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Decoherence in a double-slit quantum eraser
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We study and experimentally implement a double-slit quantum eraser in the presence of a controlled
decoherence mechanism. A two-photon state, produced in a spontaneous parametric down-conversion process,
is prepared in a maximally entangled polarization state. A birefringent double slit is illuminated by one of
the down-converted photons, and it acts as a single-photon two-qubits controlled-NOT gate that couples the
polarization with the transversal momentum of these photons. The other photon, which acts as a which-path
marker, is sent through a Mach-Zehnder-like interferometer. When the interferometer is partially unbalanced, it
behaves as a controlled source of decoherence for polarization states of down-converted photons. We show the
transition from wavelike to particle-like behavior of the signal photons crossing the double slit as a function of
the decoherence parameter, which depends on the length path difference at the interferometer.
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I. INTRODUCTION

The complementary behavior of physical systems is at
the heart of its quantum description. In brief, the principle
of complementarity states that matter can exhibit physical
properties that cannot be observed with certainty simultane-
ously [1], for instance, particle-like and wavelike behaviors.
The observation of particle-like and wavelike behavior in the
well-known Young double-slit experiment is a good example
of the principle of complementarity. When the trajectory of
the photons is recorded, the interference pattern disappears.
On the other hand, when the trajectory followed by the
photon is completely unknown, the interference pattern arises.
For explaining this behavior, in a gedanken experiment,
Einstein introduced the classical recoiling of the slit in
his discussion with Bohr. In this thought experiment, the
momentum transferred by the photons passing through a slit
free to move transversally is recorded, and the interference
should still be observed in the far field. However, Bohr refuted
Einstein’s experiment by using the uncertainty principle. For
this, Bohr pointed out that for deducing through which slit
the photon pass, the initial momentum of a free to move slit
must be know within a momentum uncertainly that impose
a position uncertainty that wash out the interference pattern.
The notion of complementarity of some properties of physical
systems remains valid [2]. This type of complementarity is
related to the preparation of the state preparation of the
system.

The introduction of entanglement between the quantum
system and a probe allows for the possibility of transferring
system’s information to a probe by choosing what mea-
surement is being performed on the probe. In this context,
the complementary behavior of the quantum system appears
due to the entanglement between the interfering particle and
the which-path marker particle [3]. Scully and Drüll have
studied the role of entanglement in a modified double-slit
experiment based on the photon emission of two atoms
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closely located [4]. They show that in some cases the loss
of contrast in the interference pattern seems to be caused
by the entanglement between the quantum system and the
measurement device. The information of the markers can be
deleted by properly selecting the measurement bases, i.e., the
which-path information (WPI) can be erased from which-path
markers (WPM) and the interference pattern is recovered. This
erasure procedure is referred to as quantum eraser [5–7]. In
this sense, the state of the measurement device can be used as
which-path marker. Then, when these states are orthogonal,
the interference pattern is destroyed, even if they are not
measured [8,9]. The wave-particle duality may be quantified
by relating interference fringe visibility and path knowledge
as studied in Ref. [10]. They have investigated this relation for
states with different degree of purity. The WPI of a quantum
system, of an entangled pair, can be marked or erased by its
entangled twin even after the registration of the quantum [11].
This type of complementarity is associated to the measurement
of noncompatible observables and is related to the Arthurs
and Kelly uncertainty principle [12]. A further discussion on
the types of complementarity and the associated uncertainty
product limit can be found in Refs. [13] and [14].

Several quantum eraser experiments have been done by
employing two-photons states produced from the spontaneous
parametric down-conversion (SPDC) process [10,11,14–18].
Here, we have used the photonic quantum eraser experiment
introduced by Walborn et al. [18]. A related experiment has
been reported by Pysher et al. [19], where the birefringent
element is a Mach-Zehnder interferometer in the path of
the signal photon. Another related experiment has been
reported by Gogo et al. [20] for comparing classical and
quantum correlations by studying a quantum eraser based on
a polarization interferometer.

