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Wave-function Monte Carlo method for simulating conditional master equations
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Wave-function Monte Carlo methods are an important tool for simulating quantum systems, but the standard
method cannot be used to simulate decoherence in continuously measured systems. Here I present a Monte Carlo
method for such systems. This was used to perform the simulations of a continuously measured nanoresonator
in [Phys. Rev. Lett. 102, 057208 (2009)].
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I. INTRODUCTION

The now standard “wave-function Monte Carlo method”
for simulating the evolution of a quantum system undergoing
decoherence is a very important numerical tool [1–5]. This
method allows a simulation of the density matrix, an object
of size N2 where N is the dimension of the system, to be
replaced by a simulation of a number of pure states, each
of which is only of size N . With the increasing relevance
of continuous measurement [6] and feedback control [7] to
experimental quantum systems, especially in superconducting
circuits [8,9] and nanomechanics [10–14], one needs to sim-
ulate continuously measured systems subject to decoherence.
The standard Monte-Carlo method cannot be used in this case,
because it applies to master equations but not to stochastic
(or conditional) master equations (SMEs).

To date, two Monte Carlo methods have been devised
for simulating conditional master equations, but both suffer
limitations. The first is by Gambetta and Wiseman [15], who
used the linear formulation [6,16,17] of quantum trajectories to
derive their method. The less desirable feature of this method
is that it requires evolving a fraction of ensemble members
that end up contributing negligibly to the final density matrix,
and to this extent it is inefficient. The second method, recently
suggested by Hush et al. [18], is specifically designed for
simulating systems with very large state-spaces, in which it is
not possible to use wave-function methods. This requires the
use of a quasiprobablity density, such as the Wigner function,
and is therefore not as simple to apply to many systems.
Further, the elements in the ensemble for this method are not
wave functions but points in phase space. This is important for
very large state-spaces, but less desirable when wave functions
(pure states) can be used. Here I present a wave-function Monte
Carlo method that avoids all the above issues. This method was
used to perform the simulations in Ref. [19], but the details
were not presented there.

In the next section, I state the standard Monte Carlo method
for reference purposes. In Sec. III, I present the method with a
minimum of discussion. The purpose is that this section should
serve as an easily accessible reference for anyone wanting to
implement the method. Note that a parallel implementation
using C++/MPI is available from my website [20]. In Sec. IV,
I show how the method is derived, and thus show that it
reproduces the evolution of a stochastic master equation. In
Sec. V, I use the method to simulate a measurement of the
energy of a harmonic oscillator and compare it to a direct

simulation of the SME. Section VI concludes with a summary
of the results.

II. THE STANDARD MONTE CARLO METHOD

In what follows, L and M are operators, ρ is the density
matrix, and dW is a Wiener process, independent of any other
Wiener processes that may be introduced.

The standard wave-function Monte Carlo method is imple-
mented as follows (see, e.g., Ref. [4]). The master equation

ρ̇ = −γ (L†Lρ + ρL†L − 2LρL†), (1)

can be simulated by performing the following steps.
1. Create a set of N pure states |ψn〉, so that the desired

initial value of ρ is approximately

ρ(0) = 1

N

N∑
n=1

|ψn〉〈ψn|. (2)

2. Evolve each pure state by repeating the following
steps (i and ii).

(i) Increment each state using the stochastic Schrödinger
equation (SSE)

d|ψn〉 = −γ [L† − 2〈L + L†〉n]L|ψn〉dt

+
√

2γL|ψn〉dVn, (3)

where

〈L + L†〉n ≡ 〈ψn|(L + L†)|ψn〉 (4)

and the dVn are mutually independent Wiener noise
increments satisfying (dVn)2 = dt .

(ii) Normalize each of the |ψn〉.
3. The density matrix at time t is (approximately)

ρ(t) = 1

N

N∑
n=1

|ψn(t)〉〈ψn(t)|. (5)

III. THE NEW MONTE CARLO METHOD

The conditional (stochastic) master equation,

dρ = −γ (L†Lρ + ρL†L − 2LρL†)dt

− k(M†Mρ + ρM†M − 2MρM†)dt

+
√

2k(Mρ + ρM† − 〈M + M†〉ρ)dW, (6)
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describes a measurement of M and decoherence due to an
interaction with L.

The aforementioned SME can be simulated by performing
the following steps.

1. Create a set of N pure states and N probabilities Pn, so
that the desired initial value of ρ is approximately

ρ(0) =
N∑

n=1

Pn|ψn〉〈ψn|,
N∑

n=1

Pn = 1. (7)

Since the Pn are the weightings of the pure states in the
ensemble that forms ρ, the effective size of the ensemble is
no longer N , but can be characterized, for example, by the
exponential of the von Neumann entropy of the set {Pn}:

Neff = exp

[
−

N∑
n=1

Pn ln Pn

]
� N. (8)

This effective size is maximized (equal to N ) iff all the Pn

are equal to 1/N . I therefore choose Pn = 1/N as the initial
values of the weightings.

2. Evolve each pure state by repeating the following
steps (i–vii).

(i) Increment each state using the SSE

d|ψn〉 = −γ [L† − 2〈L + L†〉n]L|ψn〉dt

+
√

2γL|ψn〉dVn, (9)

where

〈L + L†〉n ≡ 〈ψn|(L + L†)|ψn〉 (10)

and the dVn are mutually independent Wiener noise
increments satisfying (dVn)2 = dt .

(ii) Normalize each of the |ψn〉.
(iii) Increment each state by

d|ψn〉 = −γ [M† − 2〈M + M†〉]M|ψn〉dt

+
√

2γM|ψn〉dW, (11)

where

〈M + M†〉 ≡
N∑

n=1

Pn〈ψn|(M + M†)|ψn〉. (12)

(iv) Update the probabilities Pn using

Pn → Pn〈ψn|ψn〉. (13)

(v) Normalize the Pn: Pn → Pn/
∑N

n=1 Pn.

(vi) Normalize each of the |ψn〉.
(vii) Every few iterations perform the following operation

(which might be referred to as “splitting,” “breeding,”
or “regenerating” the ensemble). For each pure state
whose probability Pj is less than a fixed threshold
Pthresh � 1, pick the state from the ensemble, |ψm〉,
whose probability, Pm, is currently the largest in the
ensemble. Then set |ψj 〉 equal to |ψm〉, thus erasing
|ψj 〉 from the ensemble. Set both Pj and Pm equal
to Pm/2. Thus the highest probability state has been
“split” into two members of the ensemble, and this
state is (most likely) no longer the highest contributing
member. After this has been done for each Pj < Pthresh,
then normalize all the Pn as per step (v).

3. The density matrix at time t is (approximately)

ρ(t) =
N∑

n=1

Pn(t)|ψn(t)〉〈ψn(t)|. (14)

A. Considerations for numerical accuracy

In the standard Monte Carlo method the only parameter
that one must chose to reach a desired accuracy is N ; one
merely increases N until one obtains this accuracy. For my
Monte Carlo method I have two parameters that affect the error.
The first is the minimum effective ensemble size during the
evolution, min(Neff). The second comes from the regeneration
step. In each regeneration I eliminate some states. If I denote
the sum of the probabilities for these “dropped” states as Pdrop,
then the maximum value of Pdrop during the simulation bounds
the error from the regeneration step. So to ensure numerical
accuracy I require that

min(Neff) � 1,
(15)

max(Pdrop) � 1.

The values of these two quantities are determined jointly by N

and Pthresh. For a given value of N , there is some optimal value
of Pthresh that ensures that min(Neff) is large while keeping
max(Pdrop) small.

For a given simulation it is simple to check whether N and
Pthresh give sufficient accuracy. One merely runs the simulation
a second time with the same realization for the measurement
noise dW and a different set of realizations for the noises that
model the decoherence, dVi . The difference between the two
simulations gives one an estimate of the error.

B. Multiple decoherence channels and multiple measurements

For simplicity I presented the Monte Carlo method for an
SME with only a single source of decoherence and a single
measurement. Extending this to m sources of decoherence
and l measurements is very simple. A system subjected to l

continuous measurements and m sources of decoherence is
described by the following SME,

dρ = −
m∑

i=1

γ (L†
i Liρ + ρL

†
i Li − 2LiρL

†
i )dt

−
l∑

j=1

kj (M†
jMjρ + ρM

†
jMj − 2MjρM

†
j )dt

+
l∑

j=1

√
2kj (Mjρ + ρM

†
j − 〈Mj + M

†
j 〉ρ)dWj , (16)

where the dWj are mutually independent Wiener processes.
To simulate this SME one simply repeats steps 2(i) and 2(ii)
for each of the m decoherence channels and steps 2(iii)–2(vi)
for each of the l measurement channels.

