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All-versus-nothing proofs with n qubits distributed between m parties
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All-versus-nothing (AVN) proofs show the conflict between Einstein, Podolsky, and Rosen’s elements of reality
and the perfect correlations of some quantum states. Given an n-qubit state distributed between m parties, we
provide a method with which to decide whether this distribution allows an m-partite AVN proof specific for this
state using only single-qubit measurements. We apply this method to some recently obtained n-qubit m-particle
states. In addition, we provide all inequivalent AVN proofs with less than nine qubits and a minimum number of
parties.
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I. INTRODUCTION

Einstein, Podolsky, and Rosen (EPR) showed that quantum
mechanics is incomplete in the sense that not every element of
reality has a counterpart inside the theory [1]. EPR proposed
the following criterion to identify an element of reality: “If,
without in any way disturbing a system, we can predict with
certainty (i.e., with probability equal to unity) the value of
a physical quantity, then there exists an element of physical
reality corresponding to this physical quantity” [1]. In practice,
nondisturbance can be guaranteed when the measurements
are performed on distant systems. Predictions with certainty
are possible for states having perfect correlations. A quantum
state ρ has p perfect correlations when there are p different
observables Oi such that 〈Oi〉ρ = 1.

Thirty years after EPR’s paper, Bell proved that there is
a irresoluble conflict between EPR’s elements of reality and
quantum mechanics [2]. All-versus-nothing (AVN) proofs are
the most direct way to reveal this conflict. An AVN proof is
based on a set of s perfect correlations of a specific quantum
state. The name “all-versus-nothing” [3] reflects one particular
feature of these proofs: If one assumes EPR elements of reality,
then s − q of these perfect correlations lead to a conclusion
that is the opposite of the one obtained from a subset of the
other q perfect correlations. If all s correlations are essential to
obtain a contradiction (i.e., if the contradiction vanishes when
we remove one of them), then the AVN proof is said to be
critical.

The first AVN proof was obtained by Heywood and
Redhead [4]. However, the most famous AVN proof is
Greenberger, Horne, and Zeilinger’s (GHZ) [5–7]. The first
bipartite AVN proof with qubits is in Refs. [8,9]. The first
bipartite AVN proof with qubits and using only single-qubit
measurements is in Refs. [10,11]. The interest of the case
in which the parties are restricted to perform single-qubit
measurements is motivated by the practical difficulty of
making general N -qubit measurements (N � 2) when the
qubits are encoded in different degrees of freedom of the same
particle.
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Recently, several n-qubit m-particle states (n > m) having
perfect correlations have been experimentally prepared, for
instance, 4-qubit two-photon [12], 6-qubit two-photon [13,14],
6-qubit four-photon [15], 8-qubit four-photon [16], and
10-qubit five-photon graph states [16].

For these n-qubit m-particle states, a natural problem is
the following: Consider m distant parties; party i can perform
single-qubit measurements on particle i, and particle i contains
ni � 1 qubits (

∑m
i=1 ni = n); which n-qubit m-particle states

allow m-partite AVN proofs? This problem has been solved
for the case of m = 2 particles or parties [17]. In this article,
we address the problem for an arbitrary number m of particles
or parties.

The article is organized as follows: In Sec. II, we show
that there is an equivalence between pure states allowing AVN
proofs and graph states. This will simplify the task of finding
all inequivalent n-qubit m-partite AVN proofs.

An m-partite AVN proof is specific for an n-qubit m-particle
graph state when there is no graph state with fewer qubits
satisfying the same correlations. In Sec. III, we discuss the
requirements of an m-partite AVN proof to be specific for
an n-qubit m-particle graph state and describe a method to
decide whether a given n-qubit m-particle graph state allows
a specific m-partite AVN proof. We apply this method to
decide whether some n-qubit m-particle graph states recently
prepared in the laboratory allow m-partite AVN proofs. As
supplementary material [18], we provide a computer program
to decide whether a given n-qubit m-particle graph state allows
a specific m-partite AVN proof.

In Sec. IV we solve the following problem: Given an
n-qubit graph state, what is the minimum number m of parties
that allows a specific m-partite AVN proof. As supplementary
material [18], we provide a computer program to obtain, given
an n-qubit graph state, all distributions between m parties and
all distributions between a minimum number of parties which
allow AVN proofs.

