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We describe the spin and momentum degrees of freedom of a system of two massive spin- 1
2 particles as a

four-qubit system. Then we explicitly show how the entanglement changes between different partitions of the
qubits, when considered by different inertial observers. Although the two particle entanglement corresponding
to a partition into Alice’s and Bob’s subsystems is, as often stated in the literature, invariant under Lorentz
boosts, the entanglement with respect to other partitions of the Hilbert space on the other hand, is not. It certainly
does depend on the chosen inertial frame and on the initial state considered. The change of entanglement arises,
because a Lorentz boost on the momenta of the particles causes a Wigner rotation of the spin, which in certain
cases entangles the spin with the momentum states. We systematically investigate the situation for different
classes of initial spin states and different partitions of the four-qubit space. Furthermore, we study the behavior of
Bell inequalities for different observers and demonstrate how the maximally possible degree of violation, using
the Pauli-Lubanski spin observable, can be recovered by any inertial observer.
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I. INTRODUCTION

For many years quantum entanglement has been challeng-
ing physicists not only with its abstract qualities, the puzzling
examples of Schrödinger [1], but also with its applications to
deep physical problems such as the exclusion of local realistic
theories via Bell’s theorem and its variants [2,3]. Recently,
it has been of growing interest to study these problems in a
relativistic setting [4–22]. It was seen early in the discussion
by Gingrich and Adami [5] that the dependence of the Wigner
rotation on the momentum of the state causes difficulties to
define spin entanglement in a Lorentz invariant manner, which
also reflects in noncovariantly transforming reduced density
matrices, see Ref. [6]. Proposing the entanglement of the total
state, spin, and momentum wave function, to be invariant,
which we cannot conclude to be the case here, the problem
seemed to be resolved.

In Ref. [7] Alsing and Milburn then argued that the entan-
glement fidelity of the bipartite state is preserved under Lorentz
transformations, whereas Jordan, Shaji, and Sudarshan [8]
found no sums of entanglements to be unchanged for certain
types of two-particle states. In this work we use similar
states as in [8], but in choosing specific parametrizations
for the spin states, we analyze in detail different partitions of
the two-particle Hilbert space and the entanglement change of
the overall state, occurring under Lorentz transformations. We
can recover both the results of [7] and [8] as special cases of our
calculations, but in contrast to the claim of [8] we find that the
sum of spin and momentum entanglement of the two-particle
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state is invariant for some states, e.g., if the spin state is given by
the Bell state |ψ+〉, while it changes for other spin states, e.g.,
for |ψ−〉. For a large class of two-particle states we explicitly
calculate the change of entanglement under Lorentz boosts for
different partitions, finding analytic expressions, depending
on the parametrization of the states, and value of the Wigner
rotation angle.

Parallel to the debate about the Wigner rotations, the
discussions also centered around the question about the
maximally possible violation of Bell inequalities in different
inertial frames [9–11], with help of the spin observable
used by Czachor [4] or variations thereof, see [12], as
well as without, see [13]. In Ref. [13] it is claimed that
“entanglement is frame independent”, which we take to mean
that a maximally entangled state will only be completely
disentangled for the limit of infinite momenta, i.e., when
the Lorentz transformations go to the speed of light, which
is why this statement is in agreement with our results. The
second statement of [13] “violation of Bell’s inequality is
frame-dependent” is only true if the measurement directions
are not chosen appropriately, as we show in our analysis in
Sec. IV, and as has been explicitly calculated by Lee and
Chang-Young [12]. Clearly, Bell’s inequality need not be
violated for an arbitrary choice of measurement directions
in any frame but the maximal violation can be recovered for
appropriate directions by any inertial observer.

The article is structured as follows, in Sec. II we give a
brief review of the Wigner rotations, following mainly the
reasoning of Ref. [7]. In Sec. III we analyze the effects of
the Wigner rotations on different classes of spin-momentum
states and their entanglement by structuring the two-particle
states as a four-qubit state of two spins and two momenta. The
overall entanglement distributed over those four-qubit states is
then studied by simply calculating the mixedness of the several
reduced density matrices. This entanglement monotone is then
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FIG. 1. (Color online) Entanglement egg tray: Difference of
linear entropy of a δ = ± π

2 Wigner rotated Bell-type two-particle
state in case of partition one qubit versus three qubits. Plot of
Eq. (22).

compared for the initial and the Lorentz boosted states, creating
the interesting “entanglement egg tray” of Fig. 1. In Sec. IV
we then present how the choice of the Pauli-Lubanksi spin
observable provides a covariant meaning of spin expectation
values, when Wigner-rotated systems are being considered and
it is thus guaranteed to recover the maximal violation of a Bell
inequality in all inertial frames.

