
PHYSICAL REVIEW A 81, 042113 (2010)

Geometric phase in entangled systems: A single-neutron interferometer experiment
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The influence of the geometric phase on a Bell measurement, as proposed by Bertlmann et al. [Phys. Rev. A
69, 032112 (2004)] and expressed by the Clauser-Horne-Shimony-Holt (CHSH) inequality, has been observed
for a spin-path-entangled neutron state in an interferometric setup. It is experimentally demonstrated that the
effect of geometric phase can be balanced by a change in Bell angles. The geometric phase is acquired during a
time-dependent interaction with a radiofrequency field. Two schemes, polar and azimuthal adjustment of the Bell
angles, are realized and analyzed in detail. The former scheme yields a sinusoidal oscillation of the correlation
function S, dependent on the geometric phase, such that it varies in the range between 2 and 2

√
2 and therefore

always exceeds the boundary value 2 between quantum mechanic and noncontextual theories. The latter scheme
results in a constant, maximal violation of the Bell-like CHSH inequality, where S remains 2

√
2 for all settings

of the geometric phase.
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I. INTRODUCTION

Since the famous 1935 Einstein-Podolsky-Rosen (EPR)
gedanken experiment [1], much attention has been devoted to
quantum entanglement [2], which is among the most striking
peculiarities in quantum mechanics. In 1964, J. S. Bell [3]
introduced inequalities for certain correlations which hold
for the predictions of any hidden-variable theory applied [4].
However, a dedicated experiment was not feasible at the
time. Five years later, Clauser, Horne, Shimony, and Holt
(CHSH) reformulated Bell’s inequality pertinent for the first
practical test of the EPR claim [5]. Thereafter polarization
measurements with correlated photon pairs [6], produced by
atomic cascade [7,8] and parametric down-conversion of lasers
[9–11], demonstrated a violation of the CHSH inequality.
To this date, several systems [12–15] have been examined,
including neutrons [16].

EPR experiments are designed to test local hidden-variable
theories, thereby exploiting the concept of nonlocality. Local
hidden-variable theories are a subset of a larger class of
hidden-variable theories known as the noncontextual hidden-
variable theories. Noncontextuality implies that the value of
a measurement is independent of the experimental context,
that is, of previous or simultaneous measurements [17,18].
Noncontextuality is a less stringent demand than locality
because it requires mutual independence of the results for
commuting observables even if there is no spacelike separation
[19]. First tests of quantum contextuality, based on the
Kochen-Specker theorem [20], have been recently proposed
[21,22] and performed successfully using trapped ions [23] and
neutrons [24,25].

In the case of neutrons, entanglement is not achieved be-
tween different particles but between different degrees of free-
dom. Since the observables of one Hilbert space commute with
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observables of a different Hilbert space, the single-neutron
system is suitable for studying noncontextual hidden-variable
theories. Using neutron interferometry [26,27], single-particle
entanglement between the spinor and the spatial part of the
neutron wave function [16] and full tomographic state analysis
[28] have already been accomplished. In addition, creation
of a triply entangled single-neutron state [29] by applying a
coherent manipulation method of a neutron’s energy degree of
freedom has been demonstrated.

The total phase acquired during an evolution of a quantal
system generally consists of two components: the usual
dynamical phase −1/h̄

∫
H (t)dt , which depends on the

dynamical properties like energy or time, and a geometric
phase γ , which is, considering a spin 1/2 system, minus
half the solid angle (�/2) of the curve traced out in ray
space. The peculiarity of this phase, first discovered by Berry
in [30], lies in the fact that it does not depend on the
dynamics of the system but purely on the evolution path of
the state in parameter space. From its first verification, for
photons in 1986 [31] and later for neutrons [32], general-
izations such as nonadiabatic [33]; noncyclic [34], including
the Pancharatnam relative phase [35]; off-diagonal evolu-
tions [36–38]; and the mixed-state case [39–43] have been
established.

The geometric phase in a single-particle system has
been studied widely over the past two and a half decades.
Nevertheless its effect on entangled quantum systems is less
investigated. The geometric phase is an excellent candidate to
be utilized for logic gate operations in quantum communica-
tion [44] because of its robustness against noise, which has
been tested recently using superconducting qubits [45] and
trapped polarized ultracold neutrons [46]. Entanglement is the
basis for quantum communication and quantum information
processing, and therefore studies on systems combing both
quantum phenomena—the geometric phase and quantum
entanglement—are of great importance [47–50].
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This article reports on an experimental confirmation for
the violation of Bell-like inequality, relying on correlations
between the spin and path degrees of freedom of a single-
neutron system under the influence of the geometric phase.
The geometric phase is generated in one of the complementary
Hilbert spaces, in our case, the spin subspace. We demonstrate
in detail how the geometric phase affects the Bell angle
settings, required for a violation of a Bell-like inequality in
the CHSH formalism, in a polarized neutron interferometric
experiment. In Sec. II, the theoretical framework, as developed
in [48], is briefly described for a spin-path-entangled neutron
state. Expectation values and Bell-like inequalities are defined
and the concepts of polar and azimuthal angle adjustment
are introduced. Section III explains the actual measurement
process. It focuses on experimental issues such as state prepa-
ration, manipulation of geometric phase, joint measurements,
and the experimental strategy. In the principal part, data analy-
sis and experimental results are presented. This is followed by
Secs. IV and V, consisting of a discussion and a conclusion.