In this article, we study how the purity of the entangled
two-photon state in the double-slit quantum eraser affects the
wavelike and particle-like properties of the signal photons.
In the experiment, down-converted photons are generated in
a maximally entangled polarization state. Then the signal
photon is sent through a birefringent double-slit mask, which
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acts as a single-photon two-qubits controlled-NOT gate that
couples the polarization of the down-converted photons with
the transversal momentum of the signal photons transmitted
trough this aperture. This coupling allows the usage of the
idler polarization states as a which-path marker. Thereby,
selecting the orientation of a polarizer in the path of the idler
photon of the entangled pair, the interference pattern can be
erased or recovered. The control of the decoherence of the
entangled pair is experimentally implemented by inserting
an unbalanced Mach-Zehnder-like interferometer (MZI) along
the propagation path of the idler photon, which acts on the WPI
particle as an amplitude decay channel [21]. The experimental
setup is also suitable for studying the entanglement dynamics
[22]. Recently, we have implemented a erasure experiment
in the context of state discrimination with partially entangled
two-photon polarization states. In this case, the which-path
marker states are not necessarily orthogonal. Hence, the
visibility of the interference pattern as well as the WPI are
constrained by the overlap between the which-path marker
states [23]. By a probabilistic mapping of nonorthogonal states
onto orthogonal ones, a complete WPI is obtained. However,
when the mapping is onto collinear states interference with
maximum visibility is recovered.

The remainder of this article has been organized as follows:
In Sec. II we derive the expressions for describing the effects
introduced by a controlled decoherence mechanism on the
which-path marker states. In particular, we study how the
decoherence process affects the visibility in the quantum
eraser. In Sec. III we describe the experimental setup and the
obtained results. Finally, we conclude with a summary of the
main results in Sec. IV.

II. THEORETICAL DESCRIPTION

In this section we study the presence of a decoherence
mechanism of a quantum erasure experiment in Ref. [18].
For sake of completeness and for an easy reading, we give a
brief summary of the above mentioned reference. Thereafter,
we study the use of a dynamically stabilized MZI, inserted
along the propagation path of a single-photon field, as a source
of controlled decoherence, where the degree of decoherence
depends on the path length difference between the arms of the
interferometer. Finally, we combine these results for studying
the effect of a decoherence mechanism on a quantum erasure
setup.

A. Quantum eraser protocol

We assume that a two-photon state in a maximally entangled
polarization state is generated in a SPDC process, as it is
depicted in Fig. 1(a). The two-photon state is given by [24]

|ψin〉 = 1√
2

(|HiVs〉 + i|ViHs〉) ⊗ |ψspa〉, (1)

where |Hj 〉 (|Vj 〉) represents one photon in the j -th prop-
agation mode with horizontal (vertical) polarization, with
j = s, i for signal and idler photons, respectively. The relative
phase π/2 between the polarization components is generated
due to the walk-off effect on the nonlinear crystals. The
propagation modes of down-converted photons depend both on

FIG. 1. (Color online) Schematic representation of the experi-
mental setup. (a) The source of maximally entangled polarization
state, Eq. (1), where the half-wave plate (HWP) and quarter-wave
plate (QWP) allow for controlled generation of the state. A biconvex
lens has been inserted to produce a large transversal coherence section
for single photons at the slit’s plane located at zA. (b) Alignment of
the QWP’s behind the double-slit mask. (c) WPI section according
the the protocol of Ref. [18]. The QWP1 and QWP2 are placed
behind the double-slit mask with the optical axis orthogonal between
them. A final QWP is placed in the propagation path after the slits
to change the polarization from {L, R} to {H,V }. (d) The controlled
decoherence mechanism. The idler photon pass through the actively
stabilized MZI, where phase shifters (PS1 and PS2) provide the
control over the path-length difference between the two arms of
the interferometer. Finally, (e) detection system. The detectors are
equipped with bandpass filters centered at λ = 702 nm with 10 nm at
FWHM. Additionally, the signal detector is equipped with a single slit
that enables the scan in the x direction. In front of the idler detector,
a linear polarizer determines the polarization basis for measurement.

the pump beam spatial distribution and on the phase matching
conditions [25–27]. These modes are correlated and |ψspa〉
denotes the transversal spatial correlation of the two-photon
state generated in SPDC.

