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Overlap of quantum many-body states with a separable state and
phase transitions in the Dicke model: Zero and finite temperature
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Overlap with the separable state is introduced in this article for the purpose of characterizing the overall
correlation in many-body systems. This definition has clear geometric and physical meaning and moreover
can be considered as the generalization of the concept of the Anderson orthogonality catastrophe. As an
exemplification, it is used to mark the phase transition in the Dicke model for zero and finite temperatures, and
the discussion shows that it can faithfully reflect the phase transition properties of this model whether for zero
or finite temperature. Furthermore, the overlap for the ground state also indicates the appearance of multipartite
entanglement in the Dicke model.
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I. INTRODUCTION

Correlation in condensed matter systems predominates
the understanding of many-body effects. Fundamentally, one
can define different correlation functions for describing the
unusual connections in many-body systems. For instance, it
is generally accepted to introduce the order parameter for the
description of phase transitions induced by local perturbation
and furthermore to classify the diverse phase transitions by
scaling the singularity of correlation functions with the univer-
sal critical exponents. This is the so-called Landau-Ginzburg-
Wilson (LGW) paradigm [1]. However the situation becomes
different for the strongly correlated electronic systems. The
quantum Hall effect appearing in a two-dimensional electron
gas with a high magnetic field shows distinct features not
captured by the LGW paradigm. Instead, topological order is
consequently defined to describe the underlying symmetry in
quantum Hall systems, which is distinct from the notion of
spontaneously broken symmetry [2].

Recently, extensive research on quantum entanglement in
condensed matter systems has shown the potentiality that
quantum entanglement would act as a universal description
for many-body effects [3,4]. In particular, some general
conclusions have been obtained about the connection between
quantum entanglement and quantum phase transition in many-
body systems. The concurrence, a measurement of two-party
entanglement, has been shown to behave singularly at the crit-
ical point of the one-dimensional spin-half XY model, and the
critical exponents can also be obtained by scaling this singu-
larity [5,6]. Furthermore, the block entanglement entropy has
been shown to display logarithmical divergency with the block
size at critical points, and the scaling factor is directly related to
the central charge of the conformal field theory [7]. Moreover,
the universal area law for the entanglement entropy has
also been constructed exactly in one-dimensional spin-chain
systems [4], and similar behavior for single-copy entanglement
is also found [8]. Recently, the entanglement spectrum has
been defined to obtain general information about many-body
systems [9–11]. As for quantum Hall systems, it is shown that
the scaling behavior of entanglement entropy is directly related
to the quantum number, which is used to characterize the topo-
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logical order [12], and entanglement spectrum can also be used
to detect the nonlocal features of quantum Hall systems [9].

Although important progress has been made, there are a few
exceptions that lead to the suspicion of the validity of quantum
entanglement as an universal description for many-body
effects. Entanglement entropy sometimes provides ambiguous
information about the phase transitions in higher dimensional
many-body systems [4]. Even for one-dimensional systems,
it cannot present complete information in some situations.
As an example, recent studies have shown that the block
entanglement entropy for the valence-bond-solid (VBS) state
of integer spin seems insensible to the degeneracy manifested
by the underlying topological symmetry and also does not
display dependence on the parity of spin number s, but both can
be manifested clearly by introducing a string order parameter
[13]. As for quantum Hall systems, the entanglement entropy
and entanglement spectrum have also been shown to have
limited ability in identifying topological orders [11].

From the author’s point of view, this defect would attribute
to the trace-out of the superfluous degrees of freedom when one
obtains the reduced density matrix, and some information on
global features in many-body systems is inevitably lost. This
point has been exemplified in a recent article of our group
[14], in which geometric entanglement (GE) as a measure of
multipartite entanglement is calculated for a VBS state. The
interesting result in this article is that GE displays two different
scaling behaviors dependent on the parity of spin number s, and
the global GE is divergent linearly with the particle number.

Through this short introduction, it seems promising to
measure multipartite entanglement in order to obtain complete
information for many-body effects. Recently, some efforts
have been made in this direction. The connection between
multipartite entanglement and quantum phase transition has
been discussed in some special models [14–17]. However,
the crucial obstacle for further development is the absence
of the unified understanding of the multipartite entanglement
[18,19]. Whereas the maximally entangled state can be defined
unambiguously for bipartite systems, what is the maximally
entangled state for multipartite systems has been unclear
until now [19]. Fortunately, it is well accepted that the fully
separable state can be defined as

ρsep =
∑

i

piρ
(i)
1 ⊗ ρ

(i)
2 ⊗ · · · ⊗ ρ

(i)
N , (1)
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where N is the particle number and pi denotes the common
probability with which the single-particle state ρ(i)

n (n =
1,2, . . . ,N) happens. With respect to this point, GE is
introduced first by Shimony for the pure bipartite state [20]
and is later generalized to the multipartite case by Carteret
et al. [21], Barnum and Linden [22], and Wei and Goldbart
[23], and to the mixed state by Cao and Wang [24]. GE is
a genuine multipartite entanglement measurement. The main
idea of GE is to minimize the distance D between the state
|�〉 to be measured and the fully separable state |�〉 in Hilbert
space:

D = min
{|�〉}

{‖|�〉 − |�〉‖2}. (2)

For the normalized |�〉 and |�〉, the evaluation of D is reduced
to find the maximal overlap [23]:

�(�) = max
{|�〉}

|〈�|�〉|. (3)

Geometrically, �(|�〉) depicts the overlap angle between the
vectors |�〉 and |�〉 in Hilbert space. Then, the larger �(|�〉)
is, the shorter is the distance and the less entangled is |�〉.
But the optimum is in general a forbidden task, not spoken for
a mixed state, and the analytical results can be obtained only
for some very special cases [16,17,24]. Recently, many efforts
have been devoted to the reduction of the optimum, and some
interesting results have been obtained [25].