II. WIGNER ROTATIONS OF MASSIVE PARTICLES

In our discussion we denote the four spacetime coordinates
with greek indices, e.g., µ,ν, running from 0 to 3, and four
vectors by plain letters, while spatial vectors are denoted
by arrows, e.g., a = (a0,�a), and latin indices run over the
three spatial coordinates {1,2,3}. We choose the Minkowski
metric to be gµν = diag{1,−1,−1,−1}, although this does not
explicitly feature anywhere in our discussion. Furthermore we
use units such that h̄ = c = 1, so the four-momentum of a
massive particle is written as

p =
(

p0

�p
)

and pµpµ = (p0)2 − �p2 = m2. (1)

We write the single particle state of four-momentum p and
spin s—we could include other properties as well, but those
are not involved in our discussion, so the restriction to spin
will suffice—as

|p,s〉 = |p〉 ⊗ |s〉, (2)

where sometimes subscripts labeling momentum and spin are
added for clarity. We also want to emphasize here, that only
momentum eigenstates, satisfying

P µ|p,s〉 = pµ|p,s〉 (3)

are used throughout this article, which we take to be normal-
ized such that ∫

dµ(p) 〈p′|p〉 = 1, (4)

where dµ(p) is a suitable Lorentz-invariant integration mea-
sure. In a slight abuse of notation we dispose of the integration
symbol in Eq. (4), writing 〈p′|p〉 = 1 and imply an integration
performed whenever scalar products involving momentum
eigenstates are considered.

Considering now a Lorentz transformation, denoted by �,
we can represent it on the Hilbert space of our states as unitary
operation U (�), i.e.,

|p�,s ′〉 = U (�)|p,s〉. (5)

Since we can write any four-momentum as a Lorentz transfor-
mation acting on the rest frame momentum k as p = L(p)k,
we can rewrite Eq. (5)

U (�)|p,s〉 = U(�L(p))|k,s〉
= U(L(p�))U(L−1(p�)�L(p))|k,s〉, (6)

where we have used the group structure of the Lorentz group
and inserted the identity in the form L(p�)L−1(p�). Clearly,
the second operator on the r.h.s of Eq. (6) is a rotation, since
it takes the standard momentum k first to p, then to p� = �p

and back to k again, resulting, at most, in a rotation, called the
Wigner rotation W (�,p)

W (�,p) = L−1(p�)�L(p) (7)

such that we can express the transformed total state as

U (�)|p,s〉 =
∑
s ′

Ds ′s(W (�,p))|p�,s〉. (8)

Here Ds ′s(W (�,p)) is a suitable representation (corre-
sponding to the respective spin of the particles) of Wigner’s
little group, whose elements leave the standard momentum k

invariant. In our case, spin- 1
2 particles, we find the little group

to be just SU(2). Choosing the boosts L(p) and � such that
particle and observer are moving in the z and x direction with
velocities �u and �v, respectively, we find the axis of rotation
to be antiparallel to �u × �v, while the angle δ of the rotation is
given by

tan δ = sinh η sinh ξ

cosh η + cosh ξ
, (9)

where η and ξ are the rapidities of the boosts, given by tanh η =
u and tanh ξ = v. A more detailed discussion including also
massless particles can be found in Ref. [7].

III. ENTANGLEMENT OF TWO MASSIVE PARTICLES

Let us investigate the entanglement properties of two
massive spin- 1

2 particles under the effect of a Lorentz boost. We
consider a demonstrative scheme for the motion of the particles
and the observer to study the entanglement of the parti-
cles. We assume the particles to be in a state, where the spin
and momentum degrees of freedom are initially separable from
each other, i.e., the two particles in the unboosted frame are in
a state of the form

|ψ〉total = |ψ〉mom|ψ〉spin. (10)

The particles are taken to be moving along the ±z direction
with equal amount, opposite directions, and sharp momenta,
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i.e., delta distributions in momentum space, which is equiva-
lent to demand that the momentum distributions be sufficiently
narrow to result in single Wigner rotations. We want to
assume, however, that the particle momenta can be in an
entangled state. The resulting implications for the constructed
total wave function regarding distinguishability and particle
types will not concern us during the calculations but are
briefly discussed in Sec. V. The momentum state |ψ〉mom is
chosen entangled and thus is parameterized by a single angle
α as

|ψ〉mom = cos α|p+,p−〉 + sin α|p−,p+〉, (11)

where p± = (p0, ± �p)T , which allows us to regard the
momentum state in the qubit formalism, where |p+,p−〉 can
be treated analogously to the qubit state |1,0〉. With this choice
of the momentum state (11) the initial state (10) is transformed
into the boosted state |ψ�〉total, which exhibits entanglement
between the spin and momentum degrees of freedom, of
course, depending on the value of α and the explicit action
of the Wigner rotations on the spin state |ψ〉spin. It is of the
form

|ψ�〉total = cos α|�p+,�p−〉(U+ ⊗ U−)|ψ〉spin

+ sin α|�p−,�p+〉(U− ⊗ U+)|ψ〉spin, (12)

where U± are the Wigner rotations about a yet to be fixed
axis corresponding to the momenta p± and � represents the
Lorentz transformation. Clearly, if neither sin α nor cos α

vanish, and the rotated spin states are unequal, the total state
will not factorize and thus will be entangled between spin
and momentum. Since we did not specify the spin state yet,
we cannot claim that the overall entanglement of the state is
changed. This, however, is to be expected, since the operation
performed on the spin state cannot be written as one tensor
product of unitary operations on the individual spin Hilbert
spaces, though each operation is in itself unitary. Thus it does
not qualify as being termed a “local unitary operation” but
it can be viewed as a kind of double controlled-NOT (CNOT)
gate, where the two control qubits and the two input qubits are
allowed to be in entangled states, respectively.