The solution of the previous problem allows us to obtain
all inequivalent distributions allowing AVN proofs since any
distribution obtained from one allowing a specific AVN proof
by giving qubits that originally belong to the same party to
new parties will also allow an AVN proof. As supplementary
material, we provide all inequivalent distributions between
a minimum number m of parties allowing specific m-partite
AVN proofs for all n-qubit graph states of n � 8 qubits [19].
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II. AVN PROOFS AND GRAPH STATES

A. AVN proofs and stabilizer states

An AVN proof requires an n-qubit quantum state distributed
between m parties. This state has a set of perfect correlations
between the results of single-qubit measurements. These
correlations must satisfy two requirements. First, they must
allow us to define m-partite EPR’s elements of reality. This
means that every single-qubit observable involved in the AVN
proof must satisfy EPR’s criterion of elements of reality (i.e.,
its value can be predicted with certainty using only the results
of single-qubit measurements on distant particles). Second,
they must lead to a contradiction when EPR’s criterion of
elements of reality is assumed. Therefore the conclusion
of an AVN proof is that if the quantum predictions are
correct, observables which satisfy EPR’s condition cannot
have predefined results since it is impossible to assign them
values which simultaneously satisfy the perfect correlations
predicted by quantum mechanics.

Perfect correlations are necessary to establish elements of
reality and to prove that they are incompatible with quantum
mechanics. Therefore the states which allow AVN proofs
must be simultaneous eigenstates of a sufficient number of
commuting n-fold tensor products of single-qubit operators.
Indeed, the following observations lead us to the conclusion
that without loss of generality, we can restrict our attention to
a particular family of states.

Two different single-qubit operators A and B on the same
qubit cannot commute. A necessary condition to make n-fold
tensor products be commuting operators is to choose A and B

to be anticommuting operators. Therefore, in an AVN proof,
all single-qubit operators corresponding to the same qubit
must be anticommuting operators. The maximum number
of anticommuting single-qubit operators is three. Therefore,
without loss of generality, we can restrict our attention to a
specific set of three single-qubit anticommuting operators on
each qubit, for example, the Pauli matrices X = σx , Y = σy ,
and Z = σz. This leads us to the concept of stabilizer state.
An n-qubit stabilizer state is the simultaneous eigenstate with
eigenvalue 1 of a set of n independent commuting elements of
the Pauli group (i.e., the group, under matrix multiplication, of
all n-fold tensor products of X, Y , Z and the identity 1). The
n independent elements are called stabilizer generators and
generate a maximally Abelian subgroup, the stabilizer group
of the state [20]. The 2n elements of the stabilizer group are the
stabilizing operators and provide all the perfect correlations of
the stabilizer state.

A further simplification is possible since any stabilizer state
is local Clifford equivalent (i.e., equivalent under the local
unitary operations that map the Pauli group to itself under
conjugation) to a graph state [21]. Therefore the problem of
which n-qubit pure states and distributions of qubits between
the parties allow m-partite AVN proofs is reduced to the
problem of which n-qubit graph states and distributions allow
m-partite AVN proofs.

B. Graph states

A graph state [22] is a stabilizer state whose generators
can be written with the help of a graph. |G〉 is the n-qubit

state associated with the graph G, which gives a recipe both
for preparing |G〉 and for obtaining n stabilizer generators
that uniquely determine |G〉. On one hand, G is a set of
n vertices (each representing a qubit) connected by edges
(each representing an Ising interaction between the connected
qubits). On the other hand, the stabilizer generator gi is
obtained by looking at the vertex i of G and the set N (i)
of vertices which are connected to i and is defined by

gi = Xi ⊗j∈N(i) Zj , (1)

where Xi , Yi , and Zi denote the Pauli matrices acting on the
ith qubit. |G〉 is the only n-qubit state that fulfills

gi |G〉 = |G〉 for i = 1, . . . , n. (2)

Therefore the stabilizer group is

S(|G〉) = {sj , j = 1, . . . , 2n}, sj =
∏

i∈Ij (G)

gi, (3)

where Ij (G) denotes a subset of {gi}Ni=1. The stabilizing
operators provide all the perfect correlations of |G〉:

〈G|sj |G〉 = 1. (4)

Graph states associated with connected graphs have been
exhaustively classified. There is only 1 two-qubit graph
state (equivalent to a Bell state), only 1 three-qubit
graph state (equivalent to a GHZ state), and 2 four-qubit graph
states (equivalent to a GHZ and a cluster state), 4 five-qubit
graph states, 11 six-qubit graph states, 26 seven-qubit graph
states [22], and 101 eight-qubit graph states [23].