Given this difficulty, I introduce another different quantity
in this article to capture the overall correlation in condensed
matter systems, that is, the overlap with a special fully
separable state. The starting point is still to find the minimal
distance between the state to be measured and a special fully
separable state defined in the next section. In contrast to GE, the
optimum can be reduced by utilizing the geometric property of
the overlap, and this overlap has very clear physical meaning,
whether for a pure or mixed state. In Sec. II, the definition
of this overlap is introduced, and the differences with several
known similar definitions are clarified. Furthermore, we point
out that our definition is connected intimately with the concept
of the Anderson orthogonality catastrophe (AOC) [26,27]. As
an illustration of the validity of our definition, the collective
phase transition appearing in the Dicke model is discussed
per this quantity in Sec. III. Multipartite entanglement in
this model is also studied (Sec. IV) for displaying the
potential connection between this overlap and multipartite
entanglement. Finally, conclusions and further discussion are
presented in Sec. V.

II. OVERLAP WITH FULLY SEPARABLE STATE

Similar to the introduction of GE, our starting point is also
to find the minimal distance D between the fully separable
state ρsep and the state ρ to be measured:

D = min
{ρsep}

{‖ρ − ρsep‖2}. (4)

Generally, this minimal distance is still decided mainly by the
maximal overlap

� = max
{ρsep}

Tr[ρρsep]. (5)

The density matrix can also be written as the Bloch form

ρ =
⎛
⎝I +

d2−1∑
i=1

riλi

⎞
⎠/ d, (6)

where d denotes the dimension, λi is the generator of the SU(d)
group, and {ri} is the so-called Bloch vector [28]. Thus � has
clear geometric meaning which depicts the minimal overlap
angle θ between the Bloch vectors {ri} and {ri}sep in the Bloch
vector space, that is,

max
{ρsep}

Tr[ρρsep] = 1

d
(1 + |{ri}||{ri}sep| cos[min

{θ}
θ ]). (7)

Two limit cases are beneficial to the understanding of the
physical meaning of θ . For cos θ = 1, the overlap is maximal,
and ρ and ρsep share the same physical characters since
Bloch vector {ri} is the reflection of the intrinsic symmetry
in the systems [28], whereas for cos θ = −1, one has minimal
overlap, and ρsep shows distinct properties from ρ.

In contrast to the Bures fidelity [29], the overlap � has
clear geometric meaning whether for a pure or mixed state,
as shown earlier. Furthermore, with this geometric meaning,
the optimal procession can be reduced to find the fully
separable state ρsep sharing the same physical properties with ρ

(see Appendix A for a proof). Moreover, this definition is more
popular than Eq. (3). First � comes back to the form Eq. (3)
for pure states. Second, Eq. (5) includes the case when one
state is pure and the other is mixed. This situation always
happens as exemplified in Ref. [24] but is not covered in the
original discussion [23]. Third, for a mixed state, the geometric
characteristics of GE become ambiguous because of the convex
roof construction [23], whereas the geometric meaning of �

is clear whether for a pure or mixed state.
With these advantages, the evaluation of �, however, is

difficult for mixed-state ρsep since there are infinite pos-
sibilities of the decomposition of ρsep. Recently we note
a popular concept in condensed matter physics, the AOC
[26,27], which refers to the vanishing of the overlap between
the many-body ground states with and without the potential as
a power law in the number of particles in the systems. AOC is
defined as

� = |〈�|�p〉|2, (8)

where |�p〉 and |�〉 correspond respectively to the many-body
states with the potential and the state described entirely in
terms of free plane waves, including the ground state of the
unperturbed system [26]. Anderson proved that the overlap �

approached zero under the thermodynamic limit N → ∞ even
for a very weak potential, which means that |�〉 is orthogonal
to |�p〉 [26] and the transition between the two states is
forbidden. It is the physical meaning of catastrophe [27]. As
claimed in Ref. [26], it becomes impossible because of the
appearance of catastrophe to find the characters for many-body
systems by adiabatically imposing the potential and observing
the response since the significant changes in many-body
systems can be induced even for infinitesimal perturbation.
AOC presents an understanding of a number of Fermi-edge
singularities, for example, in the Kondo effect [30] or in the
X-ray edge problem [31], for which the local singularity has
an overall effect on the property of the many-body systems.
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With these points, AOC manifestly shows that the correlation
in many-body systems can be constructed simultaneously
whenever the interaction appears and thus can be used to
give a full description of correlation in many-body systems.
Furthermore, the important feature is that this prohibition
can be conquered by the symmetry-breaking process, as
exemplified by the observation of the X-ray absorption in the
electron gas [27], which means that AOC can also be used
to characterize the phase transitions induced by the symmetry
breaking process. In a word, AOC presents a comprehensive
description of the many-body effects.