II. THEORY

A. Expectation values

First we want to clarify the notation since numerous
angles are due to appear in this article. Angles denoted as
α are associated with path, and angles denoted as β with
spin subspace. The prime symbol is used to distinguish
different measurement directions of one subspace, required for
a CHSH-Bell measurement [5] (e.g., α and α′ represent the
measurement directions for the path subspace). Index 1 denotes
polar angles, whereas index 2 is identified with azimuthal
angles (e.g., β1 and β ′

1 are polar angles of the spin subspace).
Finally, the ⊥ symbol is used for adding π to an angle
(e.g., α⊥

1 = α1 + π ).
Following the notation given in [48], in our experiment,

the neutron’s wave function is defined in a tensor product
of two Hilbert spaces: One Hilbert space is spanned by two
possible paths in the interferometer given by |I〉,|II〉 and the
other by spin-up and spin-down eigenstates, denoted as |⇑〉 and
|⇓〉, referring to a quantization axis along a static magnetic
field. Interacting with a time-dependent magnetic field, the
entangled Bell state acquires a geometric phase γ tied to the
evolution within the spin subspace [48]:

|�Bell(γ )〉 = 1√
2

(|I〉 ⊗ |⇑〉 + |II〉 ⊗ eiγ |⇓〉). (1)

As in common Bell experiments, a joint measurement for
spin and path is performed, thereby applying the projection
operators for the path

P̂
p
±(α) = |± α〉〈±α| (2)

with

|+ α〉 = cos
α1

2
|I〉 + eiα2 sin

α1

2
|II〉,

(3)
|− α〉 = − sin

α1

2
|I〉 + eiα2 cos

α1

2
|II〉,

where α1 denotes the polar angle and α2 the azimuthal angle,
and for the spin subspace,

P̂ s
±(β) = |± β〉〈±β|, (4)

with

|+ β〉 = cos
β1

2
|⇑〉 + eiβ2 sin

β1

2
|⇓〉,

(5)
|− β〉 = − sin

β1

2
|⇑〉 + eiβ2 cos

β1

2
|⇓〉.

Introducing the observables

Âp(α) = P̂
p
+(α) − P̂

p
−(α),

(6)
B̂s(β) = P̂ s

+(β) − P̂ s
−(β),

one can define an expectation value for a joint measurement
of spin and path along the directions α and β:

E(α,β) = 〈�|Âp(α) ⊗ B̂s(β)|�〉
= − cos α1 cos β1 − cos(α2 − β2 + γ ) sin α1 sin β1

= − cos(α1 − β1) for (α2 − β2) = −γ. (7)

B. Bell-like inequalities

Next, a Bell-like inequality in a CHSH formalism [5] is
introduced, consisting of four expectation values with the
associated directions α, α′ and β, β ′ for joint measurements
of spin and path, respectively:

S(α,α′,β,β ′,γ ) = |E(α,β)−E(α,β ′) + E(α′,β) + E(α′,β ′)|
= |− sin α1[cos(α2 − β2 − γ ) sin β1

− cos(α2 − β ′
2 − γ ) sin β ′

1]

− cos α1(cos β1 − cos β ′
1)

− sin α′
1[cos(α′

2 − β2 − γ ) sin β1

+ cos(α′
2 − β ′

2 − γ ) sin β ′
1]

− cos α′
1(cos β1 + cos β ′

1)|. (8)

The boundary of Eq. (8) is given by the value 2 for any
noncontextual hidden-variable theories [51]. Without loss of
generality, one angle can be eliminated by setting, for example,
α = 0 (α1 = α2 = 0), which gives

S(α′,β,β ′,γ ) = |− sin α′
1[cos(α′

2 − β2 − γ ) sin β1

+ cos(α′
2 − β ′

2 − γ ) sin β ′
1] − cos α′

1

× (cos β1 + cos β ′
1) − cos β1 + cos β ′

1|. (9)

Keeping the polar angles α′
1, β1, and β ′

1 constant at the
usual Bell angles α′

1 = π/2, β1 = π/4, and β ′
1 = 3π/4 (and

azimuthal parts fixed at α′
2 = β2 = β ′

2 = 0) reduces S to

S(γ ) = |−
√

2 −
√

2 cos γ |, (10)

where the familiar maximum value of 2
√

2 is reached for
γ = 0. For γ = π , the value of S approaches zero.

