very larger than the hopping
coupling J between two nearest-neighbor cavities, there exist
two kinds of resonant modes, one of odd parity and another
one of even parity.
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