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Deterministic remote preparation of pure and mixed polarization states
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We propose a deterministic remote state preparation scheme for photon polarization qubit states, where
entanglement, local operations, and classical communication are used. By consuming one maximally entangled
state and two classical bits, an arbitrary (either pure or mixed) qubit state can be prepared deterministically at a
remote location. We experimentally demonstrate the scheme by remotely preparing 12 pure states and 6 mixed
states. The fidelities between the desired and achieved states are all higher than 0.99 and have an average of
0.9947.
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I. INTRODUCTION

Quantum information science brings us into a whole new
era, so the information can be manipulated and processed
with quantum mechanical systems. One of the remarkable
exhibitions of the fascination of quantum information science
is quantum teleportation [1], which can transmit an unknown
state from one location to another without sending a physical
copy of the initial state. Remote state preparation (RSP), which
is another significant application of entanglement, has been
proposed recently [2–4]. Unlike teleportation, however, in RSP
Alice (the sender) knows completely the desired state. Alice is
supposed to help Bob (the receiver) prepare the desired state
at a remote location with the aid of her complete knowledge
of the desired state, prior shared entanglement and classical
communications.

After Lo and Pati introduced the concept of RSP, RSP
has attracted much attention of experimental physicists. The
first RSP experiment is realized in liquid-state NMR, in
which pseudopure states are remotely prepared [5]. Since
then, the experimental remote preparation of several kinds
of constrained states have also been reported [6–9]. RSP can
even be realized with classical correlations instead of quan-
tum correlations (i.e., entanglement) [10]. Recently, arbitrary
remote control of single-qubit states have been experimentally
realized [11–14]. In Ref. [11], the remote preparation of
arbitrary polarization states are achieved by making projection
measurements or general polarization measurements on one
photon of a polarization-entangled pair. In this scheme, the
efficiencies for remote preparation of general pure states are
only 50%, and the efficiencies for remote preparation of
general mixed states depends on the desired state. In Ref. [12],
the efficiencies for remote preparation of arbitrary qubit states
(including pure states and mixed states) also depend on the
desired state, which are at least 50%. In Ref. [13,14], the
desired pure states are encoded into the spatial mode of Alice’s
photon. The remote preparation of pure states are realized
by performing complete Bell-state measurements in the joint
polarization/spatial-mode Hilbert space of Alice’s photon.
Then the efficiencies for remote preparation of arbitrary pure
states in Refs. [13,14] are 100% at the cost of precisely
controlling two interferometers [15]. The efficiency for remote
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preparation of mixed states in Ref. [14] remains at 50% due
to the impossibility of a universal NOT operation. Thus far, to
our best knowledge, there is no RSP implementation which
realizes remote preparation of arbitrary single-qubit states
(including pure states and mixed states) deterministically.

In this article, we report an experiment for remote prepa-
ration of arbitrary single-photon polarization states, where
entanglement, local operation, and classical communications
(LOCC) are employed. By virtue of positive operator-valued
measures (POVM), we can realize deterministic remote prepa-
ration of arbitrary pure states at a cost of one entanglement
bit (ebit) and two classical bits (cbits). By combining POVM
and controlled decoherence, we can also achieve deterministic
remote preparation of arbitrary mixed states. The commu-
nication costs are the same as that in remote preparation
of pure states. Furthermore, instead of two Mach-Zehnder
interferometers in Refs. [13,14], only one interferometer is
needed in our scheme. This kind of simplification makes our
scheme more feasible and executable in possible practical
applications. In order to evaluate the performance of our
scheme, we remotely prepare 12 pure states and 6 mixed states.
The fidelities between the desired and achieved states are all
higher than 0.99 and have an average of 0.9947.

II. THEORETICAL PROTOCOL

A. Deterministic implementation of arbitrary POVM on
single-photon polarization state

POVM on single-photon polarization state plays a crucial
role in our RSP protocol. So it would be the best to start from
the deterministic realization of arbitrary POVM on single-
photon polarization states with linear optics elements.