1. Polar angle adjustment

Here we consider the case when the azimuthal angles
are kept constant, for example, α′

2 = β2 = β ′
2 = 0 (α2 = 0),

denoted as

S(α′
1,β1,β

′
1,γ ) = |− sin α′

1(cos γ sin β1 + cos γ sin β ′
1)

− cos α′
1(cos β1 + cos β ′

1) − cos β1

+ cos β ′
1|. (11)
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The polar Bell angles β1, β ′
1, and α′

1 (α1 = 0), yielding a
maximum S value, can be determined, with respect to the
geometric phase γ , by calculating the partial derivatives (the
extremum condition) of S in Eq. (11):

∂S

∂β1
= sin β1 + cos α′

1 sin β1 − cos γ sin α′
1 cos β1 = 0,

∂S

∂β ′
1

= − sin β ′
1 + cos α′

1 sin β ′
1 − cos γ sin α′

1 cos β ′
1 = 0,

∂S

∂α′
1

= sin α′
1(cos β1 + cos β ′

1)

− cos γ cos α′
1(sin β1 + sin β ′

1) = 0. (12)

The solutions are given by

β1 = arctan(cos γ ), (13a)

β ′
1 = π − β1, (13b)

α′
1 = π

2
. (13c)

With these angles, the maximal S decreases for γ : 0 → π/2
and touches at γ = π/2 even the limit of the CHSH inequality
S = 2.

2. Azimuthal angle adjustment

Next we discuss the situation where the standard maximal
value S = 2

√
2 can be achieved by keeping the polar angles α′

1,
β1, and β ′

1 constant at the Bell angles α′
1 = π/2, β1 = π/4,

and β ′
1 = 3π/4 (α1 = 0), while the azimuthal parts, α′

2, β2,

and β ′
2 (α2 = 0), are varied. The corresponding S function is

denoted as

S(α′
2,β2,β

′
2,γ ) =

∣∣∣∣∣−
√

2 −
√

2

2
[cos(α′

2 − β2 − γ )

+ cos(α′
2 − β ′

2 − γ )]

∣∣∣∣∣ . (14)

The maximum value 2
√

2 is reached for

β2 = β ′
2, (15a)

α′
2 − β ′

2 = γ (mod π ). (15b)

For convenience, β2 = 0 is chosen.
The conditions expressed in Eqs. (13a), (13b), and (15b)

(see Bloch spheres in Fig. 1) are experimentally realized using
the spin turner device and the neutron interferometer (IFM)
depicted in Fig. 1.

III. DESCRIPTION OF THE EXPERIMENT

A. State preparation

The preparation of entanglement between spatial and spinor
degrees of freedom is achieved by a beam splitter and a
subsequent spin-flip process in one subbeam: Behind the beam
splitter (first plate of the IFM), the neutron’s wave function is
found in a coherent superposition of |I〉 and |II〉, and only the
spin in |II〉 is flipped by the first radiofrequency (rf) flipper
within the interferometer (see Fig. 1).

FIG. 1. (Color online) Experimental apparatus for joint measurement of spinor and path degrees of freedom with respect to the geometric
phase. The incident neutron beam is polarized by a magnetic field prism. The spin state acquires a geometric phase γ during the interaction
with a rf field within the interferometer. The second rf flipper compensates the energy difference between the two spin components because of
its frequency of ω/2, which is depicted in the energy level diagram of the two interfering subbeams. The accelerator coil is used to eliminate
dynamic phase contributions. The beam block is required for measurements solely in one path (±ẑ direction of the path measurement). Finally,
the spin is rotated by an angle δ (in the x̂,ẑ plane) by a dc-spin turner for a polarization analysis and count rate detection. The Bloch-sphere
description includes the measurement settings of α and β(δ), determining the projection operators used for joint measurement of spin and path;
α is tuned by a combination of the phase shifter (χ ) and the beam block, and β is adjusted by the angle δ.
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The entangled state that emerges from a coherent superpo-
sition of |I〉 and |II〉 is expressed as

|�Bell〉 = 1√
2

(|I〉 ⊗ |⇑〉 + |II〉 ⊗ eiωt eiφI |⇓〉), (16)

after the interaction with the oscillating field, given by B(1) =
B

(ω)
rf cos(ωt + φI) · ŷ. The time-dependent phase ωt is due to

the interaction with the time-dependent magnetic field, where
the total energy of the neutron is no longer conserved [52–54]
since photons of energy h̄ω are exchanged with the rf field
(for a more detailed description of the generation of |�Bell〉,
see [29]).

B. Manipulation of geometric and dynamical phases

The effect of the first rf flipper, placed inside the interfer-
ometer (path II), is described by the unitary operator Û (φI),
which induces a spinor rotation from |⇑〉 to |⇓〉, denoted
as Û (φI)|⇑〉 = eiφI |⇓〉. The rotation axis encloses an angle
φI with the ŷ direction and is determined by the oscillating
magnetic field B(1) = B

(ω)
rf cos(ωt + φI) · ŷ. Without loss of

generality, one can insert a unity operator, given by 1l =
Û †(φ0)Û (φ0), yielding