This crucial observation forces us to define the following
fully separable state for N parties:

ρs = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN, (9)

which represents the many-body state without potential,
compared to the state |�〉 in Eq. (8). Then we can define
the overlap with fully separable state ρs to capture the overall
correlation in many-body systems:

� = max
{ρs }

Tr [ρρs]. (10)

This definition is the main contribution of this article and has
some distinct advantages, summarized as follows: (1) � has
clear geometric meaning, which depicts the minimal overlap
angle between the Bloch vectors {ri} and {ri}s , and for pure
states, it returns to the original definition Eq. (3) of GE; (2) by
this geometric meaning, the optimal process in � can be
reduced to find the fully separable state ρs sharing the same
physical features with ρ, and (3) � can be regarded as the
generalization of AOC to the mixed state and can faithfully
reflect the overall correlation in many-body systems. It should
be emphasized that this definition does not try to present a com-
plete measurement of the multipartite entanglement. Instead,
my purpose is to find a universal method to characterize the
overall correlation in many-body systems, whether quantum
or classical. However, this definition is also meaningful for
finding the unified understanding of multipartite entanglement
in many-body systems. As shown in the next section, � indeed
presents the interesting information for the phase transition in
the Dicke model. Moreover, the connection between � and
multipartite entanglement in the Dicke model has also been
discussed in Sec. III. Additionally, in contrast to the recent
interest in fidelity for many-body systems [32], � does not
serve for the state discrimination.

III. EXEMPLIFICATION: PHASE TRANSITION
IN THE DICKE MODEL

In order to demonstrate the generality of this definition,
the phase transition in the Dicke model is discussed by �

in this section. The Dicke model describes the dynamics
of N independently identical to two-level atoms coupling
to the same quantized electromagnetic field [33]. Owing to
the presence of dipole-dipole force between atoms, the Dicke
model shows the normal-superradiant transition [34].

The Dicke model is related to many fundamental is-
sues in quantum optics, quantum mechanics, and condensed
matter physics such as the coherent spontaneous radiation
[34], the dissipation of the quantum system [35], quantum

chaos [36], and atomic self-organization in a cavity [37].
The normal-superradiant transition was first observed with
Rydberg atoms [38] and recently in a superfluid gas coupled
to an optical cavity [37] and nuclear spin ensemble sur-
rounding a single photon emitter [39]. Quantum entanglement
in the Dicke model has also been discussed extensively
in [40,41]. Furthermore, the Dicke model is also related
to the issues of how the opened multipartite system is
affected by the environment and the robustness of multipartite
entanglement [42].

The Hamiltonian for a single-model Dicke model reads

H = ωa†a + ω0

2

N∑
i=1

σ z
i + λ√

N

N∑
i=1

(σ+
i + σ−

i )(a† + a)

= ω0Jz + ωa†a + λ√
N

(a† + a)(J+ + J−), (11)

where Jz =∑N
i=1 σ z

i /2 and J± =∑N
i=1 σ±

i are the collec-
tive angular momentum operators. At zero temperature,
the normal-superradiant transition happens when λ = λc =√

ωω0/2. For finite temperature, the critical temperature is
decided by the relation [43]

βc = ω0

2λ2

tanh(βcω/2)

tanh(βcω0/2)
. (12)

An intrinsic property of the Dicke model is the parity symmetry

[H,�] = 0,
(13)

� = e
iπ
(
a†a+Jz+ N

2

)
.

Moreover, Eq. (11) is obviously made permutationally invari-
ant through the exchange of any two atoms.

With this information, the overlap � for the Dicke model
is studied explicitly for zero and finite temperatures in the
following two subsections. Some interesting features of � are
displayed.

A. Zero temperature

With respect to the permutation invariance of atoms in
Eq. (11), it is convenient to introduce the Holstein-Primakoff
(HP) transformation:

Jz = b†b − N

2
,

J+ = b†
√

N − b†b, (14)

J− =
√

N − b†bb,

with bosonic operator b(†). Semiclassically, there is a ground
state with Jz = −N/2 for the Dicke model under the thermo-
dynamic limit N → ∞. Hence it is reasonable to adopt the
low-excitation approximation at zero temperature, and then
one obtains two effective Hamiltonians for different regions of
λ (refer to [44] for details):

H (1) = ωa†a + ω0b
†b + λ(a† + a)(b† + b) − N

2
ω0, λ < λc,

H (2) = ωa†a +
[
ω0 + 2

ω

(
λ2 − λ2

c

)]
b†b
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+
(
λ2 − λ2

c

)(
3λ2 + λ2

c

)
2ω
(
λ2 + λ2

c

) (b + b†)2

+
√

2λ2
c√

λ2 + λ2
c

(a† + a)(b† + b) + const., λ > λc.

(15)

H (1) and H (2) can be diagonalized readily by transforming
them into phase space, and then one has the diagonalized
form [44]

H = ω1c
†
1c1 + ω2c

†
2c2, (16)

where the forms of ω1(2) and c1(2) are dependent on λ > λc or
λ < λc [44]. Then the ground state can be written as

|g〉 = |g〉1 ⊗ |g〉2, (17)

where |g〉1(2) denotes the vacuum state for mode ω1(2).
Furthermore, the average spin along the z direction per atom
shows distinct values across the phase transition point,

〈Jz〉
N

=
{− 1

2 , λ < λc,

− λ2
c

2λ2 , λ > λc,
. (18)

which then can act as the order parameter. It is obvious that a
macroscopic number of atoms are excited for λ > λc, which
is the so-called superradiant phase, while for λ < λc, it is the
normal phase.