Let us now continue by examining different classes of initial
spin states |ψ〉spin, namely coherent superpositions of the Bell
states |ψ±〉 at first and coherent superpositions of the spin
triplet states later on, where the z-axis is always chosen as the
axis of spin quantization.

A. Bell ψ± spin states

Starting with the states |ψ±〉 = (1/
√

2)(|↑↓〉 ± |↓↑〉),
we utilize a similar parametrization as for the momentum
state (11) earlier

|ψ〉spin = cos β|↑↓〉 + sin β|↓↑〉. (13)

So the unboosted observer describes the total system by the
state

|ψ〉total = (cos α|p+,p−〉
+ sin α|p−,p+〉)(cos β|↑↓〉 + sin β|↓↑〉). (14)

Since the total state (10), represented by the density operator

ρ = |ψ〉〈ψ |, (15)

where |ψ〉 is taken to be the state (14), is a pure state,
we can calculate the amount of entanglement, distributed
between the different partitions of the four-qubits (two spin
and two momentum qubits), by calculating and adding the
linear entropies of the corresponding reduced density matrices
(see, e.g., Ref. [23]), i.e.,

E(ρ) =
∑

i

(
1 − Trρ2

i

)
, (16)

where ρi is obtained by tracing over all subsystems except
the ith.

We consider formula (16) as an appropriate entanglement
measure, since it reaches a maximal value of 1 for a
maximally entangled two-qubit state but other conventions
can be easily obtained by a linear rescaling, typically by a
factor of 2. We use this measure now to calculate the entan-
glement between the different possible partitions of the four-
qubits.

Let us begin with investigating the entanglement of one
qubit in relation to the other three remaining qubits, thus one
subsystem contains one qubit the other three qubits. Then we
get for the state (14) the total amount of entanglement

E(ρ) = 1
2 [2 − cos(4α) − cos(4β)]. (17)

Note, that for α = β = (2n+1)π
4 , i.e., both spin and momentum

in the Bell states |ψ±〉, we have maximal entanglement,
whereas for α = β = nπ

2 , i.e., a fully separable state, the linear
entropy vanishes.

Assume now, that there is a second observer moving in the
x-direction, such that her or his frame is related to our system
by a boost along the (−x)-direction, which, due to the particle
momenta in the (±z)-direction, will result in Wigner rotations
around the (−y)-direction about angles ±δ, respectively. This
means, that our Wigner rotation matrices U± from Eq. (12)
will be of the form

U± =
(

cos δ
2 ± sin δ

2

∓ sin δ
2 cos δ

2

)
. (18)

The calculation of the boosted state |ψ�〉total according
to Eq. (12) and the corresponding density matrix ρ� is
straightforward

|ψ�〉total = cos α|�p+,�p−〉[c1(|↑↑〉 + |↓↓〉) + c2|↑↓〉
+ c3|↓↑〉] + sin α|�p−,�p+〉[−c1(|↑↑〉
+ |↓↓〉) + c2|↑↓〉 + c3|↓↑〉], (19)

where c1 = 1
2 sin δ(sin β − cos β), c2 = cos β cos2 δ

2 +
sin β sin2 δ

2 , c3 = sin β cos2 δ
2 + cos β sin2 δ

2 , and

ρ� = |ψ�〉〈ψ�|. (20)

Calculating the linear entropy of this state we find the
result

E(ρ�) = 1
16 [18 − 10 cos(4α) − 6 cos(4β) − 2 cos(4α)

× cos(4β) − 8 cos(2δ) sin2(2α) cos2(2β)], (21)
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which approaches expression (17) for vanishing Wigner angle
δ → 0. The difference of the linear entropies in the boosted
and unboosted system emerges then quite simply

E(ρ�) − E(ρ) = sin2 δ sin2(2α) cos2(2β). (22)

This expression is easy to analyze. We immediately see that
for δ = 0, i.e., no change of the inertial frame, the difference
vanishes as expected. The interesting fact about Eq. (22) is,
however, that the overall entanglement of the state does change,
depending on the choice of initial state, as well as the strength
of the boost. If for instance α is chosen to be nπ

2 , where
n can be any integer, the initial momentum state becomes
separable and the entanglement does not change after the boost.
Considering, on the other hand, initially some entanglement
in the momentum part, then increasing the entanglement in
the momentum state implies also an increase in the difference
of the linear entropies, creating the striking “egg tray” pattern
which can be seen in Fig. 1.