C. Inefficient measurements

The form of the SME given in Eq. (16) is general enough
to include inefficient measurements [6]. To make the j th
measurement inefficient, simply choose one of the Li to be
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equal to Mj and adjust the values of the corresponding γi and
kj to obtain the desired efficiency.

D. Using Milstein’s method for time-stepping

If one simulates a stochastic differential equation (SDE)
simply by replacing dt with a small time-step �t and dW by a
zero mean Gaussian random variable with variance �t (called
�W ), then the solution is only guaranteed to be accurate to
half-order in �t . Ensuring that the simulation is accurate to
first-order in �t is simple, and the method for doing this is
called Miltstien’s method. Milstein’s method involves adding a
term to the differential equation that is proportional to (�W 2 −
�t). The exact form of the Milstein term depends on the form
of the stochastic term in the SDE. If the stochastic term is
simply a linear operation, then the Milstein term is given by
applying the linear operation twice and multiplying by one half
[21]. Thus, the Milstein term for an SDE with the stochastic
term αX|ψ〉�W , for a number α and operator X, is

�|ψ〉Mil = α2

2
(�W 2 − �t)X2|ψ〉. (17)

IV. DERIVING THE METHOD

I begin by noting that, if I apply the part of the evolution
containing L first and that containing M second, I get the
evolution correct to first-order in dt . If the density matrix is
given by ρ = ∑

n Pn|ψn〉, then the L part of the evolution is
obtained by using the standard Monte Carlo method [steps 2(i)
and 2(ii)]. To simulate the part containing M (the measurement
part), I note that this evolution can be written as [6]

ρ(t + dt) = 1

N A(α)ρ(t)A†(α), (18)

where A is an operator that depends on the measurement
result, α, and N is simply an overall normalization factor.
The measurement result α is the real number,

α = 2k〈M + M†〉dt +
√

2γ dW. (19)

By substituting ρ = ∑
n Pn|ψn〉〈ψn| into Eq. (18), I find that

ρ(t + dt) = 1

N

N∑
n=1

PnA|ψn〉〈ψn|A†

=
N∑

n=1

Pn〈ψn|A†A|ψn〉
N

[
A|ψn〉〈ψn|A†

〈ψn|A†A|ψn〉
]

=
N∑

n=1

Pn(t + dt)|ψn(t + dt)〉〈ψn(t + dt)|,

which gives the simple update rules

Pn(t + dt) = Pn(t)〈ψn(t)|A†A|ψn(t)〉
N , (20)

|ψn(t + dt)〉 = A|ψn〉√
〈ψn|A†A|ψn〉

, (21)

where N is chosen so that
∑

n Pn(t + dt) = 1. From Eq. (29)
in Ref. [6], the operator A is

A(α) = 1 − γ [M† − 2〈M + M†〉]Mdt +
√

2γMdW,

and this gives the evolution sequence for the Monte Carlo
method presented previously.

The effect of the measurement is to increase the probabili-
ties of some states and reduce those of others. This reduces the
effective size of the ensemble, and before too long there will
only be one state left in the ensemble. To correctly model the
noise being introduced into the system by the decoherence (the
part of the evolution containing L), a large number of states
needs to be maintained in the ensemble. This problem is solved
by using the “regeneration” procedure [step 2(vii)]. Once
every so-often I discard those states from the ensemble whose
probabilities, and thus contribution, have become negligible.
This discarding process does not effect the density matrix
unduly so long as the total amount of probability of the
discarded states is very small. Once the “small” states have
been discarded, I must choose new states to replace them, and
I must do this without affecting the density matrix. This is
easily achieved by duplicating some of the states that have
a large contribution and dividing the probability for each of
these states equally between the original state and its duplicate.
One should duplicate the states with the highest probability,
as this provides the biggest increase in the effective size of the
ensemble. With the addition of this regeneration procedure,
my Monte Carlo method is complete.