With this information, we are ready to evaluate �. Our
focus is mainly on the atomic system. The crucial step is to
decide the fully separable state ρs for the atomic system. As
mentioned in Sec. II and proved in Appendix A, the optimum
process in Eq. (4) can be reduced to find ρs sharing the same
global features with the ground state [Eq. (17)]. First, with
the requirement of the permutation invariance of atoms in the
Dicke model, the single atomic state should have the same
form in ρs , that is, ρi = ,i = 1,2, . . . ,N , and then

ρs = ⊗N. (19)

Second, the parity symmetry for the Dicke model is reduced
for a single atom state ρ as

[eiπJz ,ρs] = 0,
(20)⇒ [eiπσz ,] = 0.

Thus one has under σz representation

 =
(

a 0

0 1 − a

)
. (21)

Finally, with the requirement of Eq. (18), a = 1/2 + (〈Jz〉/N ).
Thus ρs can be uniquely determined as

ρs =
(

1/2 + 〈Jz〉
N

0

0 1/2 − 〈Jz〉
N

)⊗N

. (22)

I should point out that the procedure for the determination of
ρs is popular whether for zero or finite temperature.

FIG. 1. (Color online) The overlap � with fully separable state
ρs vs. the coupling λ at zero temperature; ω0 = ω = h̄ = 1 has been
chosen for this plot, and the critical point is λc = 0.5 in this case. The
inset is a plot of the purity of the reduced density of atomic freedom
under N → ∞.

For the evaluation of the overlap �, it should be noted that
ρs can be rewritten as the following contract form under the
Jz representation:

ρs =
N∑

n=1

NCna
n(1 − a)N−n

∣∣∣∣n − N

2

〉 〈
n − N

2

∣∣∣∣ , (23)

where NCk denotes the binomial function, and |n − (N/2)〉
presents the state for which n particles are spun up and the
others are spun down. Together with the HP transformation
[Eq. (14)], it is obvious that

b†b

∣∣∣∣n − N

2

〉
= n

∣∣∣∣n − N

2

〉
. (24)

Then � can be evaluated easily under this representation.
In Fig. 1, the overlap � with ρs is plotted. At normal

phase (λ < λc), one has 〈Jz〉/N = −0.5, a = 0, and then ρs

is the fully separable pure state. � is determined mainly by
the first diagonal element of the reduced density matrix of
the atomic system in this special case. While for λ > λc, �

shows a sudden rise, it then decreases with increments of λ and
tends to be steady with λ → ∞. Moreover, under N → ∞, �
tends to be vanishing. Then two different phases can be clearly
identified by evaluating �.

Some intricate features of the phase transition can be
disclosed by �. For normal phase λ < λc, it is known that the
atomic system becomes entangled with the electromagnetic
field and attains the maximal value at the critical point [40].
The entanglement leads the state of the atomic system to be
mixed, and the purity of its reduced density is decreased as
shown by the inset in Fig. 1. At the same time, the pairwise
entanglement between any two atoms is also raised, mediated
by their couplings to the electromagnetic field, and the
atoms become correlated with each other [40]. These intrinsic
properties can be captured by � at the same time. For normal
phase, ρs is pure and fully separable. Thus the decrement
of � reflects the fact that the atoms become correlated with
each other and attains the maximal correlation at the critical
point, at which � has minimal value. Furthermore, since
there is no interaction among atoms, the only reason for the
construction of correlation in atoms is the couplings to the
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same electromagnetic field, which just induce the state for the
atomic system to be mixed. This feature can also be manifested
by the decrement of � with respect to a ρs that is pure.

For superradiant phase λ > λc, it is known that the
entanglement between the atoms and electromagnetic field
decreases monotonously to a steady value with the increment
of λ, while the pairwise entanglement in atoms disappears
asymptotically [40]. Contrastably, the purity for the state of
the atomic system has a sudden increase closed to λc and then
decreases to a steady value, as shown by the inset of Fig. 1. The
two different behaviors can also be captured by �. Similar to
the behavior of the purity of the state for the atomic system, �
also has a sudden rise close to λc and then decreases to a steady
value with increments of λ. Given that ρs is mixed in this case
and its purity is monotonically decreasing with increments of
λ, the abrupt increment of � means that the sudden recovery
of the purity of the atomic system is at the expense of the
reduction of a correlation between atoms. It is obvious from
Fig. 1 that � tends to be zero with the increment of N for
large λ. However, the vanishing of � cannot be attributed to
the mixedness of ρs since the steady value of � for finite N is
always greater than the maximal mixedness 1/N , manifested
by Fig. 1. This feature means that the correlation in atoms still
exists. Since the pairwise entanglement of atoms is known to
be vanishing in this limit [40], the correlation between atoms
must be global.

The scaling behavior of � near the critical point shows
some interesting features. At the normal phase (λ < λc), one
has for ω = ω0 = 1

� = 23/2(1 − 4λ2)1/4

[1 + 3
√

1 − 4λ2 + 0.5(
√

1 + 2λ + √
1 − 2λ)3]

. (25)

Similar to the method in Ref. [17], one can define the globe
overlap − ln � to measure the atomic correlation in the
Dicke model. It is obvious that the global overlap is mainly
determined by (1 − 4λ2)1/4 near λc = 1/2, and then

− ln � ∼ −1

4
ln

(
1 − λ

λc

)
, (26)

which is identical to the scaling behavior of multipartite
entanglement in the Lipkin-Meshkov-Glick (LMG) model
[17]. This result is not strange since the Dicke model and the
LMG model belong to the same universality class. However,
it strongly implies that � could be correlated directly with
the multipartite entanglement in the Dicke model. As shown
in Sec. IV, the atomic system indeed displays the multipartite
entanglement in this case.

