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Exactly solvable relativistic model with the anomalous interaction
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A special class of Dirac-Pauli equations with time-like vector potentials of an external field is investigated.
An exactly solvable relativistic model describing the anomalous interaction of a neutral Dirac fermion with a
cylindrically symmetric external electromagnetic field is presented. The related external field is a superposition
of the electric field generated by a charged infinite filament and the magnetic field generated by a straight line
current. In the nonrelativistic approximation the considered model is reduced to the integrable Pron’ko-Stroganov
model.
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I. INTRODUCTION

Exact solutions of relativistic wave equations are both
very rare and important. First, they provide explicit solutions
to concrete physical problems free of the inaccuracies and
inconveniences of approximate methods. Second, such exact
solutions can serve as convenient basis sets for expanding the
solutions of other physical problems that are not necessarily
exactly solvable.

A good survey of the exact solutions of relativistic wave
equations can be found in [1]. Notwithstanding the fact that
this book was published in 1990, it continues to be a good
information resource on exactly solvable relativistic systems
for particles with spins 0 and 1/2. Surely this collection is not
exhaustive: Many new results have been obtained during the
last two decades, including the problems for the Dirac equation
in lower dimension space and the problems for neutral Dirac
particles.

Exact solutions of the Dirac equation describing electri-
cally neutral particles with nonminimal interaction with an
external electromagnetic field are noteworthy. Physically, such
solutions have a very big application value since they can be
used to model the motion of a neutron in realistic situations.
In particular, they have relations to the nuclear reactors
security problems. Moreover, magnetic trapping of neutrons
is a subject of direct experimental studies (refer, e.g., to [2]).
Mathematically, the anomalous interaction terms depending
on tensor fields dramatically reduce the number of problems
that can be solved using the complete separation of variables.
In addition, just neutral particles anomalously coupled to the
external magnetic field give rise to the Aharonov-Casher effect
[3] with its interesting physical and mathematical aspects.

The very possibility of solving a problem exactly stems
from the existence of a dynamical symmetry, which is more
extended than the geometric symmetry of the problem. Famous
examples of such exactly solvable systems are the Kepler
problems and isotropic oscillator whose dynamical symme-
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tries are defined by groups SO(4) and U(3), respectively.
One more well-known example is the Pron’ko-Stroganov (PS)
problem [4], which describes the anomalous interaction of a
nonrelativistic electrically neutral particle of spin 1/2 with the
field of a straight line current. The related dynamical symmetry
of negative energy states is described by group SO(3) while the
geometrical symmetry of the system is reduced to the rotation
group in two dimensions [i.e., to SO(2)]. Let us stress that the
PS problem was formulated for the Schrödinger-Pauli equation
for neutral particles (i.e., it is essentially nonrelativistic).

Paper [4] was followed by a number of publications devoted
to exactly solvable problems for neutral particles. In particular,
the supersymmetric aspects of the PS model were investigated
in [5–7], more realistic models based on the magnetic field
produced by a current of a thin filament were discussed in [6,8]
following the nonrelativistic approach. A rather completed
study of the Dirac-Pauli equation for neutral particles can be
found in [9], the case of a purely electric time-independent
external field was studied in [10]. However, an exactly solvable
relativistic analog of the PS problem was not known until now.

We can add that searching for exact solutions of the Dirac
equation belongs to evergreen problems, apparently the most
recent result in this field can be found in [11]. Exactly solvable
two-particle Dirac equations are discussed in [12]. For exact
solutions of relativistic wave equations for particles with
higher and arbitrary spins, see [13,14].

In the present paper we discuss a certain class of relativistic
problems describing the anomalous interaction of the Dirac
fermion with an external electromagnetic field. The considered
equations admit an effective reduction to equations invariant
with respect to the 1 + 2-dimensional Galilei group, which can
be made by using the light cone coordinates.

Light cone coordinates were introduced by Dirac [15]
in an attempt to formulate relativistic dynamics with direct
interaction. Then it was recognized that these coordinates
present powerful tools for the solution of relativistic wave
equations, which include plane-wave potentials, or more
generally, if the potentials do not depend on scalar products of
the coordinate vector with a constant time-like vector [16,17].

We show that the considered class of equations includes
exactly solvable relativistic systems and we study in detail
one of them, namely the one closely related to both the
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Pron’ko-Stroganov problem and relativistic problems for the
neutron interacting with an external field. The corresponding
external field is a superposition of the magnetic field generated
by the straight line constant current and the electric field of
a charged infinite filament. In spite of that our main goal is
to present an exactly solvable problem for neutral fermions,
for the sake of generality we also consider more general
problems with both minimal and anomalous interactions. We
also indicate an exactly solvable model of this general type,
see Sec. VII.

II. DIRAC-PAULI EQUATIONS AND REDUCTION
SO(1,3) → HG(1,2)

Consider the Dirac-Pauli equation for a charged particle
which interacts anomalously with an external electromagnetic
field

(γ µπµ − m − λSµνFµν)ψ = 0. (2.1)

Here πµ = pµ − eAµ, pµ = i ∂
∂xµ , Aµ are components of the

vector-potential of the external electromagnetic field, γ µ are
Dirac matrices satisfying the Clifford algebra

γ µγ ν + γ νγ µ = 2gµν, (2.2)

gµν is the metric tensor whose nonzero elements are g00 =
−g11 = −g22 = −g33 = 1, Sµν = i (γ µγ ν − γ νγ µ) /4 is
the spin tensor, and Fµν = i[πµ, πν] is the tensor of the
electromagnetic field such that F0a = −Ea, Fab = εabcBc,
where Ea and Bc are components of vectors of the electric-
and magnetic-field strengths. In addition, e and λ denote
particle charge and the constant of anomalous coupling. The
latter is usually represented as

λ = gµ0, (2.3)

where µ0 is the Bohr or nuclear magneton and g is the Landé
factor. We use Heaviside units with h̄ = c = 1.

Equation (2.1) describes both the minimal and anomalous
interactions of the Dirac fermion with an external electromag-
netic field. Setting in (2.1) λ = 0 and supposing e �= 0, we
come to the equation describing the anomalous interaction
only, while for e = 0, λ �= 0 we obtain the Dirac-Pauli
equation describing a neutral fermion. In the latter case the
parameter g in (2.3) is just the contribution to the Landé factor
arising from the anomalous magnetic moment.

Equation (2.1) is transparently invariant with respect to the
Lorentz group SO(1,3) which transforms time and space vari-
ables x0,x1,x2,x3 between themselves. Among the subgroups
of this group there is the homogeneous Galilei group HG(1,2),
which includes the transformations of variables τ ,x1,x2 where
τ = (x0 − x3)/2 (for all nonequivalent subgroups of SO(1,3)
and of the Poincaré group, see [18]).

To search for exactly solvable problems based on Eq. (2.1)
we restrict ourselves to a special class of external fields, which
makes it possible to expand solutions of (2.1) via solutions
of reduced equations invariant with respect to group HG(1,2).
In other words, we will discuss such external fields for which
these reduced equations are integrable.

To this end, we first suppose that the vector potential
A = (A0,A1,A2,A3) be light-like, that is,

AµAµ = 0. (2.4)

This condition can be always satisfied up to gauge transfor-
mations and so it does not lead to any loss of generality. Then
we restrict ourselves to the vector potentials of the following
special form compatible with (2.4)

A = (ϕ,0,0,ϕ), (2.5)

where ϕ is a function of time and spatial variables. In addition,
we suppose that ϕ depends on three variables only, namely,

ϕ = ϕ(τ ,x1,x2). (2.6)

Vector potentials (2.5) and (2.6) satisfy the Lorentz gauge
condition pµAµ = 0 identically and the invariants of the
related external field are both equal to zero

FµνF
µν = 0 and 1

2εµνρσFµνF ρσ = 0. (2.7)

For convenience we fix a nonstandard realization of the
Dirac matrices and set

γ 0 =
(

0 I

I 0

)
, γ 3 =

(
0 I

−I 0

)
, γ α = i

(
σα 0

0 −σα

)
,

(2.8)

where α = 1,2, σα are Pauli matrices and 0 and I are the
2 × 2 zero and unit matrix, respectively. Then

S0α = 1

2

(
0 σα

−σα 0

)
, S3α = 1

2

(
0 σα

σα 0

)
. (2.9)

System (2.1) with a particular class of the vector potential
given by Eqs. (2.5) and (2.6) is homogeneous with respect to
the sum of independent variables x0 + x3. Thus it is convenient
to rewrite it in the light cone variables

τ = 1
2 (x0 − x3) and ξ = 1

2 (x0 + x3).

As a result we obtain

Lψ ≡ (γ̃µπ̃µ − m − ληαFα)ψ = 0, (2.10)

where Fα = ∂ϕ

∂xα
, α = 1,2,

γ̃0 = γ0 + γ3, γ̃3 = 1

2
(γ0 − γ3), γ̃α = γα,

ηα = 1

2
(γ0γα + γ3γα), π̃0 = i

∂

∂τ
− 2eϕ, (2.11)

π̃3 = 2P3 = 2i
∂

∂ξ
, π̃α = pα = −i

∂

∂xα

,

and the summation with respect to repeated indices µ and
α is imposed over the values µ = 0,1,2,3 and α = 1,2,
respectively. In addition, we impose on solutions of (2.10) the
standard condition of square integrability and ask for ψ → 0
when xα → 0.

Operator P3 commutes with L and so is a constant of the
motion for Eq. (2.10). Let us expand solutions of this equation
via eigenvectors ψM of P3

P3ψM = MψM ⇒ ψM = exp(iMξ )ψ(τ ,x1,x2). (2.12)

Let us denote

ψ(τ ,x1,x2) =
(

ρ(τ ,x1,x2)

χ (τ ,x1,x2)

)
, (2.13)
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where ρ and χ are two-component spinors. Substituting (2.12)
and (2.13) into (2.10) and using realization (2.8) of γ matrices
we obtain the following system

(iσαpα − m) ρ +
(

i
∂

∂τ
− 2eϕ − λσαFα

)
χ = 0, (2.14)

2Mρ − (iσαpα + m)χ = 0. (2.15)

It is easy to convince oneself from Eqs. (2.14) and (2.15)
that, without loss of generality, we can assume that M cannot
take the zero value. Indeed, setting M = 0 in (2.15) we
reduce it to the equation for χ which does not have nontrivial
normalizable solutions. Then, equating χ to zero in (2.14),
we obtain the equation for ρ whose normalizable solutions
are trivial also.

It is interesting to note that this system is nothing but
a (1 + 2)-dimensional version of the Galilei-invariant Lévi-
Leblond equation [19] with anomalous interaction, as can be
immediately deduced by comparing (2.14) and (2.15) with
Eq. (52) for e = k = 0 in [20]. Solving Eq. (2.15) for ρ under
the condition M �= 0 and substituting it into Eq. (2.14), we
obtain the Schrödinger-Pauli equation for the two-component
spinor χ

i
∂χ

∂τ
=

(
ε0 + p2

2M
+ 2eϕ + λσαFα

)
χ, (2.16)

where ε0 = m2

2M
and p2 = p2

1 + p2
2.

Surely Eq. (2.16) is easier to handle then the initial
equation (2.1), since it includes smaller numbers of dependent
and independent variables. In particular, a number of exactly
(and quasi-exactly) solvable Scrödinger-Pauli equations (2.16)
is well studied, and many of them can be used to construct
solvable relativistic problems using the scheme inverse to the
previously proposed.

In Sec. IV we use this idea to generate a relativistic analog
of the PS problem.

III. CYLINDRICALLY SYMMETRIC POTENTIALS

Consider in more detail a physically interesting subclass of
Eqs. (2.1), (2.5), and (2.6) when the corresponding potential ϕ

depends on the square x2 = x2
1 + x2

2 of two vector x = (x1, x2)
and is independent on τ . The related reduced Eq. (2.16) takes
the form

i
∂χ

∂τ
= Hχ, (3.17)

where

H = ε0 + p2

2M
+ 2eϕ + λ

σαxα

x

∂ϕ

∂x
. (3.18)

Equation (3.17) has three additional constants of motion,
namely,

P0 = i
∂

∂τ
, J12 = x1p2 − x2p1 + i

2
σ3, Q = σ1R1,

(3.19)

where R1 is the reflection operator which acts on χ as follows

R1χ (τ ,x1,x2) = χ (τ , − x1,x2).

Operators P0 and J12 are generator of shifts with respect
to variable τ and the rotation generator, respectively. They
commute with the Hamiltonian (3.18) and between them-
selves. Expanding solutions of (3.17) via complete sets of
eigenfunctions of P0 and J12, it is possible to separate variables
in this equation.

Operator Q represents a discrete symmetry with respect to
the reflection of the first coordinate axis. It commutes with
P0 and H (3.18) but anticommutes with J12. It follows from
the above that eigenvalues of P0 and H should be degenerated
with respect to the sign of eigenvalues of J12.

Notice that Eq. (3.17) admits other discrete symmetries
like reflections of x2 or both x1 and x2. But all such additional
symmetries are either rotation transformations or products of
reflection Q and rotations.

Let us separate the variables in Eq. (3.17). First we define
the eigenvectors of P0 which have the following form

χε = exp(−iετ )χ (x). (3.20)

Then, substituting Eq. (3.20) into Eq. (3.17), we obtain the
equation

εχ = Hχ, (3.21)

where H is the Hamiltonian (3.18).
In addition to the coupling constants e and λ, Eq. (3.21)

includes two parameters (i.e., ε and M). We suppose that
functions ξ are square integrable and tend to zero with x → 0.
Then for a fixed nonzero M this equation defines an eigenvalue
problem for ε.

Now we can use the symmetry of (3.21) with respect to the
rotation group (whose generator is J12) to separate radial and
angular variables. To do this we rewrite Eq. (3.21) in terms of
angular variables, that is, set x1 = x cos θ, x2 = x sin θ , and
r = 2M|λ̃|x (where λ̃ is a normalizing parameter), and expand
χ via eigenfunctions of the angular momentum operator J12

χ = Ckχk, χk = 1√
r

(
exp

(
i
(
k − 1

2

)
θ
)
φ1

ε exp
(
i
(
k + 1

2

)
θ
)
φ2

)
, (3.22)

where Ck are constants, ε = λ̃/|λ̃|, φ1 and φ2 are functions
of r , and summation is imposed over the repeated indices
k = 0,±1,±2, . . . .

In the following we restrict ourselves to solutions χk , which
correspond to nonnegative values of k. Then solutions with k

negative will be obtained by acting on χk by operator Q (3.19).
Substituting Eq. (3.22) into Eq. (3.21), we come to the

following system

Hkφ ≡
[
− ∂2

∂r2
+ k(k − σ3)

1

r2
+ 2eϕ + σ1

λ

λ̃

∂ϕ

∂r

]
φ = ε̃φ,

(3.23)
with φ = column(φ1, φ2) and

ε̃ = (ε − ε0)/2Mλ̃2. (3.24)

Thus we reduce (3.21) to the system of two ordinary
differential equations for radial functions, given by formula
(3.23). Its solutions must be normalizable and vanish at r = 0.
For some types of potential ϕ (and particular restrictions
imposed on the coupling constants e and λ) this system
is integrable and its solutions can be expressed via special
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functions. In the following section we consider an example
of integrable equation (3.23), which corresponds to a neutral
particle interacting anomalously with an external field.

IV. RELATIVISTIC ANALOG OF PS PROBLEM

Let us set e = 0 in (2.14) and choose the following
particular realization for the potential ϕ

ϕ = ω ln(x), (4.25)

where ω is a constant. Then the related Eqs. (3.17) and (3.23)
are reduced to the following forms

ε′χ =
(

p2

2M
+ λ̃

σαxα

x2

)
χ, ε′ = ε − ε0, (4.26)

and

Hkφ ≡
(

− ∂2

∂r2
+ k(k − σ3)

1

r2
+ σ1

1

r

)
φ = ε̃φ, (4.27)

respectively, provided we set λ̃ = ωλ.
The electromagnetic field whose potential is defined by

relations (2.5) and (4.25) has a transparent physical meaning.
Namely, it is a superposition of the electric field E =
(E1, E2, E3) whose components are

E1 = ω
x1

x2
, E2 = ω

x2

x2
, E3 = 0, (4.28)

and the magnetic field B = (B1, B2, B2) with

B1 = −ω
x2

x2
, B2 = ω

x1

x2
, B3 = 0. (4.29)

Such an electric field can be identified as the field of a charged
infinite filament coinciding with the third coordinate axis. Let
us designate the charge density of this filament by ρ then
the coupling constant ω should be equal to 2ρ. On the other
hand, the magnetic field B is nothing but the field of a straight
line constant current j directed along the third coordinate axis
provided the coupling constant ω be equal to 2j . Of course
the related charge density and current should be equal between
themselves

j = ρ = ω/2. (4.30)

Let us show that Eq. (4.26) is exactly solvable and find its
solutions. The simplest way to prove the integrability of (4.26)
is to make the unitary transformation

χ → χ ′ = Uχ,

ε′ −
(

p2

2M
+ λ̃

σαxα

x2

)
→ U

[
ε′ −

(
p2

2M
+ λ̃

σαxα

x2

)]
U †,

(4.31)

where U = 1√
2
(1 − iσ3). As a result we reduce (4.26) to the

following form

ε′χ =
(

p2

2M
− 2λ̃

S1x2 − S2x1

x2

)
χ, (4.32)

where S1 = 1
2σ1 and S2 = 1

2σ2 are spin matrices and in
accordance with Eqs. (2.3), (4.25), and (4.30) λ̃ = λω =
2gµ0j .

For a fixed M and up to the value of the coupling
constant Eq. (4.32) coincides with the Schrödinger equation

for a neutral particle minimally interacting with the field
generated by an infinite thin current filament (in our case the
standard coupling constant is multiplied by a factor of 2). This
equation was studied in numerous papers starting with [4] and
continuing with [5–7] and many others. It has the following
nice properties:

� Equation (4.32) admits a hidden dynamical symmetry
with respect to group SO(3) for negative eigenvalues ε̃, group
SO(1,2) for ε̃ positive, and group E(2) for ε̃ = 0 [4];

� It possesses a hidden supersymmetry [5];
� Using any of the above-mentioned properties the equa-

tion can be integrated in closed form [4–6].
Since Eq. (4.26) is unitary equivalent to Eq. (4.32) it

succeeds the above-mentioned properties. In particular, eigen-
values ε′ are the same in both Eqs. (4.26) and (4.32).

V. RELATIVISTIC AND QUASIRELATIVISTIC
ENERGY LEVELS

In the next section we will present exact solutions of
Eq. (4.26) for coupled states and define the related eigenvalues
ε′. In fact these eigenvalues are well known, and using directly
the results of paper [4] (or of the papers [5–8]) we can
immediately write ε′ in the following form

ε′ = −2λ̃2M

N2
, (5.33)

where N is a positive natural number.
Eigenvalues (5.33) are degenerated since they do not

depend on eigenvalues k of the angular momentum operator
J12. The degeneration factor is equal to 2k + 1, and the
quantum number N can be represented as

N = 2(n + k) + 1, (5.34)

where n is a natural number [4–6].
Using (5.33), we already can find energy levels for the

initial relativistic problem. Indeed, since P0 = p0 + p3 and
P3 = 1

2 (p0 − p3), it is possible to write analogous relations
for eigenvalues E of p0, κ of p3 and ε,M

ε = E + κ, 2M = E − κ. (5.35)

Then, using definitions (4.26) and (5.35) for ε′, E, and M we
find from (5.33) the relativistic energy spectrum

E = m

K + κ̃
+ κ, (5.36)

where

K =
√

1 + κ̃2 + λ̃2

N2
, κ̃ = κ

m
, λ̃ = 2µ0gj. (5.37)

We see that, in spite of the fact that the neutron motion
along the third coordinate axis is free, the third component
of momentum κ makes a rather nontrivial contribution into
the values of energy levels (5.36). In accordance with (5.36)
E > κ , and so the condition M �= 0 is actually satisfied.

The most simple expression for energy levels corresponds
to the particular value κ = 0

E = m√
1 + λ̃2

N2

, (5.38)
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which for small λ̃ becomes

E = m

(
1 − λ̃2

2N2

)
+ · · · = m − 2m(gµ0j )2

N2
+ · · · .

(5.39)

Up to the rest energy term m the approximate energy levels
(5.39) are exactly the same as in the nonrelativistic PS problem
[4,6–8]. In particular, both the approximate and exact levels
given by Eqs. (5.36), (5.38), and (5.39) are degenerated with
respect to eigenvalues k of the third component of angular
momentum, which is a constant of motion for the considered
system. As in [4] this degeneration is caused by a hidden
dynamical symmetry of the system.

Let both λ̃ and κ̃ be small. Expanding E (5.39) in a power
series of λ̃ and κ̃ we obtain the quasirelativistic approximation
for the energy levels

E ≈ m + κ2

2m
− κ4

8m3
− mλ̃2

κ

2N2
, (5.40)

where

λ̃κ = (1 − κ̃)λ̃. (5.41)

The first three terms in (5.40) represent, respectively, the
rest energy, the kinetic energy of free motion along the third
coordinate axis, and the relativistic correction to this energy.
The last (dynamical) term in (5.40) is quite similar to the
corresponding nonrelativistic term [compare with (5.39)], but
includes the corrected coupling constant λ̃κ instead of λ̃.

Consider also the ultrarelativistic situation when κ̃ is large
but λ̃ is still small. Then the energy values (5.39) can be
expanded as

E =
√

m2 + κ2 − mδ
λ̃2

2N2
+ · · · , (5.42)

where the dots denote the terms of order λ̃4 and

δ =
(

2
√

1 + κ̃2 − 2κ̃ − 1√
1 + κ̃2

)
. (5.43)

Comparing (5.42) with (5.39) we recognize that the relativistic
binding energy levels include the additional multiplier δ which
considerably differs from 1 for ultrarelativistic k.

Notice that since the electromagnetic field defined by
relations (2.5) and (2.6) has no components in the x3 direction,
the motion of the particle in this direction is free. This motion
can be quantized by imposing the periodic boundary condition.
Then

κ = 2π Ñ

L
, Ñ = 0,±1,±2, . . . , (5.44)

and energy levels (5.36) through (5.42) are labeled by the pairs
of quantum numbers N and Ñ .

VI. EXACT SOLUTIONS FOR BOUND STATES

To find the solutions of Eq. (4.26) we use the fact that the
Hamiltonian

Hk =
(

− ∂2

∂r2
+ k(k − σ3)

1

r2
+ σ1

1

r

)
, (6.45)

can be factorized as

Hk = a+
k ak + Ck, (6.46)

where

ak = ∂

∂r
+ Wk, a+

k = − ∂

∂r
+ Wk, Ck = − 1

(2k + 1)2
,

and W is a matrix superpotential

Wk = 1

2r
σ3 − 1

2k + 1
σ1 −

(
k + 1

2

)
r

. (6.47)

It can be verified by direct calculation that

H+
k = aka

+
k + Ck = − ∂2

∂r2
+ (k + 1)(k + 1 − σ3)

1

r2
+ σ1

1

r
,

that is, the superpartner Hamiltonian H+
k for Hk is equal

to Hk+1. Thus the eigenvalue problem (3.23) possesses a
supersymmetry with shape invariance and so it can be solved
using the standard technique of the supersymmetric quantum
mechanics [21]. We will not reproduce the related routine
calculations whose details can be found in [6,7] but restrict
ourselves to the presentation of the solutions of Eq. (4.26).

The ground-state solutions φ(0,k;r) = column
[φ1(0,k;r), φ2(0,k;r)] are square integrable and normalizable
solutions of equation akφ(0,k;r) = 0. They can be expressed
in the following form

φ1(0,k;r) = rk+1K1

(
r

2k + 1

)
,

(6.48)

φ2(0,k;r) = −rk+1K0

(
r

2k + 1

)
,

where K0 and K1 are the modified Bessel functions. The
corresponding eigenvalue ε̃k in (4.26) and (3.23) is equal to
− 1

(2k+1)2 .
Solutions corresponding to the first excited state (i.e.,

when n = 1) are φ(1,k;r) = a+
k φ(0,k + 1;r), or being written

componentwise

φ1(1,k;r) = −
(

∂

∂r
+ k

r

)
φ1(0,k + 1;r)

− 1

(2k + 1)
φ2(0,k + 1;r)

= 4(k + 1)

(2k + 1)(2k + 3)
rk+2K0

(
r

2k + 3

)

− (2k + 1)rk+1K1

(
r

2k + 3

)
, (6.49)

φ2(1,k;r) = −
(

∂

∂r
+ k + 1

r

)
φ2(0,k + 1;r)

− 1

(2k + 1)
φ1(0,k + 1;r)

= (2k + 3)rk+1K0

(
r

2k + 3

)

− 4(k + 1)

(2k + 1)(2k + 3)
rk+2K1

(
r

2k + 3

)
.
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The corresponding eigenvalue ε̃k is equal to − 1
(2(k+1)+1)2 =

− 1
(2k+3)2 .
Finally, solutions which correspond to an arbitrary value of

the quantum number n > 0 can be represented as

φ(n,k;r) = a+
k a+

k+1 · · · a+
k+n−1φ(0,k + n; r),

n = 1,2, . . . ,

which gives rise to the recurrence relations

φ1(n,k;r) = − ∂

∂r
φ1(n− 1,k + 1;r) − k

r
φ1(n− 1,k + 1;r)

+ 1

2k + 1
φ2(n − 1,k + 1;r),

φ2(n,k;r) = − ∂

∂r
φ2(n − 1,k + 1;r)

− k + 1

r
φ2(n − 1,k + 1;r)

+ 1

2k + 1
φ1(n − 1,k + 1;r).

(6.50)

The related eigenvalue ε̃k is given by relations (5.33) and
(5.34).

It is now possible to present exact solutions of the initial
Dirac-Pauli equation defined by relations (2.1), (2.5), and
(4.25). In accordance with the above-such solutions are labeled
by the main quantum number N , which can be expressed by
Eq. (5.34), and by eigenvalues κ and k of the third component
of momenta and total orbital momentum. Using Eqs. (2.12),
(2.13), (2.15), (3.20), (3.22), and (6.48) through (6.50) we find
these solutions in the following form

ψn,κ,k = 1√
2πLr

exp[−i(Ex0 − κx3)]

×

⎛
⎜⎜⎜⎜⎜⎝

exp
(
i
(
k − 1

2

)
θ
)
η1(n,k;r)

exp
(
i
(
k + 1

2

)
θ
)
η2(n,k;r)

exp
(
i
(
k − 1

2

)
θ
)
φ1(n,k;r)

exp
(
i
(
k + 1

2

)
θ
)
εφ2(n,k;r)

⎞
⎟⎟⎟⎟⎟⎠ . (6.51)

Here k and n are nonnegative natural numbers

r =
√

x2
1 + x2

2

r0
, r0 = 1

M|λ̃| = K + κ̃

m|λ̃| , ε = λ̃

|λ̃| ,
(6.52)

where κ̃ = κ/m, E, K , and κ are given by Eqs. (5.36), (5.37),
and (5.44), φ1(n,k;r) and φ2(n,k;r) are functions defined by
recurrence relations (6.48), (6.50),

η1(n,k;r) = λ̃

(
∂

∂r
+ k

r

)
εφ2(n,k;r) + (K + κ̃)φ1(n,k;r),

η2(n,k;r) = λ̃

(
∂

∂r
− k

r

)
φ1(n,k;r) + (K + κ̃)εφ2(n,k;r).

(6.53)

Solutions (6.51) are normalizable and tend to zero with
r → 0. They are defined for nonnegative eigenvalues k of
the total angular momentum while solutions for k negative
can be obtained acting on (6.51) by the reflection operator

Q̂ = iγ0γ2γ3R1 where R is the reflection of the first spa-
tial variable [i.e., R1ψ(x0,x1,x2,x3) = ψ(x0, − x1,x2,x3) and
R1ψ(x0,r,θ,x3) = ψ(x0,r, − θ,x3)]. Using the Dirac matrices
(2.8) we find the solutions with negative values of k in the
following form

ψn,κ,k = i√
2πLr

exp[i(Ex0 − κx3)]

×

⎛
⎜⎜⎜⎜⎜⎝

−exp
(−i

(
k + 1

2

)
θ
)
η2(n,k;r)

−exp
(
i
(

1
2 − k

)
θ
)
η1(n,k;r)

εexp
(−i

(
k + 1

2

)
θ
)
φ2(n,k;r)

−exp
(
i
(

1
2 − k

)
θ
)
φ1(n,k;r)

⎞
⎟⎟⎟⎟⎟⎠ . (6.54)

Let us present explicitly the components of solutions (6.51)
and (6.54) for n = 0 and n = 1. If n = 0 then the related
functions φ1(n,k;r) = φ1(0,k;r) and φ2(0,k;r) are given by
Eq. (6.48) while η1(0,k;r) and η2(0,k;r) have the following
form

η1(0,k;r) = �kφ1(0,k;r) + λ̃(2k + 1)

r
φ2(0,k;r),

(6.55)
η2(0,k;r) = �kφ2(0,k;r),

where �k = ( λ̃
2k+1 + K + κ̃). If n = 1 the corresponding

functions φ1(1,k;r) and φ2(1,k;r) are given by Eq. (6.49) and

η1(1,k;r) = �k+1φ1(1,k;r) + λ̃(2k + 1)

r
φ2(1,k;r)

− 2λ̃

(2k + 3)r
φ1(0,k + 1;r),

η2(1,k;r) = �k+1φ2(1,k;r) + 2λ̃

r
φ1(1,k;r)

+ 2λ̃

(2k + 3)r
φ2(0,k + 1;r)

+ 2(2k + 1)λ̃

r2
φ1(0,k + 1;r),

(6.56)

where �k+1 = ( λ̃
2k+3 + K + κ̃).

Functions ηa(a = 1,2) in (6.55) and (6.56) include the
terms proportional to φa (the first terms in the right-hand side).
The remaining terms are small in comparison with φa , which
results in similarity of probability distributions for neutrons in
our model to the distributions in the PS model, see Appendix.

VII. DISCUSSION

In Secs. II and III we study a class of Dirac-Pauli systems
which can be effectively reduced to a set of Schrödinger-Pauli
equations. The main inspiration for our research was to find
an integrable relativistic formulation of the nonrelativistic PS
problem [4]. This goal cannot be achieved by a straightforward
relativization of the PS problem since the Dirac-Pauli equation
for a neutral particle interacting with the magnetic field
generated by a filament current is not integrable.

In the present paper we succeed in obtaining an integrable
relativistic model which in many aspects can be treated as
an analog of the PS model. To this end we introduce a
superposition of magnetic and electric fields, which is not
equivalent to the field of straight current. Nevertheless, in the
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nonrelativistic limit our model is reduced to the PS one. To
justify this statement we return to Eq. (4.30) and note that in
the cgs units it takes the following form

ρ = j/c, (7.57)

where c denotes the velocity of light.
In accordance with (7.57) the required charge density is

small and tends to zero in the nonrelativistic approximation
when c → ∞. Thus in the nonrelativistic limit the external
field which we consider reduces to the field used in the PS
model. In addition, the energy spectrum (5.36) is reduced
to the PS form, see Eq. (5.39). That is why we claim that
the nonrelativistic limit of the model defined by Eqs. (2.1),
(2.5), and (4.25) is exactly the PS model. This property can be
directly proved using the Foldy-Wouthuysen transformation
[22].

Let us discuss the obtained energy levels for coupled
states in the quasirelativistic approximation (5.40). Albeit
the motion along the third Cartesian coordinate is free, the
third momentum component κ makes a contribution into the
effective coupling constant λ̃κ . The origin of this contribution
is the anomalous interaction of neutron moving along the
charged line with the magnetic field generated by this line.
In the rest frame this motion is effectively changed by the
current which flows in the line in the opposite direction, which
is in perfect accordance with Eq. (5.41).

The contribution of κ into the effective coupling constant λ̃κ

(5.41) is small. Namely, it is proportional to the inverse speed
of light. However, it affects the energy levels (5.40) much more
than the relativistic correction to the kinetic energy −κ4/8m3,
which is proportional to the squared inverse speed of light.

In the case of ultrarelativistic neutron motion along the
charge and current carrying lines the contribution of the related
momentum into the coupling energy becomes very essential.
As it follows from (5.42) the distances between the energy
levels can significantly differ from the nonrelativistic ones
since the multiplier δ (5.43) changes continuously from 0.121
(for κ̃ → −1) to 4.121 (for κ̃ → 1).

In conclusion, we present an exactly solvable problem for
the Dirac-Pauli equation describing a neutral particle which
interacts anomalously with a rather particular external field
given by Eqs. (4.28) through (4.30) having, however, a clear
physical meaning. This type of anomalous interaction is the
key to expanding solutions of the problem via solutions
of the (1 + 2)-dimensional Levi-Leblond equation invariant
with respect to the Galilei group. Moreover, the considered
problem possesses a hidden symmetry and supersymmetry
which causes the (2n + 1)-fold degeneration of the energy
levels given by Eqs. (5.36) and (5.34).