Û (φI)|⇑〉 =
eiγ︷ ︸︸ ︷

Û (φI)Û
†(φ0) Û (φ0)|⇑〉︸ ︷︷ ︸

1

= eiγ |⇓〉, (17)

where Û (φ0) can be interpreted as a rotation from |⇑〉 to
|⇓〉, with the ŷ direction being the rotation axis (φ0 = 0), and
Û †(φ0) describes a rotation about the same axis back to the
initial state |⇑〉. Consequently, Û (φI)Û †(φ0) can be identified
to induce the geometric phase γ along the reversed evolution
path characterized by φ0 (|⇓〉 to |⇑〉), followed by another
path determined by φI (|⇑〉 to |⇓〉). In the rotating frame of
reference [55], the two semigreat circles enclose an angle φI

and the solid angle � = −2φI, yielding a pure geometric phase

γ = −�/2 = φI, (18)

which is depicted in Fig. 2. The entangled state, as described
in [48], is represented by

|�Exp(γ )〉 = 1√
2

(|I〉 ⊗ |⇑〉 + |II〉 ⊗ eiωt eiγ |⇓〉), (19)

including the geometric phase γ = φI and a time-dependent
dynamic phase ωt . Note that in the last equation, we have
neglected relative phase shifts between path I and II at the beam
splitter (first plate of the IFM) because they can be adjusted
reliably with a phase shifter plate inducing a phase factor eiχ

(see Sec. III D for details). In the next step, an experimental
strategy to cancel the dynamic phase component, by use of
a second rf flipper [29], is utilized: At the last plate of the
interferometer, the two subbeams are recombined, followed by
an interaction with the second rf field, with half frequency ω/2
denoted as B(1) = B

(ω)
rf cos((ω/2)t + φII) · ŷ. The value of φII

was set to zero during the complete experiment. Therefore the
spin-down component (spin-up from path I, which is flipped
at the second rf flipper) acquires a phase ω/2(t + T ), which is

FIG. 2. (Color online) Bloch sphere representation of the spinor
evolution within the first rf flipper, placed inside the interferometer
(path II), in the rotating frame of reference. The geometric phase γ

is given by minus half of the solid angle �, traced out by the state
vector, depending on the phase φI of the oscillating magnetic field in
the rf flipper.

the same amount but opposite sign of the phase of the spin-up
component (path II). The final state is given by

|�Fin(γ )〉 = (|I〉 + |II〉) ⊗ 1√
2

[eiω/2(t+T )eiφII |⇓〉

+ eiχeiωt e−iω/2(t+T )ei(γ−φII)|⇑〉]
∝ (|I〉 + |II〉) ⊗ 1√

2
[eiχei(γ−ωT )|⇑〉 + |⇓〉],

(20)

where ωT is the zero-field phase, with T being the neutron’s
propagation time between the two rf flippers and the geometric
phase γ = φI. The instants when the neutron is at the center
of the first and second flipper coil are denoted as t and t + T ,
respectively. The energy difference between the orthogonal
spin components is compensated by choosing a frequency of
ω/2 for the second rf flipper, yielding a stationary state vector
(see energy level diagram in Fig. 1).

In our experiment, the |⇑〉 eigenstate (in paths I and II) also
acquires a dynamical phase as it precesses about the magnetic
guide field in the +ẑ direction. After a spin flip (only in path
II), the |⇓〉 eigenstate still gains another dynamical phase but
of opposite sign compared to the situation before the spin flip.
The phases of the two guide fields and the zero-field phase ωT

are compensated by an additional Larmor precession within a
tunable accelerator coil with a static field, pointing in the +ẑ
direction.

An alternative approach toward the generation of the
geometric phase is introduced in Sec. IV, where two rf flippers,
one inside and one outside of the interferometer, contribute to
the geometric phase.
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C. Joint measurements

Experimentally, the probabilities of joint (projective) mea-
surements are proportional to the following count rates,
detected after path (α) and spin (β) manipulation:

N++(α,β) = N++[α,(β1,0)] ∝ 〈�Exp(γ )|P̂ p
+(α)

⊗P̂ s
+(β1,0)|�Exp(γ )〉,

N+−(α,β) = N++[α,(β1 + π,0)] ≡ N++[α,(β⊥
1 ,0)]

∝ 〈�Exp(γ )|P̂ p
+(α) ⊗ P̂ s

+(β⊥
1 ,0)|�Exp(γ )〉,

N−+(α,β) = N++[(α1 + π,α2),(β1,0)]

≡ N++[(α⊥
1 ,α2),(β1,0)] ∝ 〈�Exp(γ )|P̂ p

+(α⊥
1 ,α2)

⊗P̂ s
+(β1,0)|�Exp(γ )〉,

N−−(α,β) = N++[(α⊥
1 ,α2),(β⊥

1 ,0)] ∝ 〈�Exp(γ )|P̂ p
+(α⊥

1 ,α2)

⊗P̂ s
+(β⊥

1 ,0)|�Exp(γ )〉. (21)

The expectation value of a joint measurement of Ap(α) and
Bs(β),

E(α,β) = 〈�(γ )|Ap(α) ⊗ Bs(β)|�(γ )〉, (22)

is experimentally determined from the count rates

E(α,β)

= N++(α,β) − N+−(α,β) − N−+(α,β) + N−−(α,β)

N++(α,β) + N+−(α,β) + N−+(α,β) + N−−(α,β)
.