B. Finite temperature

At finite temperature, the phase transition is induced by
thermal fluctuation. To determine the critical temperature,
the general method is to evaluate the partition function z. In
Ref. [43], z has been obtained analytically,

z =
√

1/2π

1 − e−βω

∫ ∞

−∞
dxe− x2

2

×
⎧⎨
⎩2 cosh

⎡
⎣β

√
ω2

0

4
+ x2λ2

N
coth

βω

2

⎤
⎦
⎫⎬
⎭

N

, (27)

and the critical temperature is determined by Eq. (12). For
ω = ω0, it is reduced to Tc = 2λ2/kBω0. With the same trick
used in [43], the overlap � can also be written analytically as
(see Appendix B for the details of calculation)

� = 1

z

√
1/2π

1 − e−βω

∫ ∞

−∞
dxe− x2

2

×
⎧⎨
⎩2 cosh

⎡
⎣β

√
ω2

0

4
+ x2λ2

N
coth

βω

2

⎤
⎦

+ ω0(1 − 2a)/2√
ω2

0
4 + x2λ2

N
coth βω

2

sinh

×
⎡
⎣β

√
ω2

0

4
+ x2λ2

N
coth

βω

2

⎤
⎦
⎫⎬
⎭

N

. (28)

As shown in Fig. 2, � can clearly detect the phase transition
by its abrupt variance close to the critical line. Given that ρs

is mixed and fully separable in this case, � reflects that the
correlation between atoms exists even for finite temperature.
However, this type of correlation is obviously induced by
the thermal fluctuation and thus is incoherent in contrast to
zero temperature. This difference will become clear if one
focuses on the multipartite entanglement of atoms in the next
section.

IV. MULTIPARTITE ENTANGLEMENT IN
THE DICKE MODEL

Another interesting aspect of the Dicke model is the multi-
partite entanglement in atoms. Since all atoms simultaneously
couple isotropically to the same electromagnetic field, it is
expected that the multipartite correlation of atoms could be
readily constructed in this case.

However, the measure of multipartite entanglement is a
difficult task in general, especially for the mixed state. An
indirect way of resolving this difficulty is to find the characters
uniquely belonging to the fully separable state [Eq. (1)], and
the violation of these properties implies the appearance of
multipartite entanglement. Spin squeezing is one of the most
successful approaches to the multipartite entanglement in this
way [45]. Recently, Tóth et al. [46] provided a series of
inequalities about spin squeezing to identify the multipartite
entanglement in collective models:

〈
J 2

x

〉+ 〈J 2
y

〉+ 〈J 2
z

〉
� N (N + 2)

4
, (29a)

�2Jx + �2Jy + �2Jz � N

2
, (29b)

〈
J 2

α

〉+ 〈J 2
β

〉− N

2
� (N − 1)�2Jγ , (29c)

(N − 1)[�2Jα + �2Jβ] �
〈
J 2

γ

〉+ N (N − 2)

4
, (29d)

where α,β,γ adopt all permutations of x,y,z and �2Jα =
〈J 2

α 〉 − 〈Jα〉2. The violation of any one of these inequalities
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0.1 0.5 1
0

0.5

1

T

λ

FIG. 2. (Color online) Overlap � with fully separable state ρs

vs. the coupling λ and temperature T ; ω0 = ω = kB = h̄ = 1 and
N = 100 have been chosen for this plot. The two three-dimensional
figures are the same plot with different plot ranges for clarity. In
the contour plot, the red dashed line corresponds to the critical line
Tc = 2λ2/kBω0, and because of the rapid decay of �, only a finite
range of its values is shown for this contour plot.

implies the appearance of entanglement [46]. With respect to
the limit large N , these inequalities can be rewritten as

1

N2

(〈
J 2

x

〉+ 〈J 2
y

〉+ 〈J 2
z

〉)
� 1

4
, (30a)

1

N2
(�2Jx + �2Jy + �2Jz) − 1

2N
� 0, (30b)

�2Jγ

N
− 1

N2

(〈
J 2

α

〉+ 〈J 2
β

〉)+ 1

2N
� 0, (30c)

1

N
(�2Jα + �2Jβ) −

〈
J 2

γ

〉
N2

− 1

4
� 0, (30d)

FIG. 3. (Color online) Equations (30a)–(30d) vs. the coupling λ at
zero temperature; ω0 = ω = h̄ = 1 and N = 100 have been chosen
for this plot. The labels z-x-y and y-z-x denote the sequence and
values of α-β-γ in corresponding inequalities.

in which 1/N2〈J 2
α 〉 and 1/N2�2Jα are equivalent for eval-

uating the average 〈(Jα/N )2〉 and �2(Jα/N ) = 〈(Jα/N)2〉 −
〈Jα/N〉2. For large N , these inequalities have nontrivial results
since the average magnetization per particle and its fluctuation
still have nonvanishing values. It should be pointed out that
Eq. (30a) is obviously satisfied for an arbitrary state, so the
following discussion mainly concerns Eqs. (30b)–(30d).