III. n-QUBIT m-PARTITE AVN PROOFS

A. Specific m-partite AVN proofs

The perfect correlations of any graph state associated
with a connected graph of three or more vertices lead to
contradictions with the concept of elements of reality when
each qubit is distributed to a different party [17,24–26].
However, the first problem consists of finding whether these
contradictions are specific to a given distribution of a graph
state or, on the contrary, they can be obtained with a graph
state of fewer qubits.

For example, take the four-party AVN proof based on the
following four perfect correlations of the distribution of the
four-qubit fully connected graph state |FC4〉 (a four-qubit GHZ
state) in which each qubit belongs to a different party:

X1Z2Z3Z4 = 1, (5a)

Z1X2Z3Z4 = 1, (5b)

Z1Z2X3Z4 = 1, (5c)

−X1X2X3Z4 = 1. (5d)

This is an example of an AVN proof which is nonspecific for
the state |FC4〉, the reason being that neither the contradiction
nor the definition of the elements of reality involved in this
contradiction requires any choice from the party which has the
fourth qubit. This party only has to measure Z4 and broadcast
the result. The only role of the result of Z4 is to guarantee
that X1, Z1, X2, Z2, X3, and Z3 are elements of reality in a
four-party scenario. However, the contradiction occurs for any
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result of Z4. It occurs because the following equations cannot
be simultaneously satisfied:

X1Z2Z3 = Z1X2Z3 = Z1Z2X3 = −X1X2X3. (6)

The particular value of Z4 is irrelevant. The same contradiction
can be obtained using the perfect correlations of a three-qubit
fully connected graph state |FC3〉 (a three-qubit GHZ state)
distributed between three parties.

The next example illustrates that whether an AVN proof
is specific can depend on the way in which the qubits are
distributed between the parties. Consider the AVN proof based
on the following four correlations of the four-qubit linear
cluster state |LC4〉 associated with the graph where qubit 1
is connected to qubit 2, which is connected to qubit 3, which
is connected to qubit 4:

Y1Y2Z3 = 1, (7a)

Z1X2Z3 = 1, (7b)

Z1Y2Y3Z4 = 1, (7c)

−Y1X2Y3Z4 = 1. (7d)

If the qubits are distributed so that each qubit goes to a
different party, then the AVN proof is not specific since the
party who has the fourth qubit does not need to make any
choice, neither for the contradiction nor for the definition of
the elements of reality. The contradiction

Y1Y2Z3 = Z1X2Z3 = Z1Y2Y3 = −Y1X2Y3 (8)

can be obtained from the perfect correlations of a three-qubit
linear cluster state |LC3〉 associated with the graph where
qubit 1 is connected to qubit 2, which is connected to qubit 3.

However, if qubits 1 and 4 belong to Alice, and qubits 2
and 3 belong to Bob, then the only way to guarantee that, for
example, X2 is an element of reality in this scenario (i.e., that its
result can be predicted using only the results of measurements
on Alice’s side) is by using the following perfect correlation
of the |LC4〉:

Z1X2X4 = 1. (9)

Therefore the party who has qubit 4 must choose between at
least two measurements. To sum up, an AVN proof is specific
for a given distribution of a graph state when at least two
observables of all the qubits are involved.

Since the additional correlations needed to define the
elements of reality can (together with those already used
for the contradiction) involve additional contradictions, it is
appropriate that the observables needed to guarantee that
other observables are elements of reality (like X4 and Z4

in the previous example) are themselves elements of reality.
Therefore hereinafter we will focus on AVN proofs in which
at least two of the observables of all the qubits are elements of
reality. It can be easily seen that when two Pauli observables,
for example, Xi and Yi , are elements of reality, then the third
Pauli observable, Zi , is also an element of reality. Therefore
we shall focus only on those graph states and distributions in
which the three Pauli observables of each and every one of the
qubits are elements of reality.