The signal photon is passed through a vertically oriented
double-slit system. This double-slit system can be interpreted
as a filtering operation over the transversal momentum of
signal photon. Neglecting a normalization constant, the filtered
state, after the double slit, is given by

|ψ1〉 ∝ (|HiVs〉 + i|ViHs〉) ⊗ |0i〉(|+s〉 + |−s〉), (2)

where |0i〉 is the spatial mode of idler photon defined by
pinholes along its propagation path; |±s〉 stands for the upper
(+) and lower (−) slit’s states. The |±s〉 states are defined by

|±s〉 =
√

π

a

∫ ∞

−∞
dqse

∓idqs sinc(qsa)|1qs〉. (3)

These states form an orthonormal basis for the Hilbert space
of transmitted photons [28,29]. Here, a is the half width of the
slits, d is the separation between the center of the slits, qs is the
signal photon transversal momentum, and the sinc function is
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the Fourier transform of the transmission function of the slits.
A conditional operation can be performed over the polarization
state of the signal photon, depending on the propagation path.
For doing this quarter-wave plates (QWPs), with the optical
axis perpendicularly oriented, after the upper and lower slits
are inserted [see Fig. 1(c)]. The compound system, double-slit
and QWPs, acts as a single-photon birefringent double-slit
mask. The modified state is

|ψ2〉 ∝ ∣∣H 0
i

〉
[|R+

s 〉 − |L−
s 〉] + ∣∣V 0

i

〉
[|L+

s 〉 + |R−
s 〉], (4)

where we have used the following definitions |R±
s 〉 ≡ |Rs〉 ⊗

|±s〉; |L±
s 〉 ≡ |Ls〉 ⊗ |±s〉; |H 0

i 〉 ≡ |Hi〉 ⊗ |0i〉 and |V 0
i 〉 ≡

|Vi〉 ⊗ |0i〉, with |R〉 = (|H 〉 − i|V 〉)/√2 and |L〉 = (|H 〉 +
i|V 〉)/√2. We can rewrite state (4) as

|ψ2〉 ∝ ∣∣L0
i

〉
[|P +

s 〉 − i|P −
s 〉] + i

∣∣R0
i

〉
[|M+

s 〉 + i|M−
S 〉] (5)

with |P 〉 = (|H 〉 + |V 〉)/√2 and |M〉 = (|H 〉 − |V 〉)/√2.
From the above equations, it is clear that by projecting

idler photon onto the |Li〉 (|Ri〉) state, interference fringes
(antifringes) can be observed for the signal photon. In case of
projecting onto {|H 〉, |V 〉} states there is no interference, i.e.,
it is possible to determine the path followed by the photons.

Because of the presence of the half wave plate (HWP)
oriented at θ = π/8 in the path of the idler photon before the
MZI, the two-photon state is modified to

|ψ3〉 = ∣∣M0
i

〉
[|R+

s 〉 − |L−
s 〉] − ∣∣P 0

i

〉
[|L+

s 〉 + |R−
s 〉], (6)

= ∣∣L0
i

〉
[|P +

s 〉 − i|P −
s 〉] − ∣∣R0

i

〉
[|M+

s 〉 + i|M−
S 〉]. (7)

From Eqs. (6) and (7), it can be seen that by projecting
idler photon onto the |Li〉 (|Ri〉) state, interference fringes
(antifringes) are recovered. Now, in case of projecting onto
{|Pi〉, |Mi〉} bases there is no interference.

We remark that, due to the mechanism used for imple-
menting the which-path marking (birefringent double-slit), the
spatial interference depends on the measurement polarization
basis of both the signal photon and idler photon; see for
instance Eqs. (4) to (7). However, as is pointed out by Kwiat
et al. in Ref. [9], it is pedagogically preferable that the which-
path information be carried separately from the interfering
particle. To satisfy this condition we must make a further
projection of the signal polarization right after its transmission
through the birefringent double slit [23]. Alternatively, we can
choose to perform polarization measurement at idler basis in
which the polarization of signal photon factorizes, as occurs
in Eqs. (6) and (7).

B. Controlled decoherence mechanism

We assume a description for single photons which take
into account the frequency, propagation path, and polarization
degrees of freedom. In this case, we consider an initial
propagation path |0i〉 state and a superposition state of
horizontal and vertical polarizations, denoted by |Hi〉 and |Vi〉,
respectively. We assume here that generation of single-photon
states is experimentally implemented by using two-photon
polarization states in the degenerate case of spontaneous
parametric down-conversion in a factorized state, namely we
consider single-photon states and heralded detection. For this
purpose, narrow-band Gaussian interference filters are inserted

along the propagation path of down-converted photons, with
a center frequency ωc at the half of the frequency of the
pump beam, i.e., ωc = ωp/2. At the experiment this is done
by inserting the interference filters in front of the detectors.
Under these assumptions, the initial state of idler photons is

|ϕin〉 =
∫

dωiφ(ωi) |1ωi〉 ⊗ (
ch

∣∣H 0
i

〉 + cv

∣∣V 0
i

〉)
, (8)

where ch and cv satisfy |ch|2 + |cv|2 = 1 and φ(ω) de-
scribes the spectral distribution of the photons, due to the
presence of the interference filter, i.e., φ(ω) ∝ exp[−(ω −
ωp/2)2/2(�ω)2].