A. Zero temperature

The evaluations of 〈Jα/N〉 and 〈(Jα/N)2〉 can be imple-
mented readily through the Bogoliubov transformation [44].
Our calculations show that Eq. (30b) is always satisfied at both
normal and superradiant phases. In Fig. 3, several situations for
Eqs. (30a)–(30d) have been plotted with limit N → ∞, and
the others can be proved to be bigger than zero. The violation
implies that the atoms should be entangled. Moreover, since
the pairwise entanglement between atoms is known to be
vanishing with increments of λ [40], this entanglement is
sure to be multipartite. Furthermore, there is also a sudden
increment closed to the critical point, similar to the behavior
of � shown in Fig. 1. This feature means that there is a sudden
reduction of the correlation of atoms, and � can also be used
to detect the entanglement of atoms in the Dicke model at zero
temperature.

B. Finite temperature

At finite temperature, the evaluations of 〈Jα/N〉 and
〈(Jα/N )2〉 can adopt the same trick used in Ref. [43] (also
shown in Appendix B). In Fig. 4, Eqs. (30b)–(30d) have been
plotted with all possible permutations of x,y,z. It is obvious
that all inequalities are satisfied simultaneously, and one can
conclude that there is no quantum entanglement of atoms
in this case. This result is not surprising since the thermal
fluctuation is dominant at finite temperature and is considered
to be incoherent. Despite the absence of quantum correlation,
the correlation induced by thermal fluctuation predominates,
as shown in Fig. 2, by �, which means that � can also be used
to detect the thermal correlation.
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FIG. 4. (Color online) Equations (30a)–(30d) vs. the coupling λ

and temperature T ; ω0 = ω = kB = h̄ = 1 and N = 100 have been
chosen for these plots. The labels x-y-z, z-x-y, and y-z-x denote
the sequence and values of α-β-γ in corresponding inequalities. The
similarity among several plots arises because their corresponding
inequalities would become closed under limit N → ∞.

V. CONCLUSIONS AND FURTHER DISCUSSION

In this article, the overlap � with a special fully separable
state defined in Eq. (10) is introduced to capture the overall
correlation in many-body systems, whether quantum or clas-
sical. � has clear geometric and physical meaning, as shown
in Sec. II. With these features, the optimum process in the
definition of � can be reduced to find the fully separable
state ρs , defined in Eq. (9), which shares the same physical
properties with the state to be measured. Importantly, � can be
considered as the generalization of the concept of Anderson’s
orthogonality catastrophe [26,27], which is critical for the
understanding of some effects in condensed matter physics.
This important connection shows the popularity of � for the
detection of the global correlation in many-body systems. And
as an exemplification, the phase transition in the Dicke model
has been discussed by �.

As shown in Sec. III, � unambiguously depicts the phase
transition features and the global correlation in the Dicke

model, whether for zero or finite temperatures. At zero
temperature, � displays the distinct behaviors across the
critical point. Furthermore, with ρs , � predicts the appearance
of the multipartite entanglement in the atomic system, as
verified in Sec. IV A.

As for finite temperature, � can still be used to mark the
phase transition in the Dicke model, as shown in Fig. 2. It
displays the sudden variance at the critical line decided by the
temperature T and the coupling λ. An intricate feature appears
when T → ∞. It is believed that all atoms would become
independent in this case and could be considered the ideal
system [47]. Quantum mechanically, the state in this case can
be described by a fully separable state, whereas � approaches
zero, as shown in Fig. 2, and the nonzero � appears only at
intermediate temperature, shown in Fig. 2. This phenomenon
implies that the correlation in atoms would exist even under
high temperature. Moreover, under the Jz representation,
the dimension is proportional to the atomic number N , and
the value of the overlap shown in Fig. 2 has exceeded
greatly the limit by N . Thus this phenomenon cannot be
attributed to the mixedness of the state for the atomic system.
Unfortunately, we do not know how to understand these two
different features.

Although � cannot present a complete measurement of
multipartite entanglement, its intimate connection to quantum
entanglement in some special cases has been shown, such
as with the Dicke model at zero temperature described in
this article. From this discussion, � presents a complete
description for the global correlation in many-body systems,
whether quantum or classical. Therefore it is not surprising that
� can be used to identify the quantum entanglement in some
special cases. However, it is difficult to describe the general
relation between � and quantum entanglement in the absence
of a unified understanding of multipartite entanglement. This
point will be studied in a future article.

APPENDIX A: FIND THE NEAREST ρ s FOR A DEFINITE ρ

Two arbitrary density matrices ρ1 and ρ2 always have the
following simultaneous decompositions:

ρ1 =
∑

n

p(1)
n |n〉11〈n|,

(A1)
ρ2 =

∑
m

p(2)
m |m〉22〈m|,

where p
1(2)
n(m) denotes the probability that the system is in the

state |n(m)〉1(2). It should be emphasized that it is unnecessary
for the states labeled by different n or m to be orthogonal with
each other. Thus the preceding decompositions can always be
realized at the same time. Then the overlap between ρ1 and ρ2

reads

Tr [ρ1ρ2] =
∑
m,n

p(1)
n p(2)

m |2〈m|n〉1|2. (A2)