We also notice that for the maximally entangled Bell
states |ψ±〉, corresponding to a choice of β = (2n+1)π

4 , the
entanglement does not change regardless of the Wigner
rotation angle or the choice of α in the momentum state.
This includes, e.g., the example given by Ref. [13], where
the momentum state is separable and the spin state is totally
antisymmetric. If, however, the entanglement in the spin
decreases we obtain again an increase in the entropy difference
(see Fig. 1).

Next we choose another partition of the four-qubit Hilbert
space, we consider two qubits in each subsystem and start
with investigating the entanglement of the two-spin qubits
in relation to the two-momentum qubits. We proceed in an
analog manner as before, i.e., starting from Eqs. (14) and (15)
we calculate the reduced density matrices for the two spin or
momentum degrees of freedom

ρspin = Trmom(ρ), ρmom = Trspin(ρ) (23)

and their respective mixednesses. Clearly, the linear en-
tropy (16) of the total state is identically zero, E(ρ) = 0, since
the initial state (14) factorizes with respect to this partition.
Repeating this process for the boosted state (19) we find,
however, that the entanglement with respect to this partition
does not vanish

E(ρ�) = 1
2 sin2 δ sin2(2α)[1 − sin(2β)]

× [3 + cos(2δ) + 2 sin2 δ sin(2β)]. (24)

Clearly, formula (24) presents a similar dependence on the
Wigner rotation angle δ and the initial entanglement of the
momentum state, parametrized by α as Eq. (22). But as can be
seen in Fig. 2, although the valleys of the plot agree for α = nπ

2
the entanglement change due to the boost is no longer zero for
all values β = (2n+1)π

4 as in Fig. 1. This points to an imbalance
between the Bell states |ψ−〉 and |ψ+〉 since the overall
entanglement does not change for either of the two. While
the entanglement distributed between momentum and spin is
only invariant for β = (4n+1)π

4 , i.e., for the symmetric state
|ψ+〉, it does change for β = (4n+3)π

4 , i.e., the antisymmetric
state |ψ−〉, recovering such the results of Ref. [8].

Interestingly, if we consider the limit δ → π
2 , corresponding

to observer and particle moving with velocity of light,

FIG. 2. (Color online) Entanglement in case of partition two spins
versus two momenta of a δ = ± π

4 Wigner rotated spin-Bell-type
state. Plot of Eq. (24).

expression (24) coincides with the simple formula (22) and
we recover the entanglement egg tray of Fig. 1. Thus the
entanglement change of the above discussed two partitions of
qubits [leading to (22) and (24)] is the same in this limit.

Finally, we come to the important case of the entanglement
between the two moving particles with spin- 1

2 , i.e., we consider
the partition into the Hilbert spaces containing the momentum
qubit and the spin qubit of each particle, which we want to call
the Alice-Bob partition. Here the reduced density matrices for
Alice and Bob are obtained by tracing over the momentum and
spin of the complementary subspace

ρA
mom.-spin = TrBmom.-spin(ρ) ρB

mom.-spin = TrAmom.-spin(ρ).

(25)

Calculating the linear entropy we find the following
expression:

E(ρ) = 1
8 {10 − [3 + cos(4α)][3 + cos(4β)]}, (26)

which clearly vanishes for α = β = nπ
2 , i.e., a fully separable

state. Whereas for α = β = (2n+1)π
4 , i.e., both spin and

momentum in the Bell states, we have maximal entanglement
E = 3

2 , which means the reduced density matrices for Alice
and Bob are maximally mixed ρA

mix = ρB
mix = 1

414 and 1 −
Tr(ρA)2 = 3

4 .
Performing now a boost of the system along the (−x)-

direction we interestingly find that the entanglement with
respect to the Alice-Bob partition does not change at all, i.e.,
E(ρ�) = E(ρ), regardless of the parametrization of the state
or the strength of the boost. This result is quite in accordance
with the maintained violation of a Bell inequality (see Sec. IV),
sensitive to exactly this partition of the Hilbert space.

Remarkably furthermore, by tracing over spin and momen-
tum it does not matter which particle the spin and momentum
belongs to. We may trace over the spin of particle 1 and
momentum of particle 2 (or vice versa) and obtain the same
result (26), there is no change in the entanglement for all
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possible states after the boost. This may reflect the nonlocal
feature of quantum mechanics.

B. Spin triplet states

To further investigate the properties of two particle spin
states under Lorentz transformations we now consider coher-
ent superpositions of spin triplet states. The singlet state is
already included in our previous discussion. We now choose
spherical coordinates in the three-dimensional space of the
triplet states to parametrize all possible combinations. The
spin state in Eqs. (10) and (12) is thus replaced by

|ψ〉spin = sin θ cos φ|↑↑〉 + sin θ sin φ
1√
2

(|↑↓〉
+ |↓↑〉) + cos θ |↓↓〉. (27)

Using the same momentum state and inertial frames, and
studying the same partitions of the qubits as in Sec. III A,
we once again compute the difference of the linear entropy of
the boosted and unboosted observer.

