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Analytical proof of Gisin’s theorem for three qubits
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Gisin’s theorem assures that for any pure bipartite entangled state, there is violation of the inequality of Bell
and of Clauser, Horne, Shimony, and Holt, revealing its contradiction with local realistic model. Whether a similar
result holds for three-qubit pure entangled states remained unresolved. We show analytically that all three-qubit
pure entangled states violate a Bell-type inequality, derived on the basis of local realism, by exploiting the Hardy’s
nonlocality argument.
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I. INTRODUCTION

Not all measurement correlations in some state of a
composite quantum system can be described by local hidden
variable theory (LHVT) [1], a fact which is said to be “the most
profound discovery of science” [2]. Experimental verification
of this fact (i.e., whether measurement correlations in nature
obey quantum rules or LHVT) goes also in favor of quantum
theory, modulo some loopholes [3]. Every LHVT description
[4] of the measurement correlations of a composite system
(assumed to be finite dimensional in the present article) gives
rise to one (or more than one) linear inequality (or, inequalities)
involving these correlations [5]. There are states of a composite
quantum system which violate some or all these inequalities
for suitable choices of the subsystem observables.

Gisin’s theorem assures that for any pure entangled state
of two-qudits, the above-mentioned violation is generic for
two settings per site (i.e., for the choice of one between two
noncommuting observables per qudit) [6]. In other words, all
pure entangled states of two d-dimensional quantum systems
violate a single Bell-type inequality with two settings per site,
where the choice of the observables depends on that of the
state. The question of extending Gisin’s work for multipartite
pure entangled states was first addressed by Popescu and
Rohrlich [7], although their approach was essentially confined
to bipartite pure entanglement. However, the validity of Gisin’s
theorem for multipartite systems is not guaranteed still today.
For example, for odd N , there is a family of entangled pure
states of N qubits, each of which satisfies all Bell-type
inequalities involving correlation functions, arising out of
measurement of one between two noncommuting dichotomic
observables per qubit [8]. Later, Chen et al. [9] provided a
Bell-type inequality involving joint probabilities, associated to
measurement of one between two noncommuting dichotomic
observables per qubit, which is violated by all the states of the
above-mentioned family [10]. But a single Bell-type inequality
is not guaranteed to be violated by all pure entangled states
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of three-qubits, although there are claims of having numerical
evidences in favor of this violation [9,11,12].

Quantum theory also shows contradiction with LHVT via
“nonlocality without inequalities” (NLWI) [13]. In this case,
a set of values of joint probabilities of outcomes of measure-
ments of one between two noncommuting observables per
site contradicts LHVT but can be realized in quantum theory.
Unfortunately, NLWI is weaker than Bell-type inequalities,
as no maximally entangled state of two-qudits seems to
show NLWI (in the case of Hardy-type NLWI, this has been
shown in Ref. [14]) even though each of them violates a
Bell-type inequality. This situation changes drastically when
we consider Hardy-type NLWI for three two-level systems
[15,16], where all but one of the joint probabilities in the
above-mentioned set are zero. Every maximally entangled state
of three qubits [17] satisfies Hardy-type NLWI for suitably
chosen pairs of noncommuting dichotomic observables per
qubit [18]. An attempt was made in Ref. [18] toward achieving
the result that every pure state of three qubits, having genuine
tripartite entanglement, satisfies Hardy-type NLWI. But in
absence of the discovery of canonical form for three-qubit
pure states (which was done later in Ref. [19]), it did not
yield a complete proof. A definite process to exclude the
product states was not given in Ref. [18], rather a somewhat
iterative process was described for each of those product
states.