Obviously, the maximization of overlap is dependent on the
inner product |2〈m|n〉1|2. It is well known that for two different
states |v〉 and |w〉, their inner product is bounded by the Cachy-
Schwartz (CS) inequality, that is,

|〈v|w〉|2 � 〈v|v〉〈w|w〉, (A3)
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where the equality occurs if and only if the two vectors |v〉 and
|w〉 in the Hilbert state are linearly related, that is, |v〉 = c|w〉
for some scalar c. The important point for this condition is
that c is not necessarily a constant for which |v〉 and |w〉
become physically identical, and the CS inequality has a trivial
consequence. Thus

Tr [ρ1ρ2] �
∑
m,n

p(1)
n p(2)

m 1〈n|n〉12〈m|m〉2, (A4)

where the equality occurs if and only if arbitrary |n〉1 and |m〉2

are still linearly related. But in this case, the scalar c has to be
dependent on both n and m, that is, c = cmn, which means that
any |n〉1 have to be linearly related to all |m〉2. An interesting
consequence for this condition is [ρ1,ρ2] = 0, which means
that ρ1 and ρ2 share the same set of eigenvectors, and thus they
share the same global symmetry and belong to the same space.

This conclusion is not strange if one notes that the overlap
between two matrices is mainly determined by the inclusion re-
lation of the spaces decided by the matrices. As an example, let
us consider two matrices belonging to two completely different
spaces. The overlap must be zero since mathematically, the
intersection of the two spaces is null, and there is no crossing
items between the two matrices. Comparably, if one space
is the subspace or equivalent to the other space, the overlap,
then, is nontrivial generally since the two matrices belong to
the same space. Hence, in order to find the maximal overlap
between two matrices, it is also necessary for the two matrices
to be in the same space. From a physical standpoint, this means
that the two operators are necessarily commutative. Further-
more, it is easy to understand why the maximal GE for a pure
entangled state always happens for a purely separable state.

As for the determination of ρs in Eq. (10), it is required for
ρs to be commutative to ρ, that is, [ρ,ρs] = 0, which means
that ρs shares the same global symmetry with ρ. With this
point, one can determine  as Eq. (21). Furthermore, since ρs is
diagonal under the collective basis {|n − N

2 〉,n = 0,1, . . . ,N},

Tr [ρρs] =
∑

n

ρnnρ
s
nn �

∑
n

ρ2
nn + (ρs

nn

)2
2

, (A5)

where ρnn and ρs
nn denote the diagonal elements of ρ and ρs ,

respectively. Obviously, the second equality occurs if and only
if ρnn = ρs

nn, which means that 〈Jz〉 has the same value for
both ρ and ρs . Then a can be determined in Eq. (21).

As for the state

|ψ〉 = 1√
2

(|1010〉 + |0101〉), (A6)

the preceding discussion is also applicable. We should
emphasize our point clearly in this place that |ψ〉 is not
really translational invariance. Actually, when one talks of
the translational invariance of a system, this means

DHD† = H, (A7)

in which D is the translation operator and H is the Hamiltonian
for this system. Hence that one speaks of the translational
invariance for a state is meaningless without specifying the
Hamiltonian. Our discussion about the Dicke model manifests
this point clearly. So the crucial point is to find the Hamiltonian

for which |ψ〉 is one of its eigenvectors. It seems that one can
construct the following Hamiltonian:

H =
∑

i

σ z
i σ z

i+1, (A8)

for which ketψ is seemingly one of the degenerate ground
states. If the translational invariance is required for this system,
one must have the periodic boundary condition σ z

N+1 = σ z
1 ,

where N is the total particle number. However, |ψ〉 tells us that
for one particle, its neighbored particles always have an oppo-
site state, which obviously does not satisfy this periodic bound-
ary condition. So we argue in this place that the translational in-
variance for |ψ〉 is only occasional because of its special form.

Instead, |ψ〉 is the true ground state for the Hamiltonian

H = −
∑

i

σ z
i σ z

i+2, (A9)

with the boundary condition σ z
N+2 = σ z

2 . It means that the
particle always has the same state as its next neighbored
particle. Thus this could explain naturally why the maximal
overlap with |ψ〉 happens for the fully separable states |1010〉
and |0101〉, which obviously satisfy this boundary condition
and also are the ground states for this Hamiltonian.

One can also find a state which seemingly satisfies the
requirement of the “translational invariance” defined by |ψ〉,
that is,

ρ ′ = 1
2 (|0101〉〈0101| + |1010〉〈1010|), (A10)

which obviously maximizes the overlap with |ψ〉. These
features demonstrate again that |ψ〉 is not truly translationally
invariant since ρ ′ is the incoherent superposition of the two
degenerate ground states for Eq. (A9).

APPENDIX B: DERIVATION OF EQ. (28)

Set

H0 = ωa†a,
(B1)

HI = ω0Jz + 2λ√
N

(a† + a).