Beginning with the partition one qubit versus three qubits,
the difference of the entanglement turns out to be

E(ρ�) − E(ρ) = − 1
4 sin2 δ sin2(2α)(cos θ + cos φ sin θ )2

× [−5 + cos(2θ ) + 2 sin2 θ cos(2φ)

+ 4 sin(2θ ) cos φ]. (28)

In formula (28) the spin parametrization (previously rep-
resented by β) appears now a bit more involved, but this is
only due to the choice of the parametrization of the spherical
coordinates (θ,φ), the dependence on the Wigner rotation
angle δ and the momentum parameter α is exactly the same as
before [compare with Eq. (22)]. Interestingly, the change of en-
tanglement comes out bigger the less entangled the initial spin
state is. On the other hand, maximally entangled spin states
such as the Bell states |ψ±〉, |±〉 = 1/

√
2(|↑↑〉 ± |↓↓〉)

or certain superpositions such as 1
N

(a|∓〉 + b|ψ±〉) with

FIG. 3. (Color online) Difference of linear entropy of a δ =
± π

2 Wigner rotated spin-triplet–type state with totally symmetric
momentum state (α = π

4 ) in case of partition one qubit versus three
qubits. Plot of Eq. (28).

N2 = |a|2 + |b|2, which are also maximally entangled, lie
all on the bottom of the valleys of Fig. 3. That means, the
entanglement of the total states does not change under Lorentz
transformations, even though the form of the states does, or put
differently, the total entanglement is saturated for maximally
entangled spin states and therefore cannot be further increased.

To give an example, consider the initial state

(cos α|p+,p−〉 + sin α|p−,p+〉)|+〉 (29)

corresponding to a choice of φ = 0 and θ = π
4 , which in our

setup is transformed to

−→ cos α|�p+,�p−〉(cos δ|+〉 + sin δ|ψ−〉)
+ sin α|�p−,�p+〉(cos δ|+〉 − sin δ|ψ−〉). (30)

It has the same linear entropy, E(ρ) = 1
2 [3 − cos(4α)], as the

initial state.
Let us now consider an example of an initially separable

spin state, of both spins orientated in the +z direction, i.e.,
φ = 0 and θ = π

2 ,

(cos α|p+,p−〉 + sin α|p−,p+〉)|↑↑〉, (31)

it becomes an overall entangled state for a suitable choice of
parameters α and δ. The difference in the entanglement, the
difference of the linear entropies (28), before and after the
boost results in

E(ρ�) − E(ρ) = sin2(2α) sin2 δ. (32)

This entropy change (32) becomes maximal, if the initial
momentum state is maximally entangled, α = π

4 , and the speed
of the boosted observer and the particles approach the speed
of light, δ → π

2 .
Considering next the partition into two spin qubits versus

two momentum qubits, i.e., tracing over the momenta or
spins, we find for the entanglement change [E(ρ) = 0 in this
partition]

E(ρ�) = 1 − cos4 α − sin4 α + 1
32 sin2 δ sin2(2α)(cos θ

+ cos φ sin θ )2(26 + f1 − f2)

− 1
512 sin2(2α)(10 + f1 − f2)2, (33)

where the functions f1,f2 are defined by

f1 = f1(δ,θ ) = 2 cos(2δ)[3 + cos(2θ )] − 2 cos(2θ ), (34)

f2 = f2(δ,θ,φ)

= 8 sin2 δ[cos(2φ) sin2 θ + 2 cos φ sin(2θ )]. (35)

Clearly, the boosted result (33) is more involved than the
one (28) of the previous partition but, as we can see from
Fig. 4, the valleys starting at θ = 3π

4 , 7π
4 , . . . and φ = 0 remain.

However, there is an entanglement change between the valleys,
which is different to the previously considered partition (see
Fig. 3). As already mentioned, it points to an imbalance
between the Bell states, in this case |φ+〉 and |ψ+〉, |φ−〉.
Considering furthermore the limit of speed of light, δ → π

2 ,
then the expressions (33) and (28) agree (and thus Figs. 4
and 3), as we already could anticipate from our study of the
Bell-type states.
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FIG. 4. (Color online) Entanglement in case of partition two spins
versus two momenta of a δ = ± π

4 Wigner rotated spin-triplet-type
state with totally symmetric momentum state (α = π

4 ). Plot of
Eq. (33).

