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Quantum discord, a kind of quantum correlation, is defined as the difference between quantum mutual
information and classical correlation in a bipartite system. In general, this correlation is different from
entanglement, and quantum discord may be nonzero even for certain separable states. Even in the simple
case of bipartite quantum systems, this different kind of quantum correlation has interesting and significant
applications in quantum information processing. So far, quantum discord has been calculated explicitly only for
a rather limited set of two-qubit quantum states and expressions for more general quantum states are not known.
In this article, we derive explicit expressions for quantum discord for a larger class of two-qubit states, namely, a
seven-parameter family of so called X states that have been of interest in a variety of contexts in the field. We also
study the relation between quantum discord, classical correlation, and entanglement for a number of two-qubit
states to demonstrate that they are independent measures of correlation with no simple relative ordering between
them.
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I. INTRODUCTION

For a given bipartite quantum state, it is important to
know whether it is entangled, separable, classically correlated,
or quantum correlated. Much effort has been invested in
subdividing quantum states into separable and entangled states
(see Refs. [1,2] and references therein). It is well known that
entanglement makes possible tasks in quantum information
which are impossible without it [3]. However, entanglement is
not the only type of correlation useful for quantum technology.
Recently, it was found that there are some quantum correlations
other than entanglement that also offer some advantage, for
example, quantum nonlocality without entanglement [4–6].
In addition, it was shown theoretically [7–9], and later
experimentally [10], that some separable states may also speed
up certain tasks over their classical counterparts. Therefore, it
is desirable to investigate, characterize, and quantify quantum
correlations more broadly.

A bipartite quantum state contains both classical and quan-
tum correlations. These correlations are quantified jointly by
their “quantum mutual information,” an information-theoretic
measure of the total correlation in a bipartite quantum state
[11]. In particular, if ρAB denotes the density operator of a
composite bipartite system AB and ρA(ρB) denotes the density
operator of part A(B), then the quantum mutual information
is defined as

I(ρAB) = S(ρA) + S(ρB) − S(ρAB ), (1)

where S(ρ) = −tr(ρ log2 ρ) is the von Neumann entropy.
Moreover, it was shown that quantum mutual information is
the maximum amount of information that A(lice) can send
securely to B(ob) if a composite correlated quantum state is
used as the key for a one-time pad cryptographic system [12].

Quantum mutual information may be written as a sum
of classical correlation C(ρAB) and quantum correlation
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Q(ρAB), that is, I(ρAB) = C(ρAB) + Q(ρAB) [13–15]. This
quantum part Q has been called quantum discord [13]. It
is a different type of quantum correlation than entanglement
because separable mixed states (that is, with no entanglement)
can have nonzero quantum discord.

Quantum discord is not always larger than entanglement
[15,16]. This indicates that discord is not simply a sum
of entanglement and some other nonclassical correlation.
Even for the simplest case of two entangled qubits, the
relation between quantum discord, entanglement, and classical
correlation is not yet clear. For pure states and, surprisingly, for
a mixture of Bell states, quantum correlation is exactly equal
to entanglement, whereas classical correlation attains its max-
imum value 1. However, for general two-qubit mixed states,
the situation is more complicated. Qubit-qubit entanglement
has been characterized and quantified completely, whereas
quantum discord has been characterized and quantified only for
particular cases [13–20]. More recently, some analytical results
were obtained for a restricted subset of two-qubit X states
with an interest in the dynamics of quantum discord [21,22].
Another measure called “quantumness of correlations” is
introduced as well, which has the property that it vanishes
for separable states [23]. Quantum discord is a measure
of nonclassical correlations that may include entanglement
but is an independent measure. We document with simple
examples that the amounts of classical correlation, quantum
discord, and entanglement bear no simple relationship to each
other.