(23)

With these expectation values, S is defined by

S = E(α,β) − E(α,β ′) + E(α′,β) + E(α′,β ′). (24)

D. Experimental setup

The experiment was carried out at the neutron inter-
ferometer instrument S18 at the high-flux reactor of the
Institute Laue-Langevin in Grenoble, France. A sketch of
the setup is depicted in Fig. 1. A monochromatic beam with
mean wavelength λ0 = 1.91 Å(
λ/λ0 ∼ 0.02) and 5 × 5 mm2

beam cross section is polarized by a birefringent magnetic field
prism in the ẑ direction [56]. Owing to the angular separation
at the deflection, the interferometer is adjusted so that only
the spin-up component fulfills the Bragg condition at the first
interferometer plate (beam splitter).

As in our previous experiment [29], the spin in path |II〉 is
flipped by a rf flipper, which requires two magnetic fields: a
static field B0 · ẑ and a perpendicular oscillating field B(1) =
B

(ω)
rf cos(ωt + φI) · ŷ with amplitude

B
(ω)
rf = πh̄

τ |µ| , ω = 2|µ|B0

h̄

(
1 + B2

1

16B2
0

)
, (25)

where µ is the magnetic moment of the neutron and τ denotes
the time the neutron is exposed to the rf field. The second term
in ω is due to the Bloch-Siegert shift [57]. The oscillating field
is produced by a water-cooled rf coil with a length of 2 cm,
operating at a frequency of ω/2π = 58 kHz. The static field
is provided by a uniform magnetic guide field B

(ω)
0 ∼ 2 mT,

produced by a pair of water-cooled Helmholtz coils.

The two subbeams are recombined at the third crystal
plate where |I〉 and |II〉 only differ by an adjustable phase
factor eiχ (path phase χ is given by χ = −NbcλD, with
the thickness of the phase shifter plate D, the neutron
wavelength λ, the coherent scattering length bc, and the particle
density N in the phase shifter plate). By rotating the plate,
χ can be varied systematically. This yields the well-known
intensity oscillations of the two beams emerging behind the
interferometer.

The O-beam passes the second rf flipper, operating at
ω/2π = 29 kHz, which is half the frequency of the first rf
flipper. The oscillating field is denoted as B

(ω/2)
rf cos((ω/2)t +

φII) · ŷ, and the strength of the guide field was tuned to
B

(ω/2)
0 ∼ 1 mT in order to satisfy the frequency resonance

condition. This flipper compensates the energy difference
between the two spin components by absorption and emission
of photons of energy E = h̄ω/2 (see [29]).

Finally, the spin is rotated by an angle δ (in the x̂,ẑ plane)
with a static field spin turner and is analyzed due to the spin-
dependent reflection within a Co-Ti multilayer supermirror
along the ẑ direction. With this arrangement, consisting of a
dc spin turner and a supermirror, the spin can be analyzed
along arbitrary directions in the x̂,ẑ plane, determined by δ,
which is measured from the ẑ axis [see Fig. 1 and later Fig. 3
(front) for intensity modulations due to χ scans].

E. Experimental strategy

1. Polar angle adjustment

Projective measurements are performed on parallel planes
defined by α2 = α′

2 = β2 = β ′
2 = 0 (see Fig. 1). For the path

measurement, the directions are given by α : α1 = 0, α2 = 0
(Fig. 4) and α′ : α′

1 = π/2, α′
2 = 0 (Fig. 3).

The angle α, which corresponds to +ẑ (and −ẑ for α⊥
1 =

α1 + π = π, α2 = 0), is achieved by the use of a beam block
which is inserted to stop beam II (I) in order to measure along
+ẑ (and −ẑ). The corresponding operators are given by

P̂
p
+z(α1 = 0, α2 = 0) = |I〉〈I|,

(26)
P̂

p
−z(α

⊥
1 = π, α2 = 0) = |II〉〈II|.

The results of the projective measurement are plotted versus
different angles δ of the spin analysis, which is depicted in
Fig. 4. Complementary oscillations were obtained because of
the spin flip in path |II〉. These curves are insensitive to the
geometric phase γ because of the lack of superposition with a
referential subbeam.

The angle α′ is set by a superposition of equal portions of |I〉
and |II〉, represented on the equator of the Bloch sphere. The
interferograms are achieved by a rotation of the phase shifter
plate associated with a variation of the path phase χ , repeated at
different values of the spin analysis direction δ. The projective
measurement for α′

1 = π/2,α′
2 = 0 corresponds to a phase

shifter position of χ = 0 (and α′
1
⊥ = α′

1 + π = 3π/2,α′
2 = 0

to χ = π ). Projection operators read as

P̂
p
+x

(
α′

1 = π

2
,α′

2 = 0
)

= 1

2
[(|I〉 + |II〉)(〈I| + 〈II|)],

(27)

P̂
p
−x

(
α′⊥

1 = 3π

2
,α′

2 = 0

)
= 1

2
[(|I〉 − |II〉)(〈I| − 〈II|)].
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FIG. 3. (Color online) Typical interference patterns of the O-beam (α′
1 = π/2) for δ = 0, π/8, π/4, π/2, 3π/4, being the direction of

the spin analysis, and geometric phase (left) γ = 0 and (right) γ = π/6. Intensities at the path phase χ = 0 and χ = π are extracted from
least square fits of the oscillations. (rear) The resulting curves represent the projections to the ±x̂ direction of the path subspace, denoted as
P̂

p
+x : (α′

1 = π/2, α′
2 = 0) and P̂

p
−x : (α′⊥

1 = 3π/2, α′
2 = 0). The shift of the oscillations (see, e.g., δ = π/2) because of the geometric phase

γ yields a lower contrast of the curves P̂
p
+x and P̂

p
−x .