Studying finally the case of the Alice-Bob partition, i.e.,
tracing over spin and momentum of a subspace, the linear
entropy turns out to be

E(ρ) = 1
256 (203 − 103 cos(4α) + [3 + cos(4α)]

×{−12 cos(2θ ) − 13 cos(4θ )

+ 16[3 + 5 cos(2θ )] cos(2φ) sin2 θ

+ 8 cos(4φ) sin4 θ − 256 cos θ cos φ sin3 θ sin2 φ}).
(36)

As expected, the linear entropy vanishes for α = nπ
2 and

θ = nπ , i.e., a fully separable state, whereas for α = (2n+1)π
4

and either θ = φ = (2n+1)π
2 , or θ = (2n+1)π

4 ,φ = nπ , i.e., both
momentum and spin in the Bell states, we have maximal
entanglement E = 3

2 .
Performing the boost of the system along the (−x)-direction

we find, as in the case of the Bell spin states, that the
entanglement with respect to the Alice-Bob partition does
not change at all, i.e., E(ρ�) = E(ρ), regardless of the
parametrization of the state or the strength of the boost. As
found before, we also may trace over the spin of particle 1 and
momentum of particle 2 (or vice versa) and the entanglement
does not change at all for all possible states after the boost.

IV. VIOLATION OF BELL INEQUALITIES

Since we have established the fact that the overall entan-
glement of a state, composed in the manner of (13) or (27), is
generally not the same for all inertial observers, we now want to
analyze how this affects physical applications of entanglement,
such as the violation of a Bell inequality. A typical setup for
such an (gedanken) experiment with massive particles could
consist of two spin- 1

2 particle beams emitted by some source in
opposite directions along the (±z)-direction, into which they
propagate until they interact with measurement devices, e.g.,
two Stern-Gerlach apparatuses, which we call Alice (A) and

Bob (B), respectively. The described setup now also implies a
certain choice of reference frame, namely one in which the
particle momenta are confined to two possible values ± �p
(ignoring spreads in momentum space) along the z-axis and
the detectors A and B are at rest with respect to the source.
Therefore first we need to find the correct observable for spin
measurements in different reference frames.

Previous analysis [4,9,10,22] suggested to use a spin
observable �σp = −→

W /p0, closely related to the Pauli-Lubanski
vector Wµ [24], which is defined by Wµ = − 1

2εµν�σ J ν�pσ

and Jν� = {Jij = εijkJk/J0j = Kj with Kj = i(t∂j + xj∂t )}
contains the total angular momentum or spin Jk . Its squared
WµWµ is one of the Casimir operators of the Poincaré group,
i.e., a conserved quantity. The corresponding normalized
binary observable for a spin measurement along direction �a
in a frame where the particle has momentum p = (p0, �p) is
given by

â(p) = �a · �σp

|λ(�a · �σp)| , (37)

where λ(�a · �σp) is the eigenvalue of the operator �a · �σp. It can
be reexpressed by

â(p) = �ap · �σ with �ap =
√

1 − β2�a⊥ + �a‖√
1 + β2(�a2

‖ − 1)
, (38)

with β being the velocity (we have set c = 1) of the particle
in the frame and �σ is the usual vector of Pauli matrices. The
vector �ap is a unit vector and can be interpreted as the detector
orientation �a as seen from the particle rest frame, i.e., we can
rewrite Eq. (38) as

â(p) = �ap · �σ = [L−1(p)a]iσi

|[L−1(p)a]j | , (39)

where |(L−1(p)a)j | is the norm of the spatial part of the
Lorentz transformed orientation vector L−1(p)a.

As has been demonstrated by Czachor [4], Lee and
Chang-Young [12], and Ahn-Hwang-Lee-Moon [9,10,22] the
violation of a Bell inequality in the nonrelativistic limit cannot
generally be sustained in a relativistic setting if the same
measurement directions are chosen. It is clear however, and
has been discussed in Ref. [12], that by appropriately rotating
the measurement directions, the maximal violation can be
recovered in all inertial frames. We want to explain now
how this arises in our context of using the Wigner rotations
introduced in Sec. II.

Let us consider the same particle as described in three
different inertial frames S, S ′, and S ′′, and we begin with
the rest frame S of the particle, there the particle’s momentum
is given by

k =
(

m

�0
)

(40)

and the quantum state of the particle is

|ψk〉 = |k〉|s〉. (41)

Now suppose the spin of the particle is measured (since the
particle is at rest one can think of the detector moving around
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the particle) along direction �a (as seen by the particle), the
correct observable would then be

â = �a · �σ
|�a| . (42)

Next we study the same situation from the frame S ′, where
the particle has momentum

p = L(p) k =
(

p0

�p
)

(43)

and the state is given by

|ψp〉 = U(L(p))|ψk〉 = |p〉|s〉. (44)

No Wigner rotation occurs in Eq. (44) since the Wigner-
rotation angle vanishes for transformations from the rest frame
to the moving frame. Since now the particle is moving, to
measure along the same direction as the observer in S we need
to choose our measurement direction as �a′, the spatial part of
a′ = L(p)a. Clearly, by inserting it into the equation for the
observable â′ in S ′ [the analog to (39)] we get

â′ = [L−1(p)a′]iσi

|[L−1(p)a′]j | = aiσi

|aj | = â. (45)

Acknowledging the fact that the spin state remains unchanged
we see that the expectation value of â′ in S ′ and â in S provides
the same result.