V. EXAMPLE OF A NUMERICAL SIMULATION

Here I simulate a continuous measurement of the energy
of a harmonic oscillator, using both the SME and the
Monte Carlo method. I subject the oscillator to a randomly
fluctuating white noise force, which serves as a simple model
of (infinite temperature) thermal noise. The evolution due to
the fluctuating force is given by [22]

d|ψ〉 =
[
−β

2
x2dt + i

√
βxdW

]
|ψ〉, (22)

where β determines the strength of the force. The term in this
equation proportional to dt is due to the transformation from
Stratonovich to Ito noise. Since the observer does not know
the fluctuating value of the force, the observer must average
over it. The evolution of the observer’s density matrix is then
given by the master equation

dρ = −β[x, [x, ρ]]dt. (23)

Adding to this the evolution due the continuous measurement
of energy (equivalently a continuous measurement of the
phonon number, N = a†a) and the Hamiltonian evolution, the
SME is

dρ = −iω[N, ρ]dt − β

2
[x, [x, ρ]]dt − k[N, [N, ρ]]dt

+
√

2k(Nρ + ρN − 2〈N〉ρ)dW. (24)

Here ω is the frequency of the oscillator, x = (a + a†) is the
dimensionless position, and k is the measurement strength.
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I simulate this equation by using the unnormalized version

dρ = −iω[N, ρ]dt − β

2
[x, [x, ρ]]dt − k[N, [N, ρ]]dt

+ (Nρ + ρN )(4k〈N〉dt +
√

2kdW )

+ k(dW 2 − dt)(N2ρ + ρN2 + 2NρN) (25)

and by normalizing ρ after each time-step. The reason I use
this unnormalized version, which you will note is the same
unnormalized version used for the wave function in the Monte
Carlo method, is that it makes the noise term in the SME
linear in ρ, which in turn makes the Milstein term simpler to
calculate. In Eq. (25) the Milstein term is the final term. Since
this equation is only accurate to first-order in the noise part of
the evolution, I have also only included a first-order term for
the deterministic evolution due to the Hamiltonian.

The corresponding evolution for the Monte Carlo wave
function is

d|ψ〉 = −
[
iωN − β

2
x2 − kN2

]
dt |ψ〉

+ (4k〈N〉dt +
√

2kdW )N |ψ〉 + i
√

βxdV |ψ〉
+ k(dW 2 − dt)N2|ψ〉 + β

2
(dV 2 − dt)x2|ψ〉, (26)

where dV is uncorrelated with dW .
I now simulate the SME, using both Eq. (25) and the Monte

Carlo method, and compare the results. For this simulation
I set k = g = 0.1f (where f = ω/2π ≡ 1/T ) and start the
oscillator in the Fock state with three phonons. I use a
Fock-state basis and truncate the state space at 9 phonons.
For the first run I choose dt = 2 × 10−4T and run for a
time of t = 10T . For the Monte Carlo run I choose the
ensemble size to be Nens = 1024 and Pthresh = 0.2/Nens. This
choice results in min(Neff) = 745.2 and max(Pdrop) = 0.003.
I plot the expectation value of the phonon number for both
simulations in Fig. 1(a). We see that the results agree, but
the solutions slowly diverge. To determine the source of this
divergence I perform more simulations. For the first one I
double the size of the ensemble, and for the second I halve
the time-step. Note that when I halve the time-step, I must
use a noise realization that is consistent with that used for the
first run, so that I can directly compare the trajectories in both
cases [21].

I find that doubling the size of the ensemble has little effect
on the result of the Monte Carlo simulation. Halving the time-
step, on the other hand, reduces the divergence between the
two simulations considerably. In Fig. 1(b) I plot the direct
simulation of the SME using the smaller time-step, along with
the Monte Carlo simulations using both time-steps. This plot
is a zoomed-in version of the trajectory in Fig. 1(b). These
results show that the ensemble size of 1024 is sufficient for
this simulation, the inaccuracy being due almost entirely to the
finite size of the time-step.

VI. CONCLUSION

I have presented a wave-function Monte Carlo method for
simulating systems that are under continuous observation,
while also being subjected to noise and decoherence. This
method is more efficient than the previously available method

FIG. 1. (Color online) The average value of the phonon number,
N , for a continuous measurement of N , for an oscillator driven by a
white-noise force. (a) A direct simulation of the SME (black line) and
a simulation using the Monte Carlo method [grey line (blue online)].
In this case the time-step is dt = 2 × 10−4T , and the ensemble
has 1024 members. (b) A zoomed-in version of the Monte Carlo
simulation in panel (a) [medium grey line (blue online)]; a direct
simulation of the SME with half the time-step (black line); and the
MC simulation with half the time-step (light grey line).

[15]. I have also applied it to an example system, determining
in this case sufficient resources to reproduce the SME.

Note added. Recently, I discovered that a key element, that
of “splitting” the ensemble, had been introduced previously by
Trivedi and Ceperley for Monte Carlo simulations of classical
systems. See Ref. [23].
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