Now, from the set of joint probabilities in any NLWI
argument, one can, in principle, construct a linear inequality
involving these joint probabilities by using local realistic
assumption. This inequality is automatically violated by every
quantum state which satisfies the corresponding NLWI argu-
ment. In the case of Hardy-type NLWI argument for two two-
level systems, this inequality (given in Eq. (11) of Ref. [20],
Eq. (11) of Ref. [21], and Eq. (26) of Ref. [22]) is nothing but
the corresponding CH inequality [23]. So, by Gisin’s theorem,
every two-qubit pure entangled state (irrespective of its amount
of entanglement) will violate the former inequality. In this arti-
cle, we show analytically that every three-qubit pure entangled
state violates a linear inequality of the above-mentioned type
[see Eq. (3) below] involving joint probabilities associated
with the Hardy-type NLWI, irrespective of whether the
state has genuine tripartite entanglement or pure bipartite
entanglement.
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This article is arranged as follows. In Sec. II, we describe
the Hardy-type NLWI argument for three two-level systems
and describe the corresponding quantum mechanical coun-
terpart. The classification of all three-qubit pure states in
product, bipartite nonmaximal, bipartite maximal, and genuine
tripartite entangled states, is made in Sec. III. Section IV
describes the observable settings for the different subclasses of
Sec. III to satisfy the Hardy nonlocality condition (1) quantum
mechanically. We derive a Bell-type inequality corresponding
to the Hardy’s nonlocality condition (1) in Sec. V. In Sec. VI,
it has been shown that every three-qubit pure entangled states
violates this Bell-type inequality. We conclude the article in
Sec. VII with discussion on visibility and some open problems.

II. HARDY-TYPE NLWI ARGUMENT FOR THREE
TWO-LEVEL SYSTEMS

Hardy-type NLWI argument starts from the following set
of five joint probability conditions for three two-level systems:

P (D1 = +1,U2 = +1,U3 = +1) = 0,

P (U1 = +1,D2 = +1,U3 = +1) = 0,

P (U1 = +1,U2 = +1,D3 = +1) = 0, (1)

P (D1 = −1,D2 = −1,D3 = −1) = 0,

P (U1 = +1,U2 = +1,U3 = +1) > 0,

where each Uj (as well as Dj ) is a {+1, − 1}-valued
random variable. This set of conditions cannot be satisfied
by a local realistic theory, and hence it contradicts
LHVT [15,18]. To see this explicitly, let us assume that
λ be any local hidden varriable taking values from the set
� with probability distribution ρ(λ), for which all the five
conditions in (1) are simultaneously satisfied. Thus, under this
assumption, there exist probability densities f (Uj = +1; λ),
f (Dj = +1; λ), f (Uj = −1; λ), f (Dj = −1; λ) on � (for
j = 1,2,3) such that 0 = P (D1 = +1,U2 = +1,U3 = +1) =∫
λ∈�

ρ(λ)dλf (D1 = + 1; λ)f (U2 = + 1; λ)f (U3 = + 1; λ),
and so on. The probability densities f (Uj = ±1; λ),
f (Dj = ±1; λ) are such that f (Uj = +1; λ) + f (Uj =
−1; λ) = 1 = f (Dj = +1; λ) + f (Dj = −1; λ) for j =
1,2,3 and for all λ ∈ �. This is so because the LHV λ

should also reproduce the marginal experimental probabilities
P (Uj = +1; λ) + P (Uj = −1; λ) = 1, and so on. So, from
the last condition in (1) we see that there exists a value range
(�′, say) of � within which f (U1 = +1; λ), f (U2 = +1; λ),
f (U3 = +1; λ) and ρ(λ) are all nonzero. Now the first
condition of (1) provides us f (D1 = +1; λ) = 0 for all λ in
�′. This immediately implies that f (D1 = −1; λ) = 1 for all
λ ∈ �′. Similarly, we get from the second and third conditions
of (1) that f (D2 = −1; λ) = 1 = f (D3 = −1; λ) for all
λ ∈ �′. Therefore, P (D1 = −1,D2 = −1,D3 = −1) =∫
λ∈�

ρ(λ)dλf (D1 = −1; λ)f (D2 = −1; λ)f (D3 = −1; λ) �∫
λ∈�′ ρ(λ)dλf (D1 = − 1; λ)f (D2 = − 1; λ)f (D3 = − 1λ) =∫
λ∈�′ ρ(λ)dλ > 0, which is in contradiction with the fourth

condition of (1). Hence, (1) has contradiction with LHVT.
To show that in quantum theory there are states which

exhibit this kind of nonlocality, we replace Uj and Dj by the
{+1,−1}-valued observables Ûj and D̂j , respectively, with
[Ûj ,D̂j ] �= 0. The probabilities appearing in (1) are expecta-

tion values of one-dimensional projectors corresponding to the
following five product vectors:

|D̂1 = +1〉|Û2 = +1〉|Û3 = +1〉,
|Û1 = +1〉|D̂2 = +1〉|Û3 = +1〉,
|Û1 = +1〉|Û2 = +1〉|D̂3 = +1〉,
|D̂1 = −1〉|D̂2 = −1〉|D̂3 = −1〉,
|Û1 = +1〉|Û2 = +1〉|Û3 = +1〉.

One can easily check that these five vectors are linearly
independent and hence span five-dimensional subspace of
the eight-dimensional Hilbert space associated to the total
system. Hence one can choose any one (among infinitely
many) vector which is orthogonal to the first four vectors
and nonorthogonal to the last one. Actually this result shows
that for any choice of observables in the above-mentioned
noncommuting fashion, one can always find a quantum state
which exhibits contradiction with local realism [24].

III. CLASSIFICATION OF THREE-QUBIT PURE STATES

But, in this article, our purpose is to find the converse. We
would like to see whether every three-qubit pure entangled
state exhibits contradiction with local realism. For this pur-
pose, one could start from the most general pure state |ψ〉
satisfying Hardy’s nonlocality argument (1) corresponding
to given set of observables and calculate the values of the
invariants of the corresponding local unitary group [19]. Each
of these invariants involves several parameters and hence
finding out its range is a nontrivial job, even numerically.
For this reason, we are going to take another route via the
canonical form for three-qubit pure state [see Eq. (2)]. In this
context, it has to be mentioned that Gisin’s theorem could
provide a single prescription for finding the observables for
any bipartite pure state to show violation of the Bell-CHSH
inequality, due to the existence of Schmidt decomposition.
Schmidt decomposition, in its strict sense [25], is absent for
systems comprising of three and more subsystems. This gives
rise to complications and one needs to find the observables
for each inequivalent case (depending on the values of the
parameters describing the state) separately. In this direction,
we start with an arbitrary three-qubit pure state |ψ〉, which can
always be taken in the canonical form [19]:

|ψ〉= λ0|000〉+ λ1e
iφ|100〉+ λ2|101〉+ λ3|110〉+ λ4|111〉,

(2)

where 0 � λj (for j = 0,1,2,3,4),
∑4

j=0 λ2
j = 1, and

0 � φ � π .
We now fully classify the above-mentioned three-qubit state

|ψ〉 into four major classes: (A) |ψ〉 is a fully product state,
(B) |ψ〉 has pure two-qubit nonmaximal entanglement, (C)
|ψ〉 has pure two-qubit maximal entanglement, and (D) |ψ〉
has genuine pure three-qubit entanglement. Depending on the
values of λ′

i s and φ, in Table I, we further classify each of these
four classes into several subclasses: (A) consists of (A.1)–
(A.3); (B) consists of (B.1)–(B.5); (C) consists of (C.1)–(C.3);
(D) consists of (D.1)–(D.14).
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TABLE I. Classification of |ψ〉.

Condition Case

λ0λ1 �= 0, λ2 = λ3 = λ4 = 0 (A.1)
λ0 �= 0, λ1 = λ2 = λ3 = λ4 = 0 (A.2)
λ0 = 0, λ1λ4e

iφ = λ2λ3 (A.3)
λ0λ1λ2 �= 0, λ3 = λ4 = 0 (B.1)
λ0λ1λ3 �= 0, λ2 = λ4 = 0 (B.2)
0 < λ0λ2 < 1/2, λ1 = λ3 = λ4 = 0 (B.3)
0 < λ0λ3 < 1/2, λ1 = λ2 = λ4 = 0 (B.4)

λ0 = 0 and
√

2
(
λ1eiφ λ2

λ3 λ4

)
(B.5)

is neither a singular matrix nor a
unitary matrix
λ0λ2 = 1/2, λ1 = λ3 = λ4 = 0 (C.1)
λ0λ3 = 1/2, λ1 = λ2 = λ4 = 0 (C.2)

λ0 = 0 and
√

2
(
λ1eiφ λ2

λ3 λ4

)
(C.3)

is a unitary matrix
λ0λ1λ2λ3λ4 �= 0, φ > 0 (D.1)
λ0λ1λ2λ3λ4 �= 0, φ = 0, λ2λ3 �= λ1λ4 (D.2)
λ0λ1λ2λ3λ4 �= 0, φ = 0, λ2λ3 = λ1λ4 (D.3)
λ0λ1λ2λ3 �= 0, λ4 = 0 (D.4)
λ0λ1λ2λ4 �= 0, λ3 = 0 (D.5)
λ0λ1λ3λ4 �= 0, λ2 = 0, λ0 �= λ4 (D.6)
λ0λ1λ3λ4 �= 0, λ2 = 0, λ0 = λ4 (D.7)
λ0λ1λ4 �= 0, λ2 = λ3 = 0 (D.8)
λ0λ3λ4 �= 0, λ1 = λ2 = 0 (D.9)
λ0λ2λ3λ4 �= 0, λ1 = 0, λ2 �= λ4 (D.10)
λ0λ2λ3λ4 �= 0, λ1 = 0, λ2 = λ4 (D.11)
λ0λ2λ3 �= 0, λ1 = λ4 = 0 (D.12)
λ0λ2λ4 �= 0, λ1 = λ3 = 0 (D.13)
λ0λ4 �= 0, λ1 = λ2 = λ3 = 0 (D.14)

IV. OBSERVABLE SETTINGS

If |ψ〉 has only bipartite nonmaximal entanglement we then
first consider the situation where |ψ〉 = |η〉 ⊗ |χ〉, with |η〉
being a two-qubit nonmaximally entangled state of the first
and the second qubits, while |χ〉 is a state of the third qubit.
Hardy [13] has shown that for all two-qubit nonmaximally
entangled pure states, one can choose observables for both
the qubits in such a way that the condition of nonlocality
without inequality holds. Now in our three-qubit case, we first
choose |Û3 = +1〉 = (1/

√
2)(|χ〉 + |χ⊥〉) and |D̂3 = +1〉 =

|χ⊥〉, where 〈χ⊥|χ〉 = 0. We can then choose two pairs of
noncommuting dichotomic observables (Û1,D̂1) and (Û2,D̂2)
in such a way that the state |η〉 satisfies Hardy’s NLWI
conditions for two two-level systems corresponding to these
observables. This immediately shows that the state |ψ〉 satisfies
the Hardy-type NLWI condition (1). As condition (1) is
symmetric with respect to the qubits, we see that for each of
the cases (B.1)–(B.5), the state |ψ〉 will satisfy the Hardy-type
NLWI argument (1).

Again, let |ψ〉 = |η〉 ⊗ |χ〉, where |η〉 is a two-qubit max-
imally entangled state of the first and the second qubits, while
|χ〉 is a state of the third qubit. If we now demand |ψ〉 to satisfy
(1), it will immediately follow that |η〉 must satisfy Hardy’s
NLWI conditions for two two-level systems—an impossibility
[13]. As above, we see that in none of the cases (C.1)–(C.3),
state |ψ〉 will satisfy the Hardy-type NLWI argument.

If |ψ〉 have genuine tripartite entanglement then to show
that it satisfies the Hardy-type NLWI argument (1), one can
choose the three pairs of {+1,−1}-valued noncommutating
observables (Ûj ,D̂j ) (where j is associated with j -th system
(j = 1,2,3)) as follows:

|Ûj = +1〉 = kj (αj |0〉 + βj |1〉),|D̂j = +1〉
= lj (γj |0〉 + δj |1〉),

where 0 < |kj lj (αjγ
∗
j + βjδ

∗
j )|,|kj lj (αjδj − βjγj )| < 1,

|kjαj |2 + |kjβj |2 = |lj γj |2 + |lj δj |2 = 1, and kj ’s, lj ’s are
the normalization constants (for j = 1,2,3). The values of
αj ,βj ,γj ,δj are given in Table II for all the cases (D.1)–(D.14).

The set of values of αj ,βj ,γj ,δj in Table II are not the
only possible values; one can get different such sets of values
of αj ,βj ,γj ,δj . The method we have adopted here to choose
these values is the following. First try to fix some or all of
|Û1 = +1〉, |Û2 = +1〉, |Û3 = +1〉 [and that will fix some or
all the pairs (α1,β1),(α2,β2),(α3,β3)] so that the last condition
in Eq. (1) satisfied corresponding to the chosen state |ψ〉. And
then try to fix rest of the |Ûj = +1〉’s and all of |D̂j = +1〉’s
according to the other conditions in (1) corresponding to the
same state |ψ〉. As an example consider the observable settings
in Table II for the subclass (D.14). Here |ψ〉 = λ0|000〉 +
λ4|111〉 with λ0,λ4 ∈ R and λ0λ4 �= 0. Choosing |Û1 =
+1〉 = |Û2 = +1〉 = 1√

2
(|0〉 + |1〉) ≡ |+〉, the last condition

P (U1 = +1,U2 = +1,U3 = +1) > 0 of (1) will be satisfied
provided we chose |Û3 = +1〉 to be nonorthogonal to the state
λ0|0〉 + λ4|1〉. And in this case, according to the third condition
of (1), we need to choose |D̂3 = +1〉 to be proportional to
λ4|0〉 − λ0|1〉. Choosing now |Û3 = +1〉 = k3(α3|0〉 + β3|1〉)
(so here, we must have: α3λ0 + β3λ4 �= 0), one can find
|D̂1 = +1〉 from the first condition and |D̂2 = +1〉 from the
second condition of (1), which will, in turn fix α3, β3 using the
fourth condition of (1).

V. DERIVATION OF BELL-TYPE INEQUALITY

We now derive a linear inequality (mentioned in Eq. (7)
of Ref. [26] for n qubits) involving the joint probabilities
in Eq. (1), starting from local realistic theory. For this, we
first assume that all the experimental probabilities P (Ak = ik),
P (Ak = ik,Al = il), P (Ak = ik,Al = il,Am = im) (with Ak ∈
{Uk,Dk}, and ik ∈ {+1,−1} for k,l,m = 1,2,3, and k �= l �=
m) can be described by a local hidden variable ω, defined on
the probability space � with probability density ρ(ω). For local
realistic theory, the probabilities would satisfy the following
conditions:

(i) Pω(Ak = ik) (for ik ∈ {+1,−1} with k = 1,2,3) can
only take values 1 or 0.

(ii) Pω(Ak = ik,Al = il) = Pω(Ak = ik)Pω(Al = il), Pω(Ak =
ik,Al = il,Am = im) = Pω(Ak = ik)Pω(Al = il)Pω(Am = im).

Condition (i) is equivalent to assigning definite values to
the observables. In any LHVT, the experimental probabilities
would be reproduced in the following way:

P (Ak = ik) = ∫
�

ρ(ω)dωPω(Ak = ik), P (Ak = ik,

Al = il) = ∫
�

ρ(ω)dωPω(Ak = ik,Al = il), P (Ak = ik,Al = il,

Am = im) = ∫
�

ρ(ω)dωPω(Ak = ik,Al = il,Am = im), where∫
�

ρ(ω)dω = 1.
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TABLE II. Observables for genuine tripartite pure entanglement.

Case Set of observables for different cases

(D.1), (D.2), (D.4), (D.5) α1 = λ1,β1 = −λ0e
iφ,γ1 = 0,δ1 = 1; α2 = 1,β2 = 0,γ2 = λ2λ3e

iφ − λ1λ4,δ2 = λ1λ2; α3 = λ2e
iφ,

β3 = −λ1,γ3 = 1,δ3 = 0
(D.3) α1 = 0,β1 = 1,γ1 = λ0λ1,δ1 = (1 − λ2

o); α2 = λ1τ − λ3ε,β2 = λ3τ + λ1ε,γ2 = λ3,δ2 = −λ1;
α3 = λ1 + λ2,β3 = λ2 − λ1,γ3 = λ2,δ3 = −λ1, where, τ = λ2

0λ3(λ1 + λ2),ε = λ2
0λ1(λ1 + λ2) + (1 − λ2

0)
(D.6) α1 = 0,β1 = 1,γ1 = λ1e

−iφ(λ2
4 − λ2

0),δ1 = −λ0(1 − λ2
0); α2 = λ3(1 − λ2

0),β2 = −λ1e
−iφ(1 − λ2

4),γ2 = λ3,

δ2 = −λ1e
−iφ ; α3 = 1,β3 = 0,γ3 = λ4(1 − λ2

4),δ3 = λ3(λ2
4 − λ2

0)
(D.7) α1 = λ1e

−iφ,β1 = −λ0,γ1 = 0,δ1 = 1; α2 = λ3,β2 = −λ1e
−iφ,γ2 = 1,δ2 = 0; α3 = 1,β3 = 0,

γ3 = λ0,δ3 = −λ3

(D.8) α1 = 0,β1 = 1,γ1 = λ1e
−iφ(ε + λ4),δ1 = −λoε; α2 = 1,β2 = 1,γ2 = λ4,δ2 = −ε; α3 = ε,

β3 = λ1e
−iφ,γ3 = λ4,δ3 = −λ1e

−iφ ; with ε being a solution of z2(1 − λ2
4) + zλ4(1 − λ2

0) + λ4
4 = 0

(D.9), (D.10) α1 = λ2(λ2
2 + λ2

4) + λ4(1 − λ2
0),β1 = −λ0λ3λ4,γ1 = 1,δ1 = 0; α2 = 1,β2 = 1,γ2 = λ4,δ2 = −λ2;

α3 = 0,β3 = 1,γ3 = λ3λ4,δ3 = λ2
2 + λ2

4

(D.11) α1 = 0,β1 = 1,γ1 = λ2
2λ3,δ1 = λ0(λ2

2 + λ2
3); α2 = λ2

2 + λ2
3,β2 = −λ2

2,γ2 = 1,δ2 = 0; α3 = 1,

β3 = 0,γ3 = λ3,δ3 = λ2

(D.12) α1 = 0,β1 = 1,γ1 = δλ0λ2λ3,δ1 = λ3
2δ + λ3

3; α2 = 1,β2 = 1,γ2 = λ3,δ2 = −λ2δ; α3 = 1,

β3 = δ,γ3 = λ2,δ3 = −λ3; with δ being a solution of z2λ4
2 + zλ2λ3 + λ4

3 = 0
(D.13) α1 = 1,β1 = 1,γ1 = λ2,δ1 = −λ0ε; α2 = 1,β2 = 0,γ2 = λ4,δ2 = −(λ0ε + λ2); α3 = ε,β3 = 1,

γ3 = λ2,δ3 = −λ0; with ε being a solution of z2λ4
0 + zλ0λ2(λ2

0 + λ2
2) + λ2

2(λ2
2 + λ2

4) = 0
(D.14) α1 = 1,β1 = 1,γ1 = iλ0,δ1 = −λ4; α2 = 1,β2 = 1,γ2 = iλ0,δ2 = −λ4 ; α3 = λ2

4,β3 = iλ2
0,

γ3 = λ4,δ3 = −λ0

Now consider the following quantity

B(ω) = Pω(D1 = −1)Pω(D2 = −1)Pω(D3 = −1)

+Pω(D1 = +1)Pω(U2 = +1)Pω(U3 = +1)

+Pω(U1 = +1)Pω(D2 = +1)Pω(U3 = +1)

+Pω(U1 = +1)Pω(U2 = +1)Pω(D3 = +1)

−Pω(U1 = +1)Pω(U2 = +1)Pω(U3 = +1).