Let us finally proceed to study the situation from the third
reference frame, S ′′, related to the frame S ′ by a Lorentz
transformation �, such that the particle momentum in S ′′ is

p� = �p = �L(p)k =
(

p0
�

�p�

)
. (46)

The state of the particle undergoes a Wigner rotation W (�,p),
i.e., recalling Eq. (6) we find

|ψp�
〉 = U (�)|ψp〉 = U(L(p�))U(W (�,p))|ψk〉

= |p�〉U(W (�,p))|s〉, (47)

where W (�,p) = L−1(p�)�L(p). The observer in S ′′ will
then see the measurement direction chosen by the observers in
S ′ and the rest frame S to be

a′′ = �a′ = �L(p)a. (48)

Since the particle has momentum p� in S ′′, the corresponding
spin observable for the chosen direction a′′ according to
Eq. (39) is

â′′ = [L−1(p�)a′′]iσi

|[L−1(p�)a′′]j | = [W (�,p)a]iσi

|[W (�,p)a]j | , (49)

where we used Eqs. (48) and (7) in the second step. But
W (�,p) is a rotation, therefore it does not change the norm of
�a and we may write

â′′ =
{
R[W (�,p)]

�a
|�a|

}
· �σ

= U(W (�,p))
[ �a · �σ

|�a|
]

U †(W (�,p)). (50)

Equation (50) is now the important relation between the
observables, it implies that the expectation values of the

observables â′′ in S ′′ and â in S clearly coincide since the
unitary transformations of the states in S ′′, depending now
on the Wigner rotations [as shown in Eq. (47)], compensate
precisely the corresponding ones in Eq. (50). It is crucial
to emphasize here, that although the observable â′′ depends
on the momentum of the particle, the measurement direction
a′′, corresponding to this observable, which is chosen by the
observer in S ′′, does not depend on the momentum of the
particle.

Finally, we have to consider the combined observables for
tensor products of states like |p+〉|s+〉 ⊗ |p−〉|s−〉, thus each
observable acts separately in its subspace depending on the
momentum, i.e.,

[â(q) ⊗ b̂(q)] |p+〉|s+〉 ⊗ |p−〉|s−〉

= |p+〉 �a · �σp+

|λ(�a · �σp+ )| |s+〉 ⊗ |p−〉
�b · �σp−

|λ(�b · �σp− )| |s−〉 (51)

according to Eq. (37). We obviously find that all spin
measurements along a certain direction are independent of
the choice of reference frame if the spin observable is
given by (37) and (39) and the measurement directions are
transformed accordingly for the differently chosen frames.
Most importantly, this implies that the maximal violation of
the Bell inequality is independent of the chosen frame and can
always be recovered for the right choice of directions.

For example, considering again the scheme of the two
observers Alice and Bob in the frame S ′ where particle beams
are emitted along the (±z)-direction, and let us take the
measurement directions �a,�α,�b, �β for the Bell observable in
the CHSH inequality [2,3], then we have

S(�a,�α,�b, �β) = |E(�a,�b) − E(�a, �β)| + |E(�α, �β) + E(�α,�b)| � 2.

(52)

We also choose the measurement directions in the x-y plane,
then the spin observable (37) reduces to the nonrelativistic spin
observable and there is no change in the directions, i.e.,

a′ = a =

⎛
⎜⎝

0
ax

ay

0

⎞
⎟⎠ , b′ = b =

⎛
⎜⎝

0
bx

by

0

⎞
⎟⎠ . (53)

Furthermore, assuming that the source, which is at rest in the
frame of A and B, produces particles in the singlet spin state
|ψ−.〉 we get the familiar expectation value

E(�a,�b) = 〈ψ−|〈k|â ⊗ b̂|k〉|ψ−〉 = − �a · �b
|�a| · |�b| (54)

such that A and B will be able to violate the CHSH inequality
maximally by 2

√
2 for suitable measurement directions in

that plane, regardless which exact parameter is chosen in the
momentum state of (11).

Now, let us regard the situation where A and B are moving
in the x direction with respect to the source, the state observed
by A and B gets Wigner rotated according to Eq. (12) [and
explicitly given in Eq. (19)]

|ψ�〉 = cos α|�p+,�p−〉U+ ⊗ U−|ψ−〉
+ sin α|�p−,�p+〉U− ⊗ U+|ψ−〉. (55)
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Then the expectation value in the moving system S ′′ coincides
with the one in S ′ and S

E′′(�a′′,�b′′) = 〈ψ�|â′′ ⊗ b̂′′ |ψ�〉

= − �a · �b
|�a| · |�b| = E(�a,�b) (56)

which can be easily seen by using Eqs. (47), (50), and (51),
i.e., the unitary transformations in the states, Eq. (47), just
compensate the corresponding ones in the observable, Eq. (50).