The interferogram obtained for γ = 0 and δ = π/2 (Fig. 3)
is utilized to determine the zero point of the path phase χ ,
which defines the +x̂ direction (α′

1 = π/2, α′
2 = 0) for the

path measurement.
In order to obtain phase-shifter scans of higher accuracy,

scans over two periods were recorded (see Fig. 3), and the
values for χ = 0 and π are extracted from the data by least
square fits. These extracted points, marking the ±x̂ direction
of the path measurement, are plotted versus different angles of
δ, as shown in Fig. 3 (rear).

All phase-shifter scans were repeated for different angles δ

for the spin analysis from δ = 0 to δ = π in steps of π/8, and
for several geometric phases γ (steps of π/6, and beginning
from γ = π , steps of π/4), as depicted in Fig. 3 (rear) for
five selected settings of δ (δ = 0,π/8,π/4,π/2,3π/4) and two
geometric phases (γ = 0,π/6).

2. Azimuthal angle adjustment

Here the Bell angles (polar angles) remain fixed at the usual
values and are set at δ for the projective spin measurement and
by the beam block (and fixed phase shifter positions) for the

 Path I (α   = 0):        α  α   = π= π)::

1

0.5

−π 0 π

Path IIPath II ((1 11
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FIG. 4. (Color online) Typical intensity modulations obtained by
inserting a beam block, being the projections on the ±ẑ direction of
the path measurement, denoted as P̂

p
+z : (α1 = 0,α2 = 0) and P̂

p
−z :

(α⊥
1 = π,α2 = 0). The oscillations remain the same when altering the

geometric phase.

path measurement. The angle between the measurement planes
is adjusted by one azimuthal angle (α′

2), which is deduced by
phase-shifter (χ ) scans.

For the spin measurement, the directions are fixed and given
by β: β1 = π/4, β2 = 0 and β ′: β ′

1 = 3π/4, β ′
2 = 0 (together

with β⊥
1 = −3π/4, β ′⊥

1 = −π/4; see Fig. 1 for a Bloch
description and Fig. 5 for measured interference patterns).
For the projective path measurement, the fixed directions read
as α1 = 0 (α⊥

1 = π ; see Fig. 4 for measurements with beam
block) and α′

1 = π/2 (α′⊥
1 = 3π/2). Phase-shifter (χ ) scans

0

Path Phase, Path Phase, χ χ (rad)(rad)
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δ = π/4 =δ = π/4 = β  β  1

δ = 3π/4 = δ = 3π/4 = β  β  1

−

δ = − π/4 = δ = − π/4 = β    β    1

−

−−

δ = − 3π/4 = δ = − 3π/4 = β  β      1
−−

δ = π/4 =δ = π/4 = β  β  1

δ = 3π/4 = δ = 3π/4 = β  β  1

−

δ = − π/4 = δ = − π/4 = β    β    1

−

−−

δ = − 3π/4 = δ = − 3π/4 = β    β    1
−−

FIG. 5. (Color online) Typical interference patterns of the O-
beam (α′

1 = π/2) for δ = π/4 = β1, δ = 3π/4 = β ′
1, δ = −3π/4 =

β⊥
1 , and δ = −π/4 = β ′

1
⊥ (β2 = β ′

2 = 0) and geometric phase (left)
γ = 0 and (right) γ = π/6. Phase shifter scans χ are performed for
a forthcoming determination of α′

2.
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FIG. 6. (Color online) S values for different settings of geometric
phases γ , derived from the least square fits of the projective
measurements along ±ẑ (beam block, Fig. 4) and ±x̂ (varying χ ,
Fig. 3) directions for the path measurement (α1 = 0, α′

1 = π/2, and
α2 = α′

2 = 0) using Eq. (11); β1 and β ′
1 represent the directions of

the spin analysis, which are changed systematically by a variation
of δ, while β2 and β ′

2 remain constant at the value zero (polar
adjustment). The position of the maximum is determined numerically
for different settings of the geometric phases γ (here, e.g., γ = 0
where SMAX = 2

√
2, γ = π/2 with SMAX = 2, and γ = π with

SMAX = 2
√

2). The β1 and β ′
1 values result, as predicted, in Eqs. (13a)

and (13b) for SMAX.

are performed in order to determine α′
2, which is depicted

in Fig. 5 for two values of the geometric phase: γ = 0 and
γ = π/6. One can see a shift of the oscillations due to the
geometric phase γ .