Inserting a MZI along the propagation path of the idler
photons, with polarizing beam splitter (PBS) at both the
entrance and the output of the interferometer, we implement
conditional operations over the photons according to their
polarizations. This is depicted in Fig. 1(d). We have recently
used a MZI for studying the unambiguous modification of
nonorthogonal quantum states [30]. The use of interferometers
as a controlled source of decoherence in entangled photons
from SPDC has been reported [31]. In this reference, Sagnac-
like interferometers were used for implementing amplitude
decay channels on single photons for studying sudden death
of entanglement induced by the environment.

In our case, we introduce different propagation lengths
at the arms of the interferometer, which are denoted by La

and Lb. The postselected state at one of the outputs of the
interferometer, neglecting a global phase, is given by

|ϕout〉 =
∫

dωiφ(ωi)
(
ch

∣∣H 0
i

〉 − cve
i

ωi δI
c

∣∣V 0
i

〉 )|1ωi〉, (9)

where δI = Lb − La is the optical path difference between the
propagation paths.

We assume that around the center frequency of the
interference filters the response of the detectors is uniform.
Hence, the state of the photon is obtained by tracing over the
frequency domain. The reduced polarization density operator
is given by

ρi,pol = Trω(|ϕout〉〈ϕout|)
= c2

h

∣∣H 0
i

〉 〈
H 0

i

∣∣ + c2
v

∣∣V 0
i

〉 〈
V 0

i

∣∣
− (

γ chc
∗
v

∣∣H 0
i

〉 〈
V 0

i

∣∣ + γ ∗c∗
hcv

∣∣V 0
i

〉 〈
H 0

i

∣∣) , (10)

where γ = exp (− (�ω)2δ2
I

2c2 − i ωcδI

c
). Hence, the MZI for photon

polarization behaves as an amplitude decay channel. The co-
herence length of the photons lc and the frequency bandwidth
�ω are related by �ω = 2πc/lc = 2πc�λ/λ2. With this,
γ can be expressed as a function of the dimensionless
parameters ελ and εI ,

γ = exp
(−2π2ε2

λε
2
I − 2iπεI

)
, (11)

where the dimensionless parameters are defined by ελ = �λ/λ

and εI = δI /λ.
The purity P = Tr(ρ2

i,pol) of the polarization density opera-
tor is a function of the ε parameters. The purity can be written
as

P = 1 − 2(chcv)2(1 − |γ |2). (12)

From this expression we can clearly see that in case of a
balanced interferometer, |γ | = 1, a pure state is recovered,
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i.e., Tr(ρ2) = 1. On the other hand, in case of an unbalanced
interferometer, |γ | < 1, a mixed state is obtained. The state is
completely incoherent when Tr(ρ2) = 0.5. This occurs when
ch = cv = 1√

2
and |γ | → 0. When we consider �λ = 10 nm

and λ = 702.2 nm, which is a typical configuration for the
down-converted photons used in the SPDC experiments, then
|γ | → 0 when εI ≈ 30.

C. Field propagation

Here, we include a derivation of signal photon propagation
from the double slit located at the zA plane up to the detector
z plane, as it is depicted in Fig. 1. At the latter plane a single
slit located at a transversal x position is placed in front of the
detector Ds , the width of this slit is denoted by 2b. We follow
the derivation described in Refs. [28,32,33].