POVM is the most general class of quantum measurement
[16], which can be described by a collection of operators {Mm}.
The subscript phm labels the possible measurement outcomes.
If the system state to be measured is described by a density
matrix ρ, then after the measurement the system state becomes

ρm = MmρM
†
m

tr(M†
mMmρ)

, (1)

and the corresponding probability is given by pm =
tr(M†

mMmρ). The measurement operators {Mm} satisfy the
completeness equation

∑
m M

†
mMm = I , where I is unit
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FIG. 1. (Color online) Schematic diagram of the module which
can implement arbitrary two-outcome POVM on single-photon
polarization state. PBS: polarizing beam splitters; VPR: variable
polarization rotator; X: NOT operator. V , U1, and U2 are variable
unitary operators.

matrix. If we define that Em ≡ M
†
mMm, then Em will be a

positive operator and
∑

m Em = I . The operators Em are called
POVM elements of the measurement and the complete set {Em}
is called a POVM [17].

As discussed in Ref. [18], the module sketched in Fig. 1
can be used to implement arbitrary two-outcome POVM
on single-photon polarization state. The main part of the
module is an interferometer consisted of two polarizing beam
splitters (PBS) and the relative phase between two arms
is zero. Two variable polarization rotators (VPR) in the
interferometer controls the polarization state in path state |p1〉
or |p2〉, respectively. The module also contains unitary operator
V at the entrance of the interferometer, unitary operator U1 at
the exit q1, and unitary operator U2 plus NOT operator X at the
exit q2. Consider the case where V = U1 = U2 = I , and the
polarization states in path state |p1〉 and |p2〉 are rotated as
follows:

|H 〉 VPR1→ cos ζ |H 〉 + sin ζeiθ |V 〉;
(2)

|V 〉 VPR2→ cos ξ |H 〉 + sin ξeiσ |V 〉.
If a state in the form of |ϕ〉 = a|H 〉 + b|V 〉(|a|2 + |b|2 = 1)
enters the module shown in Fig. 1, the state evolves as

|ϕ〉 → (a cos ζ |H 〉 + b sin ξeiσ |V 〉)|q1〉
+ (a sin ζeiθ |H 〉 + b cos ξ |V 〉)|q2〉. (3)

If one measures the output states, the output of |q1〉 and |q2〉
correspond to matrices D1 and D2 respectively:

D1 =
(

cos ζ 0
0 sin ξeiσ

)
, D2 =

(
sin ζeiθ 0

0 cos ξ

)
. (4)

Note that D†
1D1 + D

†
2D2 = I , so when V = U1 = U2 = I any

two-outcome POVM described by D1 and D2 can be realized
with this module.

As we know, any square matrix A has its singular value
decomposition. That means there exist unitary matrices U and
V , and a diagonal matrix D with non-negative entries such
that A = UDV. The diagonal elements of D are called the
singular values of A [17]. So we represent the measurement
operators {M1,M2} of arbitrary two-outcome POVM as: M1 =
U1D1V1,M2 = U ′

2D2V2. The moduli of the elements of the

diagonal matrix D1 or D2 are confined to lie between 0 and 1.
As required by the completeness equation E1 + E2 = I ,

E1 + E2 = V
†

1 D
†
1D1V1 + V

†
2 D

†
2D2V2

= V
†

1 D
†
1D1V1 + V

†
2 (I − D

†
1D1)V2

= I + (V †
1 D

†
1D1V1 − V

†
2 D

†
1D1V2) = I. (5)

From Eq. (5), it is easy to prove that V2 = WV1, where W is
only a diagonal unitary matrix. Note that W is commute with
diagonal matrix D2, so if we choose V = V1 in the entrance,
U1 operator in the exit q1 and U2 = U ′

2W in the exit q2, we
can implement arbitrary collection of operators {M1,M2},

M1 = U1

(
cos ζ 0

0 sin ξeiσ

)
V,

(6)

M2 = U2

(
sin ζeiθ 0

0 cos ξ

)
V.

It means the module shown in Fig. 1 can be used to realize
arbitrary two-outcome POVM.

The realization of POVM in our module is deterministic
rather than probabilistic. And any more complicated POVM
may be implemented by making a cascade of such modules.
Our design is similar to that in Ref. [19]; however, the
complexity of the experimental setup is significantly reduced,
which makes it easier to realize as shown in our experiment.