Of course, would the moving observers perform their
measurements in directions given by the components of
�a,�α,�b, �β as seen in the rest frame of the source, the CHSH
inequality could not generally be maximally violated. When
restricting ourselves to measurements in the x-y plane, the
directions chosen by the observer in S ′′ are related to the ones
in S ′ by the Lorentz transformation �

a′′ = �a′ =

⎛
⎜⎝

cosh ξ − sinh ξ 0 0
− sinh ξ cosh ξ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎠

⎛
⎜⎝

0
ax

ay

0

⎞
⎟⎠

=

⎛
⎜⎝

− sinh ξax

cosh ξax

ay

0

⎞
⎟⎠ (57)

which is a boost to a frame moving along the (+x)-direction
with rapidity ξ . Thus the measurement direction in the moving
system S ′′ with a suitable normalization is given by

�a′′

|�a′′| = 1√
(cosh ξax)2 + a2

y

⎛
⎝ cosh ξax

ay

0

⎞
⎠ . (58)

One can see here, that directions chosen purely in the x or y

axis, respectively, are not changing, while all other directions
in the x-y plane are tilted toward the x-axis.

V. CONCLUSION

The entanglement of a two-particle state, consisting of
spin- 1

2 particles, cannot generally be considered to be Lorentz
invariant, although certain states and certain partitions retain
their entanglement. In this paper we have fully worked out
the dependence of the entanglement change on a number
of parameters, including the explicit form of the spin and
momentum state, the choice of reference frame, as well as
the partitions of the four-qubits considered. The connection
of the entanglement change to the invariant maximal violation
of a Bell inequality also becomes immediately clear, since
we also demonstrated that the entanglement between the
partitions correlated with the Bell inequality violation remains
unchanged.

In particular, we have computed that the overall change
in entanglement is nonzero generally and only the en-
tanglement between certain partitions of the total Hilbert
space, i.e., the Alice-Bob partition and the partition into
(spin A + momentum B)/(momentum A + spin B) subspaces,
remains invariant. There is an entanglement change, however,
in the other partitions, in the four (one qubit)/(three qubits)

partitions and in the (two spins)/(two momenta) partition.
Interestingly, if the Lorentz boosts for observer and particle
reach the speed of light, i.e., δ = π

2 , the entanglement
changes of both partitions agree, such that for particles
moving at the speed of light the entanglement change
due to the shifted reference frame can be traced back to
a change in the entanglement between the spins and the
momenta.

The invariance of the Bell inequality violation in different
reference frames is achieved by Lorentz transforming both the
states and the observables such that each observer will measure
the same expectation values if the correct measurement
directions are chosen. However, since the entanglement of
the reduced spin density matrix, i.e., here represented by
the entanglement of the (one qubit)/(three qubits) partition,
changes (see also [5]), it seems incorrect to assume, that the
Bell inequality is sensitive to the entanglement of the spin state
alone, but rather that the entanglement between the particles
of Alice and Bob corresponds to the violation of the Bell
inequality.

But nonetheless the entanglement of the spins is playing
a crucial role in violating Bell inequalities. Consider, e.g., an
initial state, composed of a maximally entangled momentum
state, i.e., α = π

4 , and a separable spin state, e.g., if β = 0.
Since the Bell inequality would not be violated for any combi-
nation of measurement directions in the initial frame, it will not
be violated in any other frame, regardless of the fact that the
entanglement of some partitions might change or that the en-
tanglement with respect to the Alice-Bob partition is nonzero.
Invoking the theorem of Gingrich and Adami [5], which states
that the entanglement between spins and momenta must be
nonzero in order for the spin entanglement to increase under
Lorentz transformations, we see that the entanglement change
cannot increase the spin entanglement in this situation. We
therefore conclude that although the violation of Bell inequal-
ities depends on the overall entanglement between the two par-
ticles, it cannot be brought about by momentum entanglement
alone.

As mentioned before, the Bell inequality is only sensitive to
the invariant entanglement between Alice and Bob. However,
for the states of Sec. III A the entanglement egg tray (see
Fig. 1) suggests that the entanglement of other partitions
changes, but it does so only if there is some entanglement in the
momentum state initially, and only, if the spin entanglement
is not maximal to begin with. This is the reason why the
initial states with no momentum entanglement, i.e., α = nπ

2 ,
and those with maximal spin entanglement, i.e., β = (2n+1)π

4 ,
show no change at all in entanglement. For all the other
combinations of α and β there is an increase in entanglement
between the four-qubits, in particular if the spin state is
separable initially. Therefore it would be of interest whether
another type of inequality, e.g., an entanglement witness
inequality [25–28], could be found, which is sensitive to
the entanglement between spins and momenta. The such
found entanglement witnesses, which might correspond to
the observables in an experiment, could detect the discussed
change in the entanglement of the particular partitions of the
qubits.

It remains to note that the initially chosen momentum state,
crucial to the entanglement change, requires the particles
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to be distinguishable. Although this somehow restricts the
choice of physical systems for which such a change is
possible, the distinctive property of the two particles could
be some additional quantum number, invariant under Lorentz
transformations. It remains to be seen whether similar effects
emerge by considering different modes of distinguishable
particles in a second quantization formalism.
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