We assume that the initial spatial state of the signal photon
is given by

|s〉 = W+|+s〉 + W−|−s〉, (13)

with |W+|2 + |W−|2 = 1 and the slits’ states given by Eq. (3).
Hence, the field after the double slit at the z plane is given by
the spatial distribution, represented by the function F (qs) [33].
The state at this plane is then

|z〉 =
√

a

π

∫
dqsF (qs)|1qs〉, (14)

F (qs) = e−iq2
s αsinc(qsa)(W+e−iqsd + W−eiqsd ), (15)

where α = (z − zA)/2ks and ks is the transversal momentum
of the signal photon. The first exponential in the above
expression is the phase acquired due to the field propagation,
the second one is due to the slits’ positions, which are located
at transversal positions ±d, and the sinc function is the Fourier
transform of the transmission function of the slits, assumed to
be a constant transmission of width 2a. The slit in front of the
detector at the z plane can be described as a step function with
constant transmission centered at transversal position x with a
width of 2b. Thus, the transmitted signal state can be written
as:

|T 〉 ∝ W+sinc

(
(x − d)a

2α

)
ei

(x−d)2

4α |F−(x)〉

+W−sinc

(
(x + d)a

2α

)
ei

(x+d)2

4α |F+(x)〉, (16)

with

|F±(x)〉 =
√

b

π

∫
dqse

−iqsxsinc

(
(x ± d)b

2α
+ qsb

)
|1qs〉.

(17)

The state of Eq. (16) can be further approximated by con-
sidering the values of the experimental parameters bd/2α �
ad/2α � 10−3. Then, disregarding a global phase, the state at
the detection plane is given by

|T 〉 ∝ (W+e−i ωδx
2c + W−ei ωδx

2c )sinc

(
xa

2α

)
|F (x)〉, (18)

where δx = 2xd/(z − zA) and

|F (x)〉 =
√

b

π

∫
dqse

−iqsxsinc

(
xb

2α
+ qsb

)
|1qs〉. (19)

D. Decoherence effects in the double-slit quantum eraser

Here, we use all the results of above subsections for
studying the decoherence effects on the double-slit quantum
erasure experiment with two-photon states. The full two-
photon state after crossing the birefringent double-slit mask
is given by:

|〉 ∝
∫

dωi�(ωi, ωp − ωi)
∣∣1ωi

, 1ωp−ωi

〉
× (∣∣H 0

i

〉
[|R+

s 〉 − |L−
s 〉] + ∣∣V 0

i

〉
[|L+

s 〉 + |R−
s 〉]) . (20)

The spectral distribution of down-converted photons
�(ω,ωp − ω) satisfies the phase matching conditions, i.e.,
in this case the energy conservation (ωs = ω − ωi). Now,
the idler photon is sent through a HWP oriented at π/8 and
afterwards through the MZI (as described in subsection II B).
Finally the idler photon arrives at the detector Di . On the other
hand, the signal photon propagates from the marked double-slit
as in subsection II A up to a single slit of width 2b centered at a
transverse position x in front of the detector Ds at the z plane.
If we project spatial components onto |0i〉 ⊗ |Fs(x)〉, the final
state is given by:

|2〉 ∝ sinc

(
xa

2α

)∫
dωφ(ω)2

∣∣1ω, 1ωp−ω

〉

× [(|Rs〉 − e
iωs δx

c |Ls〉)(|Hi〉 + e
iωi δI

c |Vi〉)
− (|Ls〉 + e− iωs δx

c |Rs〉)(|Hi〉 − e
iωi δI

c |Vi〉)], (21)

where we have assumed that the �(ωi, ωs) spectral function
slowly varies in a frequency window of width 2�ω around
ωp/2. Identical Gaussian interference filters are placed in front
of the detectors. The spectral transmission of these filters is
described by the φ(ω) distribution and produces projective
measurements over the whole state. These filters are centered
around half of the pump frequency with a width �ω. Besides,
ωs = ω, ωi = ωp − ω; δI is the path difference along the
MZI for the idler photon; δx is the transverse path difference
for propagation of the signal photon transmitted through the
double-slit up to the detector.

Until now, the state (21) is a pure state. Then the corre-
sponding density operator is given by ρ = |2〉〈2|. If we
trace over both the polarization of the signal photon and the
frequency components, the reduced density operator for idler
polarization is given by

ρpol = 1
8 (A−|Hi〉〈Hi | + A+|Vi〉〈Vi |)
− 1

8 (B|Hi〉〈Vi | + B∗|Vi〉〈Hi |), (22)

where

A± = 2sinc2

(
xa

2α

)
(23)

B = sinc2

(
xa

2α

)
(eξ+ − eξ− ), (24)
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with ξ± = −2π2ε2
λ(εx ± εI )2 ± 2iπ (εx ∓ εI ) and εx = δx/λ.