B. Deterministic RSP scheme for pure states

In our RSP protocol, we suppose that Alice and Bob share
a maximally entangled photon pair of the form

|ψAB〉 = 1√
2

(|HAVB〉 + |VAHB〉), (7)

where the subscripts A and B label Alice and Bob, |H 〉 and |V 〉
label horizontal and vertical polarization states of photons.

We start from remote preparation of pure states. Consider
that the desired pure state is

|ϕB〉 = α|HB〉 + βeiφ |VB〉. (8)

Without loss of generality, we assume that α, β, φ are real
numbers, α2 + β2 = 1 and φ ∈ [0, 2π ). The experimental
arrangement for remote preparation of pure states is sketched
in Fig. 2. VPR1 and VPR2 are arranged to rotate the
polarization component as follows:

|H 〉 VPR1→ α|H 〉 + βeiφ |V 〉
(9)

|V 〉 VPR2→ α|H 〉 + βeiφ |V 〉.

Then the POVM module in the shadowed box implement
POVM described by:

M1 =
(

α 0
0 βeiφ

)
, M2 =

(
βeiφ 0

0 α

)
. (10)

After the POVM measurement, the initial entangled state
(7) becomes

α|HAVB〉 + βeiφ |VAHB〉 (11a)

or α|HAHB〉 + βeiφ|VAVB〉, (11b)
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FIG. 2. (Color online) Experimental arrangement for remote
preparation of pure states. SHG: second-harmonic generator; QP:
quartz crystal; PA: polarization analyzer; IF: interference filter.

depending on the measurement outcome (i.e., from which
output port of the module Alice’s photon flies out).

The whole two-photon state now can be read as

|�AB〉 = 1
2

[∣∣Db
A

〉
(α|HB〉 + βeiφ |VB〉)

+ ∣∣Ab
A

〉
(α|HB〉 − βeiφ |VB〉)

+ ∣∣Da
A

〉
(α|VB〉 + βeiφ |HB〉)

+ ∣∣Aa
A

〉
(α|VB〉 − βeiφ |HB〉)], (12)

where |D〉 ≡ (|H 〉 + |V 〉)/√2, |A〉 ≡ (|H 〉 − |V 〉)/√2 and
the superscripts a and b label the output ports a and b (see
Fig. 2).

The PBS (∼45◦) and the photon detectors (APD1-4) on
Alice’s side fulfill the polarization projection measurement in
the basis {|DA〉, |AA〉} (see Fig. 2). Thus when Alice’s photon
is projected onto 〈D|(〈A|), Bob’s photon is remotely prepared
in one of the four states which is the desired state or a state
up to an elementary correction operator. According to Alice’s
measurement outcomes, Bob performs local unitary operation
Î , σ̂z, σ̂x , or σ̂y to obtain the desired state. Tuning three
parameters in Eq. (9), arbitrary pure states can be remotely
prepared deterministically. The classical information cost is
2 cbits with four possible results.

C. Deterministic RSP scheme for mixed states

Combined with POVM that allows us to remotely prepare
arbitrary pure states deterministically, controlled decoherence
allows us to realize deterministic remote preparation of arbi-
trary mixed states. The experimental arrangement for remote
preparation of mixed states is sketched in Fig. 3, which is the
same as that in Fig. 2 apart from the additional VPR and the
decoherer.

Consider that the desired mixed state is

ρB = p2|ϕB〉〈ϕB | + q2|ϕ⊥
B 〉〈ϕ⊥

B |
with

|ϕB〉 = α|HB〉 + βeiφ |VB〉, |ϕ⊥
B 〉 = βe−iφ |HB〉 − α|VB〉,

(13)

°PBS@45

APD1
APD2

BBO

IF

APD

Ti:Sapphire Mode-
locked fs laser

S H G

PA

QP

AliceBob

PBS

VPR2

VPR1

PBSVPR3

Decoherer

APD3 APD4

°PBS@45

Prism

l  

FIG. 3. (Color online) Experimental arrangement for remote
preparation of mixed states. SHG: second-harmonic generator; QP:
quartz crystal; PA: polarization analyzer; IF: interference filter.