A natural question arises whether the considered relativistic
problem with its symmetries is unique or there are other
problems which can be effectively solved using reduction
SO(1, 3) → HG(1,2). In Secs. II and III we study a certain
class of such problems that can be effectively reduced to
radial Eq. (3.23), which is exactly solvable when e = 0 and
ϕ = ω ln(x). We believe that there are other exactly solvable
equations (3.23) and at least two of them can be immediately
written down if we set ϕ = α/x and consider the alternative
cases e = 0 and e �= 0. The related Dirac-Pauli equations (2.1),

(2.5), and (2.6) can be solved explicitly. We plan to study these
and probably other integrable models in the future.
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APPENDIX: COUPLING CONSTANTS AND PROBABILITY
DISTRIBUTIONS

In the main text we consider an idealized model with the
infinite thin current filament and charged line. To give an idea
about its physical realizability let us discuss the probability
density which corresponds to found solutions (6.51).

First we present in more transparent form the coupling
constant λ̃ and scaling interval r0 (6.52). Going from the
Heaviside units to cgs ones we should make the following
changes in Eqs. (5.36) and (6.52)

m → mc2, κ → cκ, κ̃ → κ̃ ′ = κ

mc
,

(A1)

λ̃ → λ̃

h̄c
= λ̃′, r0 → 2Cn

|λ̃′|
(
K + κ

mc

)
,

where c is the velocity of light and Cn is the Compton wave
length for the neutron. The dimensionless constant λ̃′ and the
r0 can be represented as

λ̃′ = −gαCnNcĵ

c
= 7.633 × 10−7ĵ ,

(A2)

r0 = 34.5 Å

ĵ

(
K + κ

mc

)
,

where ĵ = j/A is the current measured in amperes, α = e2

h̄c
=

1
137 is the fine-structure constant, g = −3.82 is the neutron
Landé factor, Nc = C/e = 6.242 × 1018 is the charge equal
to 1 Coulomb measured in elementary charges. Surely for
realistic current values parameter λ̃ is small thus the expansions
in a power series of λ̃ made in Sec. V was well grounded.

We formulated our problem for neutrons. However, the
obtained results can be extended to other neutral particles
which have nontrivial magnetic moments. As an example, we
consider here the Na atoms in the ground state. Then |g| →
5.4,m → 23m, and the parameters (A2) are transformed to
the following ones

λ̃′ = 4.68 × 10−8ĵ , r0 = 24.42 Å

ĵ

(
K + κ

mc

)
. (A3)

Consider now solutions (6.51) and evaluate the correspond-
ing probability density

ψ̄n,κ,kγ0rψn,κ,k = C2
n,κ,k

(
φ2

1 + φ2
2 + λ̃′(K + κ ′)εδ

∂(φ1φ2)

∂r

+ δλ̃′2

r

∂
(
φ2

2 − φ2
1

)
∂r

)
, (A4)
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where δ = 1
(K+κ ′)2+1

and Cn,κ,k is a normalization constant. In
particular, for n = 0,

ψ̄0,κ,kγ0rψ0,κ,k = C2
k

(
φ2

1 + φ2
2 − εδ1

φ1φ2

r
+ δ2

φ2
2

r2

)
,

(A5)

where φ1 and φ2 are functions defined in (6.48) and

δ1 = 2λ̃′((2k + 1)(K + κ ′) + λ̃′)δ, δ2 = λ̃′2(2k + 1)2δ.

(A6)

Analyzing (A5) we conclude that the last two terms in the
brackets are small. First they include the small multiplier λ̃′

(A2). Second, for k > 1/2 functions φ1φ2

r
and φ2

2
r2 are negligibly

small in comparison with φ2
1 + φ2

2 . The same statement is
correct for Eq. (A4) which can be proven by using the
identities

∂K0(λr)

∂r
= −λK1(λr),

∂K1(λr)

∂r
= −λK0(λr) − 1

r
K1(λr).

Thus, practically without loss of accuracy, we can write

ψ̄n,κ,kγ0rψn,κ,k ≈ C2
n,κ,k

(
φ2

1 + φ2
2

)
, (A7)

and so the probability distribution calculated for our relativistic
problem is virtually the same as the one obtained in [6,8] for
the nonrelativistic PS problem.

Thus the main statements presented in [6,8] concerning
the possibility, in principle, to observe experimentally the
neutrons and Na atoms trapped by the current filament can
be generalized to our model if we restrict ourselves to small
κ̃ . We will not repeat the reasonings given in the mentioned
papers but remind the reader that reasonable current values are
j ≈ 50 mA for trapping neutrons and j ≈ 400 mA for trapping
the Na atoms in the ground state.

The principally new feature of the relativistic model is the
essential dependence of the coupling energy and of the scaling
parameter r0 on the third component of momentum. Indeed the
coupling energy −mδ λ̃2

2N2 in (5.42) and characteristic distance
r0 (A3) include κ-dependent multipliers δ (5.43) and (K + κ

mc
)

respectively. Both these multipliers do not appear in the non-
relativistic PS problem.
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