In this basis, we can see that coherence terms show an explicit
dependence on the length difference between the arms of
the MZI δI , while diagonal elements only depend on the x

transverse position at the z plane.
The coincidence counts of down-converted photons both

when projecting spatial components onto |0i〉 ⊗ |Fs(x)〉 and
when tracing polarization of signal photon and frequency
components is given by:

C|θi 〉 ∝ Tr(ρpol|θi〉〈θi|), (25)

where |θi〉 = cos θi |Hi〉 + eiϕ sin θi |Vi〉, namely the projection
measurement on the which-path marker (idler photon) has
been performed onto |θi〉 polarization state. Hence, C|θi 〉 is
proportional to a linear combination of the coefficients A±
and B of density operator in Eq. (22). The linear combination
depends on the parameters of state |θi〉 as we will see in the
following cases at the measurement procedure subsection.

E. Measurement procedure

In this section we study the dependence of the interference
of signal photons by performing projective polarization mea-
surements on idler photons when the controlled decoherence
mechanism is present.

1. Measurement in the {|H〉, |V〉} polarization basis

If we perform a measurement in the {|H 〉, |V 〉} basis of the
idler photon, according to Eq. (22) only a diffraction pattern
can be observed. This case corresponds to |θi〉 with θ = ϕ =
0. For example, if a projective measurement on the |H 〉 or
|V 〉 state of the idler photon is performed, then the spatial
probability distribution along the x direction at the z plane is
given by

C|H 〉(|V 〉) ∝ sinc2

(
xa

2α

)
. (26)

In this basis, the coincidence count is independent of the optical
path difference along the MZI.

2. Measurement in the {P, M} polarization basis

Now, we study the case where the interference pattern is
depending on the phase shift due to the length difference
between the arms of the MZI and the initial phase of the
state, when the idler photon is projected onto the |P 〉 and
|M〉 polarization states. This case corresponds to |θi〉 with
θ = ±π/4 and ϕ = 0. For this ase we will write the reduced
density operator in terms of the measurement bases {|P 〉, |M〉}
and we will find a specific phase in the MZI to obtain the
respective measurement basis that deletes the information.

Rewriting the density operator, Eq. (22), in the {|P 〉, |M〉}
basis, the density matrix is given by

ρpol = 1
8 (A(−) − B − B∗ + A(+))|Pi〉〈Pi |
+ 1

8 (A(−) + B − B∗ − A(+))|Pi〉〈Mi |
+ 1

8 (A(−) − B + B∗ − A(+))|Mi〉〈Pi |
+ 1

8 (A(−) + B + B∗ + A(+))|Mi〉〈Mi |. (27)

Making a projective measurement onto the |P 〉 polarization
state, the probability of coincidence detection becomes

C|P 〉 ∝ sinc2

(
xa

2α

)
[2 − (χ+ − χ−)], (28)

where

χ± = e−2πε2
λ(εx±εI )2

cos(2π (εx ∓ εI )). (29)

In this case, the projection onto the |M〉 state has a π phase
when compared to the |P 〉 state.

From Eqs. (28) and (29) we can make some important
remarks. For example, we can see that the optical path
difference along the MZI, δI , appears both in the exponential
and in the cosine function through the εI . Then, by varying this
parameter, we can modify both the phase of the interference
pattern and the contrast in the interference fringes simultane-
ously. This equation does not allow for a direct definition of
a visibility of the interference pattern. Hence, we will analyze
the results taking some particular cases.

a. (I) Unbalanced interferometer (εI  εx). It can be seen
in Eqs. (28) and (29) that for δI  δx (εI  εx) the exponential
functions go to 0 and the interference effects disappear. The
resulting pattern consists in the diffraction of the double-slit
with no interference. In this case the which-path marker state
does not affect at all the double-slit interference, so that only
particle-like behavior can be observed.

b. (II) Completely balanced interferometer (εI = 0). If
we set δI = 0 (εI = 0), then the interferometer is completely
balanced and the exponential can be factorized. The cosine
functions are canceled in this case. Thus, in this case
no interference patterns are observed and we recover the
diffraction of the double-slit, as shown in Fig. 2(b).

c. (III) Controlled displacements (εI = n
2 ). In the case

when εI = n
2 , with n integer, the argument of the cosine

functions is the same and we can factorize this function. The
resulting probability is given by

C|P 〉 ∝ sinc2

(
xa

2α

)[
1 + (−1)ne−2π2ε2

λ(ε2
x+n2/4)