In order to quantify quantum discord, Ollivier and Zurek
[13] suggested the use of von Neumann type measurements
which consist of one-dimensional projectors that sum to the
identity operator. Let the projection operators {Bk} describe
a von Neumann measurement for subsystem B only, then
the conditional density operator ρk associated with the mea-
surement result k is

ρk = 1

pk

(I ⊗ Bk)ρ(I ⊗ Bk), (2)
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where the probability pk equals tr[(I ⊗ Bk)ρ(I ⊗ Bk)]. The
quantum conditional entropy with respect to this measurement
is given by [15]

S(ρ|{Bk}) :=
∑

k

pkS(ρk), (3)

and the associated quantum mutual information of this mea-
surement is defined as

I(ρ|{Bk}) := S(ρA) − S(ρ|{Bk}). (4)

A measure of the resulting classical correlations is provided
[13–16] by

C(ρ) := sup
{Bk}

I(ρ|{Bk}). (5)

The obstacle to computing quantum discord lies in this
complicated maximization procedure for calculating the clas-
sical correlation because the maximization is to be done over
all possible von Neumann measurements of B. Once C is in
hand, quantum discord is simply obtained by subtracting it
from the quantum mutual information,

Q(ρ) := I(ρ) − C(ρ). (6)

For a general two-qubit X state, the quantification of
quantum discord is still missing, with only partial results
available for subsets of three parameters [15,19,20] and some
other restricted subsets of two-qubit X states [21,22,24].

Therefore, in order to deepen our understanding of quantum
discord and its relation to other forms of quantum correlations
such as entanglement, it is necessary to generalize these first
results and develop methods for computing quantum discord
in more general contexts. In this article, we develop such a
method to evaluate both classical correlations and quantum
discord for the complete set of two-qubit X states depending
on seven real-valued parameters. Among others, this set
includes maximally entangled Bell states and separable and
nonseparable “Werner” states [25]. Analytical expressions are
derived which explicitly exhibit the dependence of classical
correlation and quantum discord on the density matrix ele-
ments of arbitrary X states. It is demonstrated that already
within this seven-parameter set of states, there are no simple
ordering relations between entanglement and discord. Thus,
these analytical results strongly support the general view that
entanglement and discord are two fundamentally different
types of quantum correlations.

This article is organized as follows. In Sec. II, we describe
some basic properties of X states and how to calculate the
classical correlation and quantum discord for them. In Sec. III,
we apply this for various examples of X states, studying the
relation between the classical correlation, quantum discord,
and entanglement. We conclude our work in Sec. IV. In the
Appendix we present details while extending also the cal-
culation from von Neumann measurements to more general
positive operator valued measurements (POVM) of one sub-
system.

II. TWO-QUBIT X STATES

In this section, we limit our discussion to initially prepared
arbitrary two-qubit X states. The density matrix of a two-

qubit X state in the representation spanned by the two-qubit
product states |1〉 = |0〉A ⊗ |0〉B , |2〉 = |0〉A ⊗ |1〉B , |3〉 =
|1〉A ⊗ |0〉B , and |4〉 = |1〉A ⊗ |1〉B is of the general form

ρX =

⎛
⎜⎝

ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ32 ρ33 0

ρ41 0 0 ρ44

⎞
⎟⎠ , (7)

that is, ρ12 = ρ13 = ρ24 = ρ34 = 0. This visual appearance
resembling the letter X has led them to be called X states [26]
but, recently, an underlying symmetry structure of these states
has been examined [27].

Equation (7) describes a quantum state provided the unit
trace and positivity conditions

∑4
i=1 ρii = 1, ρ22ρ33 � |ρ23|2,

and ρ11ρ44 � |ρ14|2 are fulfilled. X states are entangled if
and only if either ρ22ρ33 < |ρ14|2 or ρ11ρ44 < |ρ23|2. Both
conditions cannot hold simultaneously [28]. Equation (7) is a
seven-real parameter state with three real parameters along the
main diagonal and two complex (or four real) parameters at
off-diagonal positions.

The eigenvalues of the density matrix ρX in Eq. (7) are
given by

λ0 = 1

2
[(ρ11 + ρ44) +

√
(ρ11 − ρ44)2 + 4|ρ14|2],

λ1 = 1

2
[(ρ11 + ρ44) −

√
(ρ11 − ρ44)2 + 4|ρ14|2],

(8)

λ2 = 1

2
[(ρ22 + ρ33) +

√
(ρ22 − ρ33)2 + 4|ρ23|2],

λ3 = 1

2
[(ρ22 + ρ33) −

√
(ρ22 − ρ33)2 + 4|ρ23|2].

The quantum mutual information is given as

I(ρX) = S
(
ρA

X

) + S
(
ρB

X

) +
3∑

j=0

λj log2 λj , (9)

where ρA
X and ρB

X are the marginal states of ρX, and

S
(
ρA

X

) = −[(ρ11 + ρ22) log2(ρ11 + ρ22)
+ (ρ33 + ρ44) log2(ρ33 + ρ44)],

(10)
S
(
ρB

X

) = −[(ρ11 + ρ33) log2(ρ11 + ρ33)
+ (ρ22 + ρ44) log2(ρ22 + ρ44)].

After computing the quantum mutual information, we need
next to compute the classical correlation C(ρX). We consider
projective measurements for subsystem B (the projective
measurements for subsystem A give the same results if
we restrict to either ρ11 = ρ44 or ρ22 = ρ33). We follow the
procedure of [15] except that we are considering a class of
states that is more general than the three-parameter family of
that study.

It is known that any von Neumann measurement for
subsystem B can be written as Ref. [15]

Bi = V �iV
†, i = 0,1, (11)

where �i = |i〉〈i| is the projector for subsystem B along the
computational base |i〉 and V ∈ SU (2) is a unitary operator
with unit determinant. After the measurement, the state ρX
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will change to the ensemble {ρi,pi}, where

ρi := 1

pi

(I ⊗ Bi)ρX(I ⊗ Bi), (12)

and pi = tr[(I ⊗ Bi)ρX(I ⊗ Bi)]. The {ρi,pi}, with i = 0,1,

are of subsystem A and thus 2 × 2 density matrices.
We may write any V ∈ SU (2) as

V = tI + i�y · �σ , (13)

with t, y1, y2, y3 ∈ R and t2 + y2
1 + y2

2 + y2
3 = 1. This im-

plies that these parameters, three among them independent, as-
sume their values in the interval [−1, 1], that is, t, yi ∈ [−1,1]
for i = 1, 2, 3. The ensemble {ρi,pi} can be characterized by
their eigenvalues as per a derivation given in the Appendix.
The two eigenvalues each of ρ0 and ρ1 are given as

v±(ρ0) = 1
2 (1 ± θ ),

(14)
w±(ρ1) = 1

2 (1 ± θ ′).

The corresponding probabilities are given as

p0 = [(ρ11 + ρ33)k + (ρ22 + ρ44)l],
(15)

p1 = [(ρ11 + ρ33)l + (ρ22 + ρ44)k].

We have defined θ and θ ′ that generalize a single expression
in Ref. [15] as

θ =
√

[(ρ11 − ρ33)k + (ρ22 − ρ44)l]2 + �

[(ρ11 + ρ33)k + (ρ22 + ρ44)l]2
, (16)

θ ′ =
√

[(ρ11 − ρ33)l + (ρ22 − ρ44)k]2 + �

[(ρ11 + ρ33)l + (ρ22 + ρ44)k]2
, (17)

where � = 4kl[|ρ14|2 + |ρ23|2 + 2Re(ρ14ρ23)] − 16mRe
(ρ14ρ23) + 16nIm(ρ14ρ23), and Re(z) and Im(z) are the real
and imaginary parts of the complex number z. We have
defined the parameters, m, n, k, and l as

m = (ty1 + y2y3)2, n = (ty2 − y1y3)(ty1 + y2y3),
(18)

k = t2 + y2
3 , l = y2

1 + y2
2 .

With k + l = 1, Eqs. (16) and (17) for a given density matrix
depend on three real parameters, k, m, and n. It can be readily
checked that k ∈ [0,1], m ∈ [0,1/4], and n ∈ [−1/8,1/8].
These three parameters are a recasting of the three independent
parameters in Eq. (13) and are related to the set (z1,z2,z3) of
Ref. [15] through 4m = z2

2, 4n = −z1z2, and k − l = z3.
The entropies of the ensemble {ρi,pi} are given as

S(ρ0) = −1 − θ

2
log2

1 − θ

2
− 1 + θ

2
log2

1 + θ

2
, (19)

S(ρ1) = −1 − θ ′

2
log2

1 − θ ′

2
− 1 + θ ′

2
log2

1 + θ ′

2
. (20)

The quantum conditional entropy in Eq. (3) is given as

S(ρX|{Bi}) = p0S(ρ0) + p1S(ρ1). (21)

As per Eq. (5), the classical correlation is obtained as

C(ρX) = sup
{Bi }

[I(ρX|{Bi})]

= S
(
ρA

X

) − min
{Bi }

[S(ρX|{Bi})]. (22)

Therefore, to calculate the classical correlation and conse-
quently quantum discord, we have to minimize the quantity
S(ρX|{Bi}) [Eq. (21)] with respect to the von Neumann
measurements.

To minimize Eq. (21) by setting equal to zero its partial
derivatives with respect to k, m, and n, observe first that
the expression is symmetric under the interchange of k

and l = 1 − k. It is, therefore, an even function of (k − l)
and the extremum lies at k = l = 1/2 or at the end points
k = 0 or k = 1. From the definition of these parameters in
Eq. (18), the end points require t = y3 = 0 or y1 = y2 = 0
and, therefore, m = n = 0. On the other hand, for the case
k = l = 1/2, we have θ = θ ′, and S(ρ0) = S(ρ1) and the
minimization of S(ρX|{Bi}) is equal to the minimization of
either S(ρ0) or S(ρ1). Further, with � in these expressions
involving m and n only linearly, extreme values are attained
only at their end points: m = 0,1/4 and n = 0, ± 1/8. Thus,
the maximum classical correlation and thereby the quantum
discord can be obtained easily analytically. The Appendix
shows how we may generalize to POVM to get final compact
expressions that are simple extensions of the more limited von
Neumann measurements, thereby yielding the same value for
the maximum classical correlation and discord.

For the special case of two-qubit X states with restrictions
ρ11 = ρ44 and ρ22 = ρ33, and with real off-diagonal elements,
we define

θ1 = 2|ρ14 + ρ23|, θ2 = 2|ρ14 − ρ23|,
(23)

θ3 = θ4 = |(ρ11 + ρ44) − (ρ22 + ρ33)|,
and associated entropy S ′(ρi)|θj

as

S ′(ρi)|θj
= −1 + θj

2
log2

1 + θj

2
− 1 − θj

2
log2

1 − θj

2
.

(24)

In addition, S(ρ0) = S(ρ1), and the minimum value of
S(ρ|{Bi}) is equal to the minimum value of S(ρ0), which is
given as

min[S(ρ|{Bi})] = min[S(ρ0)] = S ′(ρ0)|θsup, (25)

where

θsup = max{θ1,θ2,θ3}. (26)

Therefore, we recover the results of Ref. [15] as a special case
of ours. All other previous results [21] are special cases of our
study and can be easily recovered.

III. RELATION BETWEEN DISCORD AND
ENTANGLEMENT

In this section, we study the relation between the classical
correlation, quantum discord, and entanglement for various
initial states.

(1) As a first example, we take maximally entangled pure
states, that is, the four Bell states given as |ψ±〉 = (|0,1〉 ±
|1,0〉)/√2 and |φ±〉 = (|0,0〉 ± |1,1〉)/√2. It is well known
that for any Bell state, we have

I(ρ) = 2, C(ρ) = 1, Q(ρ) = 1. (27)
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For this particular case, quantum discord and any measure
of entanglement coincide and are equal to the maximum
value of the correlation. Surprisingly, if we mix any two
Bell states, for example, ρ = a|ψ+〉〈ψ+| + (1 − a)|φ+〉〈φ+|,
the classical correlation is not affected at all, and quantum
discord is captured by a measure of entanglement called
the entanglement of formation [29,30]. The quantum mutual
information is I(ρ) = 2 + a log2 a + (1 − a) log2(1 − a), the
classical correlation is C(ρ) = 1, and the entanglement of
formation is equal to quantum discord, that is, E(ρ) = Q(ρ) =
1 + a log2 a + (1 − a) log2(1 − a) [14]. However, this exam-
ple is special as, for other mixed states, entanglement and
quantum discord differ substantially.

(2) We take the class of states defined as ρ =
a|ψ+〉〈ψ+| + (1 − a)|1,1〉〈1,1| (0 � a � 1), where |ψ+〉 =
(|0,1〉 + |1,0〉)/√2 is a maximally entangled state. Based
on the results of the previous section, we are now able to
calculate the classical correlation and quantum discord. We
have θ1 = θ2 =

√
a2 + (1 − a)2, θ3 = |2 − 3a|/(2 − a), and

θ4 = 1. As θ3 �= θ4, the quantity S(ρ|{Bi})|θ3,θ4 is given as

S(ρ|{Bi})|θ3,θ4 = 2 − a

2
S ′(ρ0)|θ3 + a

2
S ′(ρ1)|θ4 . (28)

As θ4 = 1, we have S ′(ρ1)|θ4 = 0. We note that S ′(ρ0)|θ1 �
S(ρ|{Bi})|θ3,θ4 , that is, min{S ′(ρ0)|θ1, S(ρ|{Bi})|θ3,θ4} =
S ′(ρ0)|θ1 .

The classical correlation is given as

C(ρ) = S(ρA) − S ′(ρ0)|θ1, (29)

where

S(ρA) = −a

2
log2

a

2
− 2 − a

2
log2

2 − a

2
. (30)

The quantum mutual information is

I(ρ) = 2S(ρA) − S(ρ), (31)

and the quantum discord is

Q(ρ) = S(ρA) + S ′(ρ0)|θ1 − S(ρ), (32)

where

S(ρ) = −a log2 a − (1 − a) log2(1 − a). (33)

To study the relation between quantum discord and en-
tanglement, we choose a measure of entanglement. Although
various measures of entanglement [29–31] give the same
result for separable states and for Bell states, the amount
of entanglement of a specific mixed state is different for
different measures. We prefer to compare quantum discord
with concurrence C ′ [30]. The concurrence for this state is
given as

C ′(ρ) = a. (34)

Figure 1 displays the classical correlation, quantum discord,
and concurrence for ρ for various values of the parameter a.
The solid line presents quantum discord, the dotted-dashed
line is for concurrence, and the dashed line is for classical
correlation. It can be seen that for this particular initial state,
quantum discord is always less than concurrence but always
greater than the classical correlation.

C′ ρ

C ρ
Q ρ

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

a

FIG. 1. (Color online) Concurrence, quantum discord, and clas-
sical correlation for the class of states in (2) under Sec. III are plotted
for ρ as a function of the parameter a. These correlations are equal
only for a = 0 and a = 1.

(3) We consider the initial state ρ = a|φ+〉〈φ+| + (1 −
a)|1,1〉〈1,1| (0 < a � 1), where |φ+〉 = (|0,0〉 + |1,1〉)/√2
is a maximally entangled state. In this case
θ1 = θ2 =

√
a2 + (a − 1)2, and θ3 = θ4 = 1. Therefore,

S(ρ|{Bi})|θ3,θ4 = 0, which is the minimum when compared
with S ′(ρ0)|θ1 , that is, min{S ′(ρ0)|θ1, S(ρ|{Bi})|θ3,θ4} = 0.
Hence the classical correlation is given as

C(ρ) = S(ρA) = −a

2
log2

a

2
− 2 − a

2
log2

2 − a

2
. (35)

The quantum mutual information is given as

I(ρ) = 2S(ρA) − S(ρ), (36)

and quantum discord as

Q(ρ) = S(ρA) − S(ρ), (37)

with S(ρ) as in Eq. (24). The concurrence for these states is
again given as in Eq. (34), C ′(ρ) = a.

The classical correlation, quantum discord, and concur-
rence have been plotted in Fig. 2 for ρ against parameter a.

C′ ρ

C ρ

Q ρ

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

a

FIG. 2. (Color online) As in Fig. 1 for the class of states in (3)
under Sec. III. The top curve (dashed line) is for classical correlation,
the middle curve (dotted-dashed) is for concurrence, and the bottom
curve (solid line) is for quantum discord.
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The solid line is for quantum discord, the dotted-dashed
line is for concurrence, and the dashed line is for classical
correlation. Interestingly, for this particular initial state, the
classical correlation is always greater than both entanglement
and quantum discord except for a = 0 and a = 1. Moreover,
quantum discord is always less than concurrence and the
classical correlation.

(4) Let us consider the Werner state [25],

ρ = a|ψ−〉〈ψ−| + 1 − a

4
I, (38)

where |ψ−〉 = (|0,1〉 − |1,0〉)/√2 is a maximally entangled
state and 0 � a � 1. The Werner state has a peculiar property
in that the eigenvalues of its ensemble {pi,ρi} do not depend
on the parameters k and m, that is, θ = θ ′ = a or in other
words θ1 = θ2 = θ3 = a, and we have [15]

C(ρ) = 1 − a

2
log2(1 − a) + 1 + a

2
log2(1 + a), (39)

I(ρ) = 3(1 − a)

4
log2(1 − a) + 1 + 3a

4
log2(1 + 3a),

(40)

and quantum discord

Q(ρ) = I(ρ) − C(ρ)

= 1
4 [(1 − a) log2(1 − a) + (1 + 3a) log2(1 + 3a)

− 2(1 + a) log2(1 + a)]. (41)

The concurrence for the Werner state is given by

C ′(ρ) = max

{
0,

3a − 1

2

}
. (42)

These correlations are plotted in Fig. 3. In contrast to
previous examples, the correlations have a different order
as functions of a, with quantum discord initially larger than
concurrence and the classical correlation for 0 � a � 0.523,
but for the range 0.523 < a < 1, concurrence becomes larger
than discord and the classical correlation. Such a behavior is
different from the previous two examples.

C′ ρ

C ρ

Q ρ

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2
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0.6

0.8

1.0

a

FIG. 3. (Color online) Graphs of quantum discord Q(ρ) (solid
line), classical correlation C(ρ) (dashed line), and concurrence C ′(ρ)
(dotted-dashed line) versus a for the Werner state.

(5) Finally we consider the initial state,

ρ = 1
3 {(1 − a)|0,0〉〈0,0| + 2|ψ+〉〈ψ+| + a|1,1〉〈1,1|}.

(43)

In contrast with example (2), this state also con-
tains the |0,0〉 noisy component. We note that θ1 =
θ2 =

√
(1 − 2a)2 + 4/3, θ3 = (1 − a)/(1 + a), and θ4 =

a/(2 − a). We find S ′(ρ0)|θ1 < S(ρ|{Bi})|θ3,θ4 , that is,
min{S ′(ρ0)|θ1 , S(ρ|{Bi})|θ3,θ4} = S ′(ρ0)|θ1 . We have

C(ρ) = 1 + θ1

2
log2

1 + θ1

2
+ 1 − θ1

2
log2

1 − θ1

2

− 2 − a

3
log2

2 − a

3
− 1 + a

3
log2

1 + a

3
, (44)

I(ρ) = 1 − a

3
log2

1 − a

3
+ a

3
log2

a

3
+ 2

3
log2

2

3

− 2(2 − a)

3
log2

2 − a

3
− 2(1 + a)

3
log2

1 + a

3
,

(45)

and quantum discord

Q(ρ) = 1 − a

3
log2

1 − a

3
+ a

3
log2

a

3
+ 2

3
log2

2

3

− (2 − a)

3
log2

2 − a

3
− (1 + a)

3
log2

1 + a

3

− 1 + θ1

2
log2

1 + θ1

2
− 1 − θ1

2
log2

1 − θ1

2
. (46)

The concurrence for this state is given as

C ′(ρ) = max

{
0,

2

3
[1 −

√
a(1 − a)]

}
. (47)

We display the classical correlation, quantum discord, and
concurrence versus a for this state in Fig. 4. We can see
that all these correlations are symmetric about a = 1/2. As
the parameter a varies from 0 to 1, the quantum mutual
information decreases, and the classical correlation, quantum
discord, and entanglement decrease, and vice versa.

C′ ρ

C ρ

Q ρ

0.0 0.2 0.4 0.6 0.8 1.0

0.35

0.40

0.45

0.50

0.55

0.60

0.65

a

FIG. 4. (Color online) Graphs of quantum discord Q(ρ) (solid
line), classical correlation C(ρ) (dashed line), and concurrence C ′(ρ)
(dotted-dashed line) versus a. The correlations are symmetrical about
a = 0.5 and are maximum at a = 0 and a = 1.
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IV. SUMMARY

We have derived analytical expressions for the classical
correlation and quantum discord in X states, a seven-parameter
family of states of two qubits. This generalizes results
previously available only for a three-parameter subset of
such states. A large class of two-qubit states that includes
maximally or partially entangled states and mixed states that
are separable or nonseparable can now be examined for these
various correlations. We present such results for the classical
correlation, quantum discord, and entanglement for various
density matrices. We conclude that there are no simple ordering
relations between these correlations and, in particular, that
quantum discord may be smaller or larger than entanglement
as measured with concurrence or negativity. Thus, quantum
discord is a fundamentally different resource than entangle-
ment and these correlations are different qualitatively and
quantitatively.

ACKNOWLEDGMENTS

We thank Drs. Jaroslav Novotný and Joseph Rennes for
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APPENDIX: CALCULATIONAL DETAILS OF VON
NEUMANN AND POVM ALTERNATIVES

In this appendix, we give some details of the calculation
leading to Eqs. (15)–(20). First, an alternative seven-parameter
version of the density matrix in Eq. (7) proves useful:

ρX = 1

4

⎛
⎜⎜⎜⎝

1 + d1 0 0 c1 − c2

0 1 + d2 c1 + c2 0

0 c∗
1 + c∗

2 1 + d3 0

c∗
1 − c∗

2 0 0 1 + d4

⎞
⎟⎟⎟⎠ , (A1)

where c1 and c2 are complex and the other coefficients
are real, the diagonal entries being (d1 = c3 + a3 + b +
3, d2 = −c3 + a3 − b3, d3 = −c3 − a3 + b3, d4 = c3 − a3 −
b3). These parameters are given in terms of the density
matrix elements by c3 = ρ11 + ρ44 − ρ22 − ρ33, a3 = ρ11 −
ρ44 + ρ22 − ρ33, b3 = ρ11 − ρ44 − ρ22 + ρ33, c1 = 2(ρ23 +
ρ14), and c2 = 2(ρ23 − ρ14). The choice of only three coef-
ficients ci , all real, corresponds to the one made in Ref. [15].

Evaluation of Eq. (12) as per the procedure in Ref. [15]
gives, after some algebra,

p0ρ0 = 1
4 [1 + b3z3 + a1σ1 + a2σ2 + (a3+c3z3)σ3],

(A2)
p1ρ1 = 1

4 [1 − b3z3 − a1σ1 − a2σ2 + (a3−c3z3)σ3],

with

a1 = Re(z1c1 − iz2c2) = z1Re(c1) + z2Im(c2),
(A3)

a2 = Im(z1c1 − iz2c2) = z2Re(c2) − z1Im(c1),

in terms of the unit vector �z defined in Ref. [15] from the
parameters in Eq. (13) as

z1 = 2(−ty2 + y1y3), z2 = 2(ty1 + y2y3),
(A4)

z3 = t2 + y2
3 − y2

1 − y2
2 .

Upon taking the trace of Eq. (A2), we get the probabilities

p0 = (1 + b3z3)/2, p1 = (1 − b3z3)/2, (A5)

in agreement with Eq. (15) upon writing b3 in terms of ρij and
z3 = k − l.

The density matrices themselves for subsystem A that
follow from Eq. (A2) are, therefore,

ρ0 = 1
2 {I +[a1σ1 + a2σ2 + (a3+ c3z3)σ3]/(1+ b3z3)},

ρ1 = 1
2 {I +[−a1σ1 − a2σ2 + (a3− c3z3)σ3]/(1− b3z3)}.

(A6)

Their eigenvalues are the ones in Eq. (14). Note that the
denominators in Eq. (17) are (1 ± b3z3)/2, while the nu-
merators under the square root are the sum of the squares
of (a3 ± c3z3)/2 and � = (a2

1 + a2
2)/4 as follows from the

properties of the Pauli matrices. The expressions for ρ0 and
ρ1 differ in a change in sign in �z in Eqs. (A6) and (A3). This
close connection except for a change in sign of �z traces back to
the similar change in sign of the two von Neumann projectors
in Eq. (11), �0,1 = (I ± σz)/2. Indeed, the reduction of the
lengthy calculation to this compact statement of passing from
the projectors �0,1 to the expressions in Eq. (A6), with the
measurement directions ±ẑ replaced by the dot product of �σ
with �z and corresponding coefficients of the density matrix,
will be useful in generalizing to other types of measurements
below.

Instead of von Neumann projectors, consider more general
POVM. For instance, choose three orthogonal unit vectors
mutually at 120◦,

ŝ0,1,2 = [ẑ, (−ẑ ±
√

3x̂)/2], (A7)

and corresponding projectors

E0 = 1

3
(I + σz),

(A8)

E1,2 = 1

3

(
I − 1

2
σz ±

√
3

2
σx

)
,

with E0 + E1 + E2 = I , E2
i = 2Ei/3, and tr(Ei) = 2/3. With

this choice of projectors in Eq. (11), the same calculation
for what remains for subsystem A after the measurements on
subsystem B now give the counterparts of Eq. (A5),

p0 = (1 + b3z3)/3, p1 = (1 + b3α3)/2,
(A9)

p2 = (1 + b3β3)/3,

and of Eq. (A6) for ρ0.1.2 with exactly similar expressions
except (�z,�α, �β) replaces ±�z in Eqs. (A6) and (A3). Here, we
have defined two counterparts of �z that follow from the other
two projectors in Eq. (A7),

�α, �β = (−�z ±
√

3�x)/2, (A10)

with �z given in Eq. (A4) in terms of the parameters in Eq. (13),
and similarly we have defined �x drawn from another set of
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combinations in Ref. [15],

x1 = t2 + y2
1 − y2

2 − y2
3 , x2 = 2(−ty3 + y1y2),

(A11)
x3 = 2(ty2 + y1y3).

Other choices of projectors may define a similar third set of
parameters �y in Ref. [15], all these unit vectors (�x,�y,�z) being
mutually orthogonal.
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R. M. Serra, e-print arXiv:1002.3906 [quant-ph]; L. Mazzola,
J. Piilo, and S. Maniscalco, e-print arXiv:1001.5441 [quant-ph].

[23] A. R. Usha Devi and A. K. Rajagopal, Phys. Rev. Lett. 100,
140502 (2008).

[24] T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, Phys.
Rev. A 80, 024103 (2009).

[25] R. F. Werner, Phys. Rev. A 40, 4277 (1989).
[26] T. Yu and J. H. Eberly, Quantum Inform. Comput. 7, 459 (2007).
[27] A. R. P. Rau, J. Phys. A 42, 412002 (2009).
[28] A. Sanpera, R. Tarrach, and G. Vidal, Phys. Rev. A 58, 826

(1998).
[29] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.

Wootters, Phys. Rev. A 54, 3824 (1996).
[30] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[31] G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 (2002).

042105-7

http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/PhysRevA.59.1070
http://dx.doi.org/10.1103/PhysRevA.59.1070
http://dx.doi.org/10.1103/PhysRevA.71.062307
http://dx.doi.org/10.1103/PhysRevA.71.062307
http://dx.doi.org/10.1103/PhysRevA.74.052103
http://dx.doi.org/10.1103/PhysRevLett.83.1054
http://dx.doi.org/10.1103/PhysRevLett.85.2014
http://dx.doi.org/10.1103/PhysRevA.72.042316
http://dx.doi.org/10.1103/PhysRevA.72.042316
http://dx.doi.org/10.1103/PhysRevA.75.042310
http://dx.doi.org/10.1103/PhysRevLett.100.050502
http://dx.doi.org/10.1103/PhysRevLett.100.050502
http://dx.doi.org/10.1103/PhysRevLett.101.200501
http://dx.doi.org/10.1103/PhysRevA.72.032317
http://dx.doi.org/10.1103/PhysRevA.72.032317
http://dx.doi.org/10.1103/PhysRevA.74.042305
http://dx.doi.org/10.1103/PhysRevA.74.042305
http://dx.doi.org/10.1103/PhysRevLett.88.017901
http://dx.doi.org/10.1088/0305-4470/34/35/315
http://dx.doi.org/10.1103/PhysRevLett.90.050401
http://dx.doi.org/10.1103/PhysRevA.80.044102
http://dx.doi.org/10.1103/PhysRevA.80.044102
http://dx.doi.org/10.1103/PhysRevA.77.042303
http://dx.doi.org/10.1103/PhysRevA.76.032327
http://dx.doi.org/10.1103/PhysRevA.77.022301
http://dx.doi.org/10.1103/PhysRevA.77.022301
http://dx.doi.org/10.1103/PhysRevLett.89.180402
http://dx.doi.org/10.1103/PhysRevLett.101.070502
http://dx.doi.org/10.1103/PhysRevB.78.224413
http://dx.doi.org/10.1103/PhysRevA.80.022108
http://dx.doi.org/10.1103/PhysRevA.81.022116
http://arXiv.org/abs/arXiv:0911.1096
http://arXiv.org/abs/arXiv:1002.3906
http://arXiv.org/abs/arXiv:1001.5441
http://dx.doi.org/10.1103/PhysRevLett.100.140502
http://dx.doi.org/10.1103/PhysRevLett.100.140502
http://dx.doi.org/10.1103/PhysRevA.80.024103
http://dx.doi.org/10.1103/PhysRevA.80.024103
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://dx.doi.org/10.1088/1751-8113/42/41/412002
http://dx.doi.org/10.1103/PhysRevA.58.826
http://dx.doi.org/10.1103/PhysRevA.58.826
http://dx.doi.org/10.1103/PhysRevA.54.3824
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevA.65.032314