B. When does a distribution allow a specific AVN proof ?

The next problem is, given a distribution of an n-qubit
graph state between m parties, how to decide whether it is
one in which all single-qubit Pauli observables are elements of
reality. For that purpose, it is useful to note that the 2n perfect
correlations (i.e., stabilizing operators) of an n-qubit graph
state can be classified in four classes:

1. There are 2n−2 stabilizing operators (i.e., a quarter of the
stabilizing operators of the graph state) that allow us to predict
Xi from the results of measurements on other qubits: those that
are products of the stabilizer generator gi [defined in Eq. (1)],
an even number (hereinafter “even” includes zero) of gj

with j ∈ N (i), and an arbitrary number (hereinafter “arbitrary
number” includes zero) of gk with k �= i and k �∈ N (i).

2. There are 2n−2 stabilizing operators that allow us to
predict Yi from the results of measurements on other qubits:
those that are products of gi , an odd number of gj with j ∈
N (i), and an arbitrary number of gk with k �= i and k �∈ N (i).

3. There are 2n−2 stabilizing operators that allow us to
predict Zi from the results of measurements on other qubits:
those that are products of an odd number of gj with j ∈ N (i)
and an arbitrary number of gk with k �= i and k �∈ N (i).

4. There are 2n−2 stabilizing operators that contain1i : those
that are products of an even number of gj with j ∈ N (i) and
an arbitrary number of gk with k �= i and k �∈ N (i).

Each particle can carry more than one qubit. It is therefore
convenient to denote as P (i) the set of qubits which are
in the same particle as qubit i. The previous classification
of the stabilizing operators is useful in the following sense:
Given the distribution of an n-qubit graph state between
m parties, Xi is an element of reality if and only if there
exists a stabilizing operator of the graph state which satisfies
the following two requirements: (1) It does not contain gj for
all j ∈ P (i) but contains an even number of gk with k ∈ N (j )
and (2) it contains gi and an even number of gl with l ∈ N (i).
For instance, consider the four-qubit linear cluster state |LC4〉
associated with the graph where qubit 1 is connected to qubit 2,
which is connected to qubit 3, which is connected to qubit 4,
distributed such that Alice has qubits 1 and 4 and Bob has
qubits 2 and 3. The question is, is X1 an element of reality?
This is equivalent to the question, is there a stabilizing operator
such that it does not contain g4 [since P (1) = {4}] but contains
an even number (necessarily zero) of g3 [since N (4) = {3}]
and g1 and an even number (necessarily zero) of g2 [since
N (1) = {2}]? The answer is yes; the only stabilizing operator
with these properties is g1 = X1Z2.

Similarly, Yi is an element of reality if and only if there is a
stabilizing operator satisfying (1) and the following condition:
(3) It contains gi and an odd number of gl with l ∈ N (i).

Finally, Zi is an element of reality if and only if there is a
stabilizing operator satisfying (1) and the following condition:
(4) It does not contain gi but contains an odd number of gl

with l ∈ N (i).
To decide whether a specific distribution allows a specific

AVN proof, we first focus on qubit i and test whether Xi and
Yi are elements of reality. If either is not an element of reality,
then the distribution does not allow a specific AVN proof. If
both are elements of reality, then we test whether Xj and Yj

of qubit j are elements of reality, and so on for all the qubits.
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If all Xi and Yi are elements of reality, then the distribution
allows a specific AVN proof.

Indeed, there are simple cases where it can easily be seen
that a distribution does not allow an AVN proof. For example, if
more than n/2 qubits are carried by the same particle, for qubits
of the particle with more than n/2 qubits, either requirement
(1) is incompatible with (2), or (1) is incompatible with (3)
and (4). An alternative proof will be provided in Sec. IV. If
there is a qubit i such that N (i) ∈ P (i) (i.e., if in the graph
representing the state, qubit i is connected only to qubits
of the same particle), requirement (1) is incompatible with
requirements (3) and (4). As supplementary material [18],
we provide a computer program to decide whether a given
n-qubit m-particle graph state allows a specific m-partite
AVN proof.

C. Examples

As an example of the application of these rules, it is
interesting to discuss whether some recently prepared 6-qubit
two- and four-particle states allow specific AVN proofs,
assuming the natural scenario in which each party has one
particle.

Figure 1 contains several possible distributions of a six-
qubit linear cluster state |LC6〉. Figure 1(a) represents the four-
photon |LC6〉 prepared in Ref. [15]. This distribution does not
allow a specific AVN proof since qubit 1 is connected only to
qubit 2 and qubit 6 is connected only to qubit 5.

Figure 1(b) represents the two-photon |LC6〉 prepared in
Ref. [14]. This distribution satisfies all the requirements
and thus allows a specific AVN proof. Indeed, Fig. 1(b)

(b)

(c)

(a)
1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

FIG. 1. Different distributions of a six-qubit linear cluster state
|LC6〉 between two and four particles. Each gray area represents a
particle. (a) Corresponds to the four-photon state prepared in Ref.
[15]. (b) Corresponds to the two-photon state prepared in Ref. [14].
In (a), not all single-qubit Pauli observables are EPR elements of
reality, and therefore no AVN proof is possible. (b) and (c) Allow
AVN proofs.

represents the only bipartite distribution of the six-qubit linear
cluster state which allows a specific AVN proof [17]. Some
distributions of |LC6〉 in four particles allowing AVN proofs
can be trivially obtained from Fig. 1(b) by splitting qubits that
belong to the same particle into several particles. For instance,
a distribution allowing a specific AVN proof is illustrated in
Fig. 1(c). It can be easily seen that there is no distribution in
four particles which allows a specific AVN proof which cannot
be obtained from the distribution in Fig. 1(b).

Figure 2 contains several possible distributions of a six-
qubit Y -graph state |Y6〉. Figure 2(a) represents the four-photon
|Y6〉 prepared in Ref. [15]. This distribution does not allow a
specific AVN proof since qubit 1 is connected only to qubit 2
and qubit 5 is connected only to qubit 4. Figures 2(b)–2(d)
represent distributions of |Y6〉 between four particles allowing
specific AVN proofs.

1 2 3 4

5

6

1 2 3 4

5

6

1 2 3 4

5

6

1 2 3 4

5

6

(b)

(c)

(a)

(d) 5

FIG. 2. Different distributions of the six-qubit Y -graph state
between four particles. (a) Corresponds to the state prepared in
Ref. [15] and does not allow a specific AVN proof. (b)–(d) Allow
specific AVN proofs.
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IV. AVN PROOFS WITH A MINIMUM NUMBER m
OF PARTIES

A. Possible distributions between a minimum number of parties

In the previous section, we have seen that |Y6〉 admits
specific AVN proofs when their qubits are suitably distributed
between four particles. The question is whether |Y6〉 admits
specific AVN proofs when it is distributed between three
particles or less, or more generally speaking, the question is,
given an n-qubit graph state, what is the minimum number of
parties m which allows m-partite AVN proofs specific for this
state?

The following definition will be useful for solving this
problem. Let us define the reduced stabilizer of particle A’s
qubits as the one obtained from the stabilizer of the original
state by replacing the observables on all other particles’ qubits
with identity matrices.

Lemma: A distribution of n = nmax + nB + · · · + nm

qubits between m parties such that nmax � nB � · · · � nm

allows m-partite elements of reality if and only if nmax �
nB + · · · + nm.

Proof: Suppose that particle mi carries qubits 1, . . . , nmax,
where nmax is the maximum number of qubits carried by
any particle, and that particle mj carries qubits nmax +
1, . . . , nmax + nj . If X1, Y1, Z1, X2, . . . , Znmax are elements
of reality, then the reduced stabilizer of mi’s qubits must
contain

X1 ⊗ 12 ⊗ · · · ⊗ 1nmax , (10a)

Y1 ⊗ 12 ⊗ · · · ⊗ 1nmax , (10b)

Z1 ⊗ 12 ⊗ · · · ⊗ 1nmax , (10c)

11 ⊗ X2 ⊗ . . . ⊗ 1nmax , . . . , (10d)

11 ⊗ 12 ⊗ . . . ⊗ Znmax . (10e)

Moreover, the reduced stabilizer of mi’s qubits must contain
all possible products of Eqs. (10a)–(10e), that is, all possible
variations with repetition of the four elements 1, X, Y , and
Z, choosing ni , which are 4nmax = 22nmax . A similar reasoning
applies to the three Pauli matrices of each and every one of
mj ’s qubits. Therefore the reduced stabilizer of mj ’s qubits
must also contain all possible products of

Xnmax+1 ⊗ 1nmax+2 ⊗ · · · ⊗ 1nmax+nj
, . . . , (11a)

1nmax+1 ⊗ 1nmax+2 ⊗ · · · ⊗ Zni+nj
, (11b)

which are 4nj = 22nj . However, the reduced stabilizer of the
sum of the parties mi and mj has only 2nmax+nj terms; therefore
the only possibility is that nmax = nj . �

Given an n-qubit graph state, nmax restricts the possible
minimum numbers of particles and the possible numbers of
qubits per particle. Given n, Table I presents the possible
minimum numbers of particles and the corresponding pos-
sible distributions. Other possible distributions are already
contained between those in Table I, but in those cases, the
number of particles is not the minimum.

A corollary of the lemma is that there are no specific AVN
proofs in which one particle has more than n/2 qubits (this
result was used in Sec. III).

TABLE I. Possible distributions of an n-qubit graph state between
a minimum number m of particles. For instance, (2,2,1) denotes
a distribution of n = 5 qubits between m = 3 particles such that
particles 1 and 2 have two qubits each and particle 3 has one qubit.

n m Distribution

2 2 (1,1)
3 3 (1,1,1)
4 2 (2,2)

4 (1,1,1,1)
5 3 (2,2,1)

5 (1,1,1,1,1)
6 2 (3,3)

3 (2,2,2)
4 (2,2,1,1)
6 (1,1,1,1,1,1)

7 3 (3,3,1), (3,2,2)
4 (2,2,2,1)
5 (2,2,1,1,1)
7 (1,1,1,1,1,1,1)

8 2 (4,4)
3 (3,3,2)
4 (3,3,1,1), (3,2,2,1), (2,2,2,2)
5 (2,2,2,1,1)
6 (2,2,1,1,1,1)
8 (1,1,1,1,1,1,1,1)

B. AVN proofs with a minimum number of parties
for any graph state

Equipped with these tools, we can obtain all possible
distributions with a minimum number of particles allowing
specific AVN proofs for any graph state. We have obtained all
which are inequivalent under single-qubit unitary operations
for all graph states up to n = 8 qubits. For this purpose, we used
the classification of graph states up to n = 7 qubits proposed
in Ref. [22] and the classification of eight-qubit graph states
proposed in Ref. [23]. Given an n-qubit graph state, to obtain
all the distributions between a minimum number of parties
allowing specific AVN proofs, we can use Table I in the
following way. Suppose that n = 6. We first test whether AVN
proofs are possible for the simplest distributions permitted by
Table I, that is, m = 2 parties with three qubits each. If no
AVN proof is possible, then we test whether there are AVN
proofs for the next possible distributions permitted by Table I,
that is, m = 3 parties with two qubits each, and so on.

Applying this method, we have obtained all inequivalent
distributions between a minimum number of particles for
all graph states with up to eight qubits. In the supple-
mentary material [19], we show all distributions between a
minimum number of particles for the 19 classes of graph
states with up to six qubits, the 26 classes of graph states
with seven qubits, and the 101 classes of graph states
with eight qubits. In addition, we provide as supplemen-
tary material [18] a computer program to obtain, given an
n-qubit graph state, all distributions between m parties and
all distributions between a minimum number of parties which
allow AVN proofs.
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V. CONCLUSIONS

We have developed tools with which to decide whether a
distribution of n qubits between m parties allows an m-partite
AVN proof specific for this distribution (i.e., which cannot be
obtained using a state with fewer qubits). As a result, we have
obtained all inequivalent m-partite AVN proofs using n-qubit
m-particle quantum states with n < 9 qubits and a minimum
number m of parties. This enables us to obtain all inequivalent
m-partite AVN proofs using n-qubit m-particle quantum states
with n < 9 qubits with an arbitrary number of parties.

The motivation of this work was to answer some natural
questions raised by recent experimental developments allow-
ing the preparation in the laboratory of graph states of several
particles, each carrying several qubits. The results presented

in this article provide tools to help experimentalists to design
tests of new AVN proofs and new Bell inequalities based
on these AVN proofs [7,10,27], similar to those reported in
Refs. [12,14] for specific states but exploiting the possibility
of experimentally preparing new classes of graph states.
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