and 〈ϕB |ϕ⊥
B 〉 = 0. Without loss of generality, we assume

that p, q are real numbers, p2 + q2 = 1, and α, β, φ are the
same as before. To prepare arbitrary mixed states we need to
achieve complete control over all five parameters. VPR1 and
VPR2 shown in Fig. 3 are arranged to rotate the polarization
component as follows:

|H 〉 VPR1→ p|H 〉 + q|V 〉
(14)

|V 〉 VPR2→ p|H 〉 + q|V 〉.
A 20-mm-long quartz rod is inserted into both arms of the

interferometer. With the fast axis of the quartz rod oriented
horizontally, the birefringent element introduces ∼650 fs
delay between the V-polarized component and the H-polarized
component, which is larger than the photon’s coherence time
[given by λ2/(c�λ) ∼ 240f s in our experiment]. VPR3 is
arranged to rotate the polarization component in both arms
as follows:

|H 〉 VPR3→ α|H 〉 + βeiφ |V 〉
(15)

|V 〉 VPR3→ βe−iφ |H 〉 − α|V 〉.
Then POVM measurement described by M1 and M2 are
performed on both the V-polarized component and the
H-polarized component.

In principle, the states can be distinguished by the different
arrival time of the photon with different polarization. However,
the effective coincidence window used in the experiment is
∼1 ns, which is much larger than the time delay between the
distinguishable states (∼650 fs). In this way, we trace over the
timing information during state detection to erase coherence
between these distinguishable states, which is equivalent to
irreversible decoherence [8,20]. Thus, we finally obtain the
polarization-entangled mixed state

p2|ψ1〉AB〈ψ1| + q2|ψ3〉AB〈ψ3| (16a)

or p2|ψ2〉AB〈ψ2| + q2|ψ4〉AB〈ψ4|, (16b)

depending on POVM measurement outcome, with

|ψ1〉AB = α|HAVB〉 + βeiφ|VAHB〉
|ψ2〉AB = α|HAHB〉 + βeiφ |VAVB〉
|ψ3〉AB = βe−iφ |HAVB〉 − α|VAHB〉
|ψ4〉AB = βe−iφ |HAHB〉 − α|VAVB〉.
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Then the PBS (∼45◦) and the detectors on Alice’s side
perform the same projection measurement as before, which
projects Bob’s photon onto one of the four mixed states:

ρ̂I
B = p2|ϕB〉〈ϕB | + q2|ϕ⊥

B 〉〈ϕ⊥
B |

ρ̂X
B = p2(σ̂x |ϕB〉)(〈ϕB |σ̂x) + q2(σ̂x |ϕ⊥

B 〉)(〈ϕ⊥
B |σ̂x)

(17)
ρ̂Y

B = p2(σ̂y |ϕB〉)(〈ϕB |σ̂y) + q2(σ̂y |ϕ⊥
B 〉)(〈ϕ⊥

B |σ̂y)

ρ̂Z
B = p2(σ̂z|ϕB〉)(〈ϕB |σ̂z) + q2(σ̂z|ϕ⊥

B 〉)(〈ϕ⊥
B |σ̂z),

So Bob obtain the desired mixed state or a mixed state up
to an elementary correction operator. According to Alice’s
measurement outcome, Bob performs local unitary operation
Î , σ̂z, σ̂x , or σ̂y to achieve the desired mixed state. Note that
an arbitrary mixed states can be remotely prepared by tuning
five parameters in Eq. (13) and the classical communication
required is two bits.

III. EXPERIMENT AND RESULTS

Our initial states (7) are generated with spontaneous
parametric down-conversion (SPDC). As shown in Fig. 2
and Fig. 3, a 1-mm-thick β-barium borate (BBO) crystal is
pumped by UV laser pulses with 425-nm center wavelength
and ∼530-mW average power from a frequency-doubled
mode-locked Ti:sapphire laser with ∼200 fs pulse duration
and 76-MHz repetition rate. The photons obtained in a
degenerate, noncollinear type II phase matching SPDC process
are prepared in the state of Eq. (7) after the quartz crystals
compensate the birefringence effects in BBO [21]. We perform
a Clauser-Horne-Shimony-Holt (CHSH) inequality test on the
entangled state and find that S = 2.6640 ± 0.0103 (|S| � 2 for
any local realism theory) [22]. Note that the CHSH inequality
test was performed right after the BBO crystal with no irises
employed. After the interferometer was built, several irises
were employed to improve the visibility of the interferometer.
The irises are situated at a distance of 0.8 m from BBO
crystal and the diameter of the irises are 2 mm. Then the
entangled photon source was not estimated for all kinds
of reasons. Since the CHSH inequality test was performed
under different experimental conditions, the results did not
exactly represent the entangled source employed for remote
preparation.

For both pure and mixed states, PBS (∼45◦) at the output
ports of the POVM module are used to preform projection
measurement on Alice’s photon in the basis |D〉, |A〉. The
photons are detected by single-photon counting avalanche
photodiode (SAPD) (Perkin-Elmer, SPCM-AQR-16) after an
interference filter (10 nm FWHM). Coincidence (within a
1-ns time window) between Bob’s photon and correspond-
ing trigger photon serves as classical communication. The
coincidence circuit consists of a time-to-amplitude converter,
a single-channel analyzer (TAC\SCA, ORTEC 567), and a
universal time interval counter (Stanford Research Systems,
SR620).

In our experiment, high visibility and long stable duration
of the interferometer are crucial to the achievement of high
fidelities. As shown in Fig. 2 and Fig. 3, the prism is utilized
to compensate the path-length difference (i.e., the relative
phase) between two arms of the interferometer. The motor
stage loading the prism is an ultraprecision linear motor stage

(Newport, XMS50), and the resolution is below 1 nm which
is precise enough for the compensation of the path-length
difference.

The interferometer is located in a box fixed on an air
cushion table to reduce the phase fluctuation. The visibility
of the interferometer can maintain above 97% for several
minutes which makes it possible to accomplish the whole
tomography process and obtain high fidelities. The relative
phase between two arms should keep being zero during
the remote preparation process, otherwise the fidelity would
dramatically decreased. So before the remote preparation of
pure states, we insert a polarizer (∼45◦) at the entrance of the
POVM module. If the relative phase adjusted by the prism is
set to be zero, the output state of the POVM module should
be |ϕ〉 = α|H 〉 + βeiφ |V 〉. The polarization analyzer (PA)
at the output ports are used to perform projection measurement
on the output polarization state in a basis {|ϕ〉, |ϕ⊥〉}. We adjust
the interferometer carefully to make sure that the visibility
(Nϕ − Nϕ⊥ )/(Nϕ + Nϕ⊥ ) is as high as possible. When the vis-
ibility is near 100%, the relative phase should be near zero and
the POVM module preforms the POVM operators in Eq. (10).
Because the interferometer can maintain high visibility for
several minutes, now we take off the polarizer and set the PA
to measure in the basis {|D〉, |A〉}, then the stabilization time
left is enough for the qubit tomography at Bob’ side. After
measurements, we test the visibility again. If the visibility is
higher than 0.97, those experimental data measured will be
saved. Otherwise, the data will be discarded and the whole
preparation progress will be repeated. The manipulation of
the POVM module in remote preparation of mixed states is
similar.

In remote preparation of mixed states, the time delay intro-
duced in one arm should be as exactly same as that in another
arm. So that we can make sure that POVM measurement
are accurately performed on both the foregoing H-polarized
component and the following V-polarized component. To
guarantee this, we use one quartz rod instead of two quartz rods
to introduce the time delay on both arms (see Fig. 3), which
avoid the length disagreement between any two quartz rods due
to the manufacturing tolerance. Then both polarization compo-
nents can perfectly interfere simultaneously and measurement
operators {M1,M2} can be performed precisely on both
components.

To evaluate the performance of our deterministic prepara-
tion scheme, we prepared 18 different states on Bob’s photon
which include four pure states along each of three random
longitude of the Poincaré sphere and six mixed states in the
Poincaré sphere (see Fig. 4). The density matrices of two of
these desired states in our experiment are shown as follows, in
which ρ1 is a pure state and ρ2 is a mixed state.

ρ1 =
(

0.4480 0.1039 − 0.4863i

0.1039 + 0.4863i 0.5520

)
, (18)

ρ2 =
(

0.3723 0.0757 − 0.0757i

0.0757 + 0.0757i 0.6277

)
. (19)

With the tomography system on Bob’s side, we perform com-
plete polarization analysis on the prepared polarization states.
The polarization analysis results of corresponding prepared
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TABLE I. The polarization analysis results of two prepared
states. The prepared polarization state on Bob’s side is projected
onto 〈H |, 〈V |, 〈D|, and 〈R| ≡ (〈H | + i〈V |)/√2 severally. The
coincidence counts per second are recorded for 10 times to obtain
the statistical average. The data shown in the column 2 and column 3
are the statistical average counts for ρ1 and ρ2, respectively.

Counts ρ1 ρ2

NH 2302.6 ± 43.15 2962.0 ± 23.38
NV 3146.2 ± 44.66 4257.0 ± 59.56
ND 2496.4 ± 148.64 4269.0 ± 34.94
NR 5220.0 ± 59.75 3074.6 ± 68.45

states for ρ1 and ρ2 are shown in Table I. The polarization
analysis results are converted to the closest physically valid
density matrix using a maximum likelihood technique [23]. We

use the fidelity F (ρo, ρB ) ≡ |Tr(
√√

ρBρo
√

ρB)|2 to evaluate
the agreement between the prepared state (ρo) and the desired
state (ρB) [24]. The calculated density matrix ρo

1 and ρo
2 are as

follows, and the fidelities are 0.9941 and 0.9983, respectively.

ρo
1 =

(
0.4211 0.0429 − 0.4901i

0.0429 + 0.4901i 0.5789

)
, (20)

ρo
2 =

(
0.4103 0.0914 − 0.0741i

0.0914 + 0.0741i 0.5897

)
. (21)

All the states remotely prepared with our protocol are
summarized in Fig. 4. The mean fidelity over all 18 states with

|+45°〉|H〉

|L〉

|V〉|−45°〉

|R〉

FIG. 4. (Color online) States remotely prepared in our experiment
are shown in the Poincaré sphere. States are supposed to lie on the
(semi-)circle with the same color. The pure states are marked by circle
and the mixed states are marked by diamond. Dots ρo

1 and ρo
2 indicate

the actual position of ρo
1 and ρo

2 in Poincaré sphere.

all four possible results is 0.9947 in our experiment, while
F = 1 means perfect match. And the fidelities of all 18 states
are above 0.99.

IV. CONCLUSIONS AND DISCUSSIONS

In our experiment, POVM are employed to achieve deter-
ministic remote preparation of arbitrary photon polarization
states. In fact, the kernel of our scheme is the entanglement
transformation from the initial state (7) to the two-photon
output state (11) or (16). Once the desired entanglement trans-
formation is realized deterministically, we just need to perform
appropriate projection measurement on Alice’s photon and
the remote preparation is accomplished deterministically, as
shown in our experiment.

In terms of practical applicability, our demonstration of RSP
still has some limitations. For example, according to Alice’s
measurement outcomes, Bob should perform local unitary
operation Î , σ̂z, σ̂x , or σ̂y to achieve the desired state. In our
experiment, however, we did not apply conditional operation
on Bob’s side. Instead, we estimated all four possible results of
each desired state to validate our scheme. In practice, the condi-
tional operation is necessary for truly deterministic realization
of RSP. In addition, in our experiment the interferometer phase
is manually adjusted due to the lack of active stabilization
apparatus. However, the phase stability achieved this way is not
good enough for possible practical application. Therefore, an
active stabilization of the interferometer is required in practical
applications.

Although we discuss the qubits encoded in the polarization
of photons in our scheme, the methods can be general-
ized to other situations. While photons are ideal carriers
in transfer of qubits, the matter carrier (e.g., ions, atoms,
quantum dots, or superconducting circuits) are especially
suitable for storage and processing of qubits. The operations
on Alice’s photon can be utilized to remote control other
matter systems provided that the matter system is maximally
entangled with Alice’s photon [13], which is valuable for
future applications such as quantum repeater and quantum
networks.

In conclusion, we propose a deterministic remote state
preparation scheme for photon polarization qubit states, where
entanglement, local operations, and classical communication
are used. An arbitrary qubit state can be prepared determin-
istically at a remote location by consuming one maximally
entangled state and two classical bits. The fidelities between
the desired and prepared states are all higher than 0.99 and have
an average of 0.9947, which indicates the high reliability of
our protocol. Moreover, the experiment arrangement is more
compact than before with only one interferometer used, which
makes it more feasible and executable in further practical
applications of quantum information science.
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