Under β = 1
kBT

� 1, the partition function can be approxi-
mated as [43]

z = Tr [e−β(H0+HI )],

= Tr [e−βH0/2e−βHI /2e−βH0/2 + O(β3)],

� Tr [e−βH0e−βHI ]. (B2)

Given

ρs =
N∑

n=1

NCna
n(1 − a)N−n

∣∣∣∣n − N

2

〉 〈
n − N

2

∣∣∣∣ , (B3)

then

� = 1

z
Tr [ρρs]

= 1

z
Tr

[
N∑

k=1

NCna
n(1 − a)N−n

×
〈
n − N

2

∣∣∣∣ e−βH0e−βHI

∣∣∣∣n − N

2

〉 ]
, (B4)
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for which [ρs,H0] = 0 is applied. The tricky thing for the
tracing in Eq. (B4) is noting that |N/2; n − (N/2)〉 denotes

the state in which n particles are spun up and the others are
spun down. And then

〈
n − N

2

∣∣∣∣ e−βH0e−βHI

∣∣∣∣n − N

2

〉

= e−βωa†a
〈
n − N

2

∣∣∣∣
N∏

i=1

e
−β[

ω0
2 σz

i + λ√
N

(a†+a)σx
i ]
∣∣∣∣n − N

2

〉

= e−βωa†a
〈
n − N

2

∣∣∣∣⊗N
i=1

∞∑
k=0

β2k

(2k)!

[
ω2

0

4
+ λ2

N
(a† + a)2

]k {
1 − β

2k + 1

[
ω0

2
σ z

i + λ√
N

(a† + a)σx
i

]} ∣∣∣∣n − N

2

〉

= e−βωa†a

{ ∞∑
k=0

β2k

(2k)!

[
ω2

0

4
+ λ2

N
(a† + a)2

]k(
1 − β

2k + 1

ω0

2

)}n{ ∞∑
k=0

β2k

(2k)!

[
ω2

0

4
+ λ2

N
(a† + a)2

]k(
1 + β

2k + 1

ω0

2

)}N−n

.

(B5)

Thus

� = 1

z
Tr

⎡
⎣e−βωa†a

{ ∞∑
k=0

β2k

(2k)!

[
ω2

0

4
+ λ2

N
(a† + a)2

]k

×
[

1 + β

2k + 1

ω0

2
(1 − 2a)

]}N
⎤
⎦ . (B6)

Expanding the item in the corbeil bracket,

⇒
∞∑

k1=0;k2=0···kN =0

(
N∏

i=1

β2ki

(2ki)!

[
1 + β

2k + 1

ω0

2
(1 − 2a)

])

×
K=k1+k2+···+kN∑

q=0

K!

q!(K − q)!

(ω0

2

)2(K−q)

×
(

λ√
N

)2q

(a† + a)2q . (B7)

Define a†a|m〉 = m|m〉, and then

� = 1

z

∞∑
k1=0;k2=0···kN =0

(
N∏

i=1

β2ki

(2ki)!

[
1 + β

2k + 1

ω0

2
(1 − 2a)

])

×
K=k1+k2+···+kN∑

q=0

K!

q!(K − q)!

(ω0

2

)2(K−q)
(

λ√
N

)2q

× d2q

dη2q
e

η2

2

∞∑
m=0

e−mβωLm(−η2)

∣∣∣∣
η=0

, (B8)

where Lm(x) is the mth Laguerre polynomial and the following
relation is used:

〈m|(a† + a)2q |m〉 = d2q

dη2q
〈m|eη(a†+a)|m〉

∣∣∣∣
η=0

= d2q

dη2q

[
e

η2

2 Lm(−η2)
]∣∣∣∣

η=0

. (B9)

Apply the relation

∞∑
m=0

e−mβωLm(−η2) = 1

1 − e−βω
exp

[
η2 1

eβω − 1

]
; (B10)

then

� = 1

z

1

1 − e−βω

∞∑
k1=0;k2=0···kN =0

×
(

N∏
i=1

β2ki

(2ki)!

[
1 + β

2k + 1

ω0

2
(1 − 2a)

])

×
K=k1+k2+···+kN∑

q=0

K!

q!(K − q)!

(ω0

2

)2(K−q)
(

λ√
N

)2q

× d2q

dη2q
e

η2

2 coth βω
2

∣∣∣∣
η=0

. (B11)

With the relations

d2q

dη2q
e

η2

2 coth βω
2

∣∣∣∣
η=0

= (2q − 1)!! cothq βω

2
,

(B12)

(2q − 1)!! =
√

A

π
2pAp

∫ ∞

−∞
dxe−Ax2

x2p,

set A = 1/2:

� = 1

z

√
1/2π

1 − e−βω

∫ ∞

−∞
dxe−x2/2

∞∑
k1=0;k2=0···kN =0

×
(

N∏
i=1

β2ki

(2ki)!

[
1 + β

2k + 1

ω0

2
(1 − 2a)

])

×
K=k1+k2+···+kN∑

q=0

K!

q!(K − q)!

(ω0

2

)2(K−q)

×
(

x2λ2

N
coth

βω

2

)q

. (B13)
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Finally, inverse the procedure from Eqs. (B6) and
(B7) for the sum item and apply relations cosh x =

(ex + e−x)/2 and sinh x = (ex − e−x)/2; one then obtains
Eq. (28).
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052105 (2008); R. Orús, Phys. Rev. Lett. 100, 130502 (2008);
Q.-Q. Shi, R. Orús, J. Ove Fjaerestad, and H.-Q. Zhou, New
J. Phys. 12, 025008 (2010); R. Orús and T.-C. Wei, e-print
arXiv:0910.2488v2 (2009); C.-Y. Huang and F.-L. Lin, Phys.
Rev. A 81, 032304 (2010).

[16] T. C. Wei, D. Das, S. Mukhopadyay, S. Vishveshwara, and P. M.
Goldbart, Phys. Rev. A 71, 060305(R) (2005); R. Orús, ibid. 78,
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