One can easily check that B(ω) � 0 for all ω ∈ �. Then
obviously ∫

�

ρ(ω)dωB(ω) � 0,

which, in turn, gives rise to the following Bell-type
inequality:

P (D1 = −1,D2 = −1,D3 = −1)

+P (D1 = +1,U2 = +1,U3 = +1)

+P (U1 = +1,D2 = +1,U3 = +1)

+P (U1 = +1,U2 = +1,D3 = +1)

−P (U1 = +1,U2 = +1,U3 = +1) � 0. (3)

Thus we see that every LHVT satisfies the inequality (3).

VI. VIOLATION OF THE INEQUALITY

From our above-mentioned discussion on Hardy-type
NLWI, it follows that every three-qubit pure state will violate
the inequality (3) unless it is a fully product state or it has pure
bipartite maximal entanglement. We now show that this in-
equality is even violated when |ψ〉 has pure bipartite maximal
entanglement, although, in this case, |ψ〉 does not satisfy the
Hardy-type NLWI condition (1). Without loss of generality, we

can take |ψ〉 in this case as: |ψ〉 = (1/
√

2)(|00〉 + |11〉) ⊗ |0〉.
Choose |Û1 = +1〉 = (

√
0.96|0〉 + 0.2|1〉), |D̂1 = +1〉 = |0〉,

|Û2 = +1〉 = (0.2|0〉 + √
0.96|1〉), |D̂2 = +1〉 = |1〉, |Û3 =

+1〉 = (1/
√

2)(|0〉 + |1〉) |D̂3 = +1〉 = |1〉. With this choice,
|ψ〉 will violate the inequality (3).

VII. DISCUSSION

We have established the result that every pure entangled
state of three qubits violates the Bell-type inequality (3).

If a three-qubit state |ψ〉 violates the inequality (3)
maximally corresponding to the set S(ψ) of three pairs of
noncommuting observables (Û1,D̂1), (Û2,D̂2), and (Û3,D̂3),
then the minimum value of the coefficient v ∈ [0,1] for which
the state ρ(ψ,v) ≡ v|ψ〉〈ψ | + [(1 − v)/8]I (I being the 8 × 8
identity matrix) also violates the inequality (3), is called the
“threshold visibility” of the state |ψ〉. The lower the amount
of threshold visibility, the higher the amount of noise the
inequality can sustain. The maximum negative violation of
the inequality (3) by the GHZ state is numerically found
to be −0.175459 (approx.), and so the threshold visibility
vthr

GHZ of this state turns out to be 0.68125 (approx.), which is
approximately same as that found in Ref. [12]. On the other
hand, the maximum negative violation of the inequality (3)
by the W state (1/

√
3)(|001〉 + |010〉 + |100〉) is numerically

found to be −0.192608 (approx.), and so the threshold
visibility vthr

W of this state turns out to be 0.6606676 (approx.),
which is also approximately same with the value 0.660668
of vthr

W , found in Ref. [12]. It is to be noted that so far as the
values of vthr

GHZ, vthr
W are concerned, although the probabilistic

Bell-type inequality (18) of Ref. [12] and the above-mentioned
inequality (3) provide approximately the same values, unlike
inequality (3), neither inequality (18) of Ref. [12] nor any other
inequality mentioned in the literature so far (see, for example,
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Refs. [9,11,12]) is analytically guaranteed to be violated by all
pure entangled states of three qubits. By considering a modified
form of the inequality (3) (e.g., inequality (11) of Ref. [21]),
one may get a lower value of the threshold visibility for the
states.

One may also try to find similar feature (i.e., violation
of Bell-type inequality, derived from Hardy-type NLWI
argument, by all pure entangled states) in the case of n-partite
quantum systems.
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