F. Data analysis and experimental results

1. Polar angle adjustment

Using least square fits from the polar angle adjustment
measurement curves in Figs. 3 and 4, together with Eq. (24),
the S value is calculated as a function of the parameters β1 and
β ′

1 which are plotted in Fig. 6 for γ = 0, γ = π/2, and γ = π

(γ = 0 and γ = π are chosen since the fringe displacement
is maximal for these two settings and γ = π/2 illustrates the
increase of S to a value of 2). The local maximum of the
surface is determined numerically. The settings for β1 and β ′

1,
yielding a maximal S value, are compared with the predicted
values for β1 and β ′

1 from Eqs. (13a) and (13b), respectively.
The resulting S values, derived using the adjusted Bell

angles β1 and β ′
1, are plotted in Fig. 7(a) versus the geometric

phase γ . The theoretical predictions from Eq. (11) depicted as
a solid green line are evidently reproduced. The maximal S

decreases from γ = 0 to γ = π/2, where the boundary of the
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FIG. 7. (Color online) (a) Polar-adjusted S values vs. geometric
phase γ with adapted Bell angles (β1 and β ′

1) according to the
geometric phase γ . (b) Corresponding modified Bell angles plotted
vs. the geometric phase γ .

CHSH inequality S = 2 is reached, followed by an increase to
the familiar value S = 2

√
2.

In Fig. 7(b), the deduced β1 and β ′
1 values are plotted

versus the geometric phase γ ; β1 and β ′
1 follow the theoretical

behavior (solid green line) predicted by Eqs. (13a) and (13b).
One can see a peak for β1 (and a dip for β ′

1) at γ = π .

2. Azimuthal angle adjustment

In Fig. 8 we depict selected S values calculated from least
square fits of the azimuthal angle adjustment measurements,
where β1 = π/4, β ′

1 = 3π/4, β⊥
1 = 5π/4, β ′

1
⊥ = −π/4, and

α′
1 = π/2 (see Fig. 5) and α1 = 0, α⊥

1 = π (Fig. 4) versus
geometric phase γ . A simple shift of the oscillation of the S

value is observed because of the geometric phase [see Fig. 8
(front)]. The maximum S value of 2

√
2 is always found for

α′
2 = γ , which is indicated in Fig. 8 (rear). The complete

measurement set of S values versus the geometric phase γ

is plotted in Fig. 9(a) (S value azimuthal adjusted). If no
adjustment is applied to α2, which means α′

2 is always kept
constant at α2 = 0, S approaches zero at γ = π and returns
to the maximum value 2

√
2 at γ = 2π [see Fig. 9(a), S value

without adjustment].
Figure 9(b) shows adjusted α′

2 versus the geometric phase
γ : It is clearly seen that adjusted α′

2 fulfills the theory condition
(solid green line), namely, a linear dependency as expressed
in Eq. (15a).

IV. DISCUSSION

If no corrections are applied to the Bell angles, the S

value decreases from 2
√

2 at γ = 0 to zero at γ = π and
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FIG. 8. (Color online) S values derived from least square fits of
the projective spin and path measurements for β1 = π/4, β ′

1 = 3π/4,
β⊥

1 = −3π/4, β ′
1
⊥ = −π/4, and α′

1 = π/2,α′⊥
1 = 3π/2 (see Fig. 5)

and α1 = 0, α⊥
1 = π (see Fig. 4) vs. geometric phase γ . The maximum

S value of 2
√

2 is always found for α′
2 = γ , as predicted in Eq. (15a)

(azimuthal adjustment). If no corrections are applied to the Bell angles
(α′

2 = 0), S approaches zero at γ = π .

regains the value of 2
√

2 at γ = 2π [Fig. 9(a), S value
without adjustment]. Keeping the azimuthal angles fixed, an
appropriate adjustment of the polar Bell angles determined by
the geometric phase [β1 = arctan(cos γ )] yields a sinusoidal
oscillation of the S value [2 � S � 2

√
2, with period π ;

see Fig. 7(a)]. Finally, the maximum S value of 2
√

2 can
be observed for all values of the geometric phase γ if the
difference of the azimuthal angles (angle between the analysis
planes) equals the geometric phase (α′

2 = γ ), while the polar
Bell angles remain unchanged at typical values for testing of
a Bell inequality [Fig. 9(a), S value azimuthal adjusted].

Owing to the inherent phase instability of the neutron inter-
ferometer, it is necessary to perform a reference measurement
for each setting of γ and δ. This is achieved by turning off
the rf flipper inside the interferometer, yielding a reference
interferogram. The oscillations plotted in Figs. 3 and 5 are
normalized by the contrast of the reference measurement.

At this point it should be noted that the average contrast
of ∼50% (obtained for δ = π/2 with maximum intensity of
∼25 neutrons/s) is below the threshold of 70.7% required
to observe a violation of a Bell inequality. Violation of a
Bell-like inequality for a spin-path entanglement in neutron
interferometry has already been reported in [16]; the argument
in this article is the influence of the geometric phase on the
S value. Consequently, a normalization as performed does not
influence the validity of the results presented here.

Next we want to discuss some systematic errors in our
experiment, in particular, in the state preparation and in
the projective spin measurement. Under ideal conditions, no
interference fringes should be obtained in the H beam because
of the orthogonal spin states in the interfering subbeams.
Nevertheless, we have observed intensity modulations with
a contrast of a few percent. This indicates that the state
preparation (rf flipper) was not perfect in some sense. The
expectation values for the joint measurements [Eqs. (7)–(11)]
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FIG. 9. (Color online) (a) Azimuthal-adjusted S values vs.
geometric phase γ with balanced Bell angle (α′

2) according to
the geometric phase γ and without corrections. (b) Corresponding
modified Bell angle plotted vs. the geometric phase γ .

can be deduced for an arbitrary (spin) state in the path of the
IFM where the rf flipper is located:

|�Meas.(γ )〉 = 1√
2

[
|I〉 ⊗ |⇑〉 + eiχ |II〉 ⊗ eiγ

(
sin

θ

2
|⇑〉

+ eiωt cos
θ

2
|⇓〉

)]
. (28)

Here θ is determined by the fringe contrast in the H beam.
These systematic deviations from the theoretical initial state
have been taken into account in the calculation of the final
S value.

The asymmetry in the curve of the projective measurement
along the ±x̂ direction of the path measurement, denoted as
P̂

p
+x : (α′

1 = π/2, α′
2 = 0) and P̂

p
−x : (α′⊥

1 = 3π/2, α′
2 = 0) in

Fig. 3, is considered to result from a misalignment of the static
magnetic fields at the position of the coil such as the stray
field of the first guide field, the second guide field, and the two
fields in the (x̂,ẑ) direction produced by the coil itself.

At this point we want to introduce an alternative approach
toward the generation of geometric phase, where unlike in the
proposed setup in [48], the geometric phase is not acquired
solely in one arm of the interferometer. Here the two rf
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FIG. 10. (Color online) Bloch sphere representation of the spinor
evolution within the first rf flipper (frequency ω, φI = π/2) placed
inside the interferometer (path II) and second rf flipper (frequency
ω/2, φII = 0). The geometric phase γ is given by minus half of the
solid angle �, traced out by the state vector.

flippers, one inside and one outside of the interferometer,
contribute to the geometric phase generation, while dynamic
phases accumulated in the two curves are canceled [58,59].
(For simplicity, we assume here two rf flippers in the same
length.) From the laboratory frame, the spinor evolution within
the rf flipper placed inside the interferometer (path II) and the
second rf flipper is the following: The neutron spin traces
out a curve from |⇑〉 to |⇓〉 on the Bloch sphere, whose
polar and azimuthal angles increase linearly with time at the
rates ω. The spin returns to its initial state |⇑〉 when passing
the second rf flipper operating at a frequency of ω/2. The
|⇑〉-to-|⇓〉 and |⇓〉-to-|⇑〉 curves intersect the equator at the
azimuthal angles ωt + φI − π/2 and ω(t + T )/2 + φII + π/2,
respectively, which can be seen in Fig. 10. The solid angle �

yields a pure geometric phase γ = −�/2, as in [60,61]. The
geometric phase γ acquired on path II is given by

γ = −�/2 = ωt − ω/2(t + T ) + φI − φII − π

= ω(t − T )/2 + φI − π (29)

because φII = 0, with t and t + T denoting the instants when
the neutron is at the center of the first and second flipper
coil, respectively. The term π arises from the second spin flip
(|⇓〉-to-|⇑〉), starting at an azimuthal angle further than the
up-to-down curve by π .

The time-dependent phase is eliminated, as already dis-
cussed in Sec. III B; the reference beam (path I) is also exposed
to the second rf flipper placed outside the interferometer, op-
erating at frequency ω/2. Therefore the spin-down component
(spin-up from path I and flipped at second rf flipper) acquires
a phase ω/2(t + T ), which is the same amount but opposite
sign of the spin-up component (path II). Consequently, the
time dependence of the phase is compensated by choosing
a frequency of ω/2 for the second rf flipper. This results in
observation of a time-independent phase with the only variable
part being φI (the remaining terms are given by π and ωT ,
with T being the neutrons’ propagation time between the two
rf flippers [62]).

V. CONCLUSION

We have demonstrated a technique to balance the influence
of the geometric phase generated by one subspace of the
system, considering a Bell-like inequality. This is achieved
by an appropriate adjustment of the polar Bell angles (keeping
the measurement planes fixed) or one azimuthal angle (keeping
the polar Bell angles at the well-known values), determined
by a laborious measurement procedure. It is demonstrated, in
particular, that a geometric phase in one subspace does not lead
to a loss of entanglement, determined by a violation of a Bell-
like inequality. The experimental data are in good agrement
with theoretical predictions presented in [48], demonstrating
the correctness of the procedure as a matter of principle.
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[39] E. Sjöqvist, A. K. Pati, A. Ekert, J. S. Anandan, M. Ericsson,

D. K. L. Oi, and V. Vedral, Phys. Rev. Lett. 85, 2845 (2000).
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