× sinh
(
2nπ2ε2

λεx

)
cos(2πεx)

]
. (30)

The experimental parameters for the argument of the sinh
function is approximately 2nπ2ε2

λεx ≈ 0.0143n. We can see
that, even for n = 10, the contribution of this term is small and
we can consider that the diffraction pattern is slightly modified
but still is the double-slit diffraction pattern. Higher values of
n could not be relevant because the exponential function goes
fast to zero as we shall see in the next case.

d. (IV) Controlled displacements (εI = n + 1
4 ). If we fix

the value of εI = n + 1
4 , with n integer, cosine functions can

also be factorized, but we have cos[2π ((n + 1/4) ± εx)] =
∓ sin(2πεx). From this result we can see that expression (30)
can be written as

C|P 〉 ∝ sinc2

(
xa

2α

)
(
1 − e−2π2ε2

λ(ε2
x+n2) sin(2πεx)

)
, (31)

where we have approximated cosh[2(n + 1/4)π2ε2
λεx] � 1

using the same values of the above studied case. In this
way, we can see that the maximum of the interference
visibility is obtained when the condition εI = n + 1

4 holds
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FIG. 2. (Color online) Interference pattern of
signal photon at the z plane, when idler photon is
measured in |P 〉, through normalized coincidence
counts according to Eq. (28). (a) Three dimen-
sional representation as a function of x position
at z plane and εI . We can see that the maximum
visibility of the interference pattern is obtained
when εI = 1/4, i.e., V = 1. The other three curves
show the interference patterns for different values
of εI : (b) 0, (c) 1/8, and (d) 1/4.

as shown in Fig. 2(b). Also we can see that the phase of
the fringes can be shifted by adjusting the value for n. Here,
we remark that coincidence counts C|P 〉 under the condition
εI = n + 1

4 is equivalent to C|L〉 with εI = n. The additional
phase π/2 arising from the term 1/4 in εI when measuring
in {P,M} polarization basis can be seen as a measurement
in {L,R} polarization basis. Hence, this case corresponds to
project polarization of idler photon onto |θi〉 state with θ =
π/4 and ε = π/2.

According to the results obtained in cases II and IV, the
maximum (minimum) visibility of the interference pattern
occurs when εI = 1/4 (εI = 0). Then we can vary the value
of the dimensionless εI = δ/λ parameter from 0 to 1/4 for
observing the modification of the visibility of the pattern. This
is shown in Fig. 3.

With these results we conclude the theoretical description
of the experiment. In the next section we will discuss the
implementation and the experimental results.

III. EXPERIMENTAL RESULTS

In the experiment, we use a continuous wave (CW) Ar+
ion laser working in a single-frequency mode at 150 mW of
power. The polarization of the pump laser is controlled by
using both a QWP and a HWP. The laser beam pumps two
1-mm-wide BBO crystals, which are cut for type I generation
with their optical axes orthogonal. Thus, the crystals produce
entangled pairs of photons in the state given by Eq. (1), where
the phase and the amplitude of the state are controlled by
properly setting the HWP and the QWP shown in Fig. 1(a) [23].
Before the crystal, along the propagation path of the pump
beam, a biconvex lens with a focal length of 30 cm is inserted,

with the crystals placed at the focal plane. This lens produces
a large transversal coherence section for single photons at the
slit plane. The photons follow the propagation paths shown in
Fig. 1(a).

The signal photon propagates from the BBO crystals to
the double-slit passing through a HWP oriented at 22.5◦ that
changes the polarization states from |H 〉 (|V 〉) to |P 〉 (|M〉).
This is required because the QWPs placed right after the slits
have their optical axes parallel and perpendicular to the slits’

FIG. 3. (Color online) Spatial distribution of the signal photon
at the measurement z plane along the x direction, as a function
of εI = n + 1

4 , through normalized coincidence counts according to
Eq. (31). (Inset) The spatial distribution as a function of εI for x = 0,
this corresponds to the maximum value of interference pattern. We
observe that for εI > 35 the interference disappears and the result is
a diffraction pattern.
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FIG. 4. (Color online) Normalized coincidence counts (C.C.)
were recorded by scanning the signal detector in the x direction at the
z plane. The signal photon passes through the double-slit array and
the QWP’s [as shown in Fig. 1(b)], while the idler photon propagates
directly from the crystal to the detector. The maximum of coincidence
was 205 counts in 10 s.

direction. Therefore, the QWPs axes and the polarizations form
45◦ among them. The width of each slit is a = 80 µm and the
separation between them is d = 250 µm from center to center.
The distance between the double-slit plane and the detection
plane was chosen as z − zA = 0.2 m. The detector placed at
the propagation path of the signal photon is equipped with a

single slit that is 50 µm wide, neutral filter, and bandpass filter
of 10 nm at FWHM centered around 702 nm. This detector
scans the x direction in order to record the interference pattern.

The idler photon propagates from the crystal to the MZI
passing through a HWP (HWP0 in Fig. 1) oriented at
22.5◦, with the same change as in the signal photon. The
input at the MZI is a polarizing beam splitter, which splits
horizontal and vertical components of the idler photon. Inside
the interferometer, we place a phase shifter that enables
controlled modification of the path difference between the two
arms of the interferometer. In practice, this is implemented
by thin glass, 1.0 ± 0.01 mm, plates inserted into each arm
of the interferometer. The output of the interferometer is
another PBS, which allows us to recombine the polarization
components of the idler photon after a conditional phase
shift. At the output of the interferometer we place a linear
polarizer [POL in Fig. 1(e)], which performs the projection
measurement of the polarization of the idler photon. The
quality of the MZI was tested by measuring the visibility of
the single-photon interference pattern at the interferometer. For
this purpose a product state was generated and the polarization
of the input signal photon was rotated to 22.5◦ and a linear
polarizer rotated at an angle of 45◦ was inserted in front
of the detector Ds1. Interference pattern with visibility of
V = 0.94 ± 0.02 was recorded by modifying the length of
one of the interferometer’s arm. This curve was obtained
detecting in coincidence twin photons, where the signal photon
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FIG. 5. (Color online) Normalized coincidence counts (C.C.) of the double-slit interference patterns by scanning the signal detector in the
x direction at the z plane, while the idler photon propagates through the MZI, for different values of εI = n + 1/4 parameter, with n = (a) 7;
(b) 11; (c) 15 and (d) 19. These values of εI are belong to the case discussed in subsection II.2.IV. The dots (blue) correspond to the experimental
results and the solid curve (red) is the theoretical fit given by Eq. (28). The maximum of coincidence was 66 counts in 10 s.
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propagates directly from the crystal to the detector while the
idler photon passes through the MZI. The phase shifter was
manually scanned. The length difference at the two arms of the
MZI was varied by using thin glass plates oriented at different
angles. The variation of path length difference, δ, is produced
by the difference of rotation angles of these glass plates. These
allows for setting the value of δ in a wide interval of values,
from zero to 100 times λ. To avoid fluctuations, the MZI
was actively stabilized using a He-Ne laser beam propagating
through the interferometer in the opposite direction to the idler
photons. This beam produces interference fringes at the output,
and a fast photon detector records the intensity of the fringes.
This signal is used as a reference to stabilize the interferometer
at any specific phase.

The detector Di is implemented with a bandpass filter and a
neutral filter. Both detectors are connected to a coincidence de-
tection circuit, where single and coincidence counts are stored,
with a coincidence time window of 5 ns. The calibration of
the single-photon birefringent double-slit mask was performed
using twin photons without the MZI in the idler path. This
pattern is obtained scanning the transversal position in steps of
100 µm, recording 10 s for each measurement. The registered
pattern is shown in Fig. 4. A visibility of V = 0.90 ± 0.02
for this pattern is obtained. In case of a single double slit, the
observed visibility was V = 0.96 ± 0.02. The transverse x di-
rection at the detection z plane was scanned in steps of 30 µm.

The controlled variation of the length difference between
the arms of the MZI permits to study how the WPI at the
measurement basis can be erased by varying the interferometer
arms length difference. This study is implemented by varying
the difference between the rotation angles of the glass plates in
such a way that the εI = n + 1/4. The double-slit interference
patterns are recorded by scanning the x direction with detector
Ds . The results of these scans are shown in Fig. 5. The blue
dots correspond to the experimental data and the red curves
are the best theoretical fit curves, which are given by Eq. (28).
The curves are normalized by the highest value of coincidence
counts (in this case Ncc = 58 counts in 30 s). We fit the
best theoretical curve and we observe the highest value again
considering the values obtained using the best fit. After this
procedure, we normalize the curves using the highest value
obtained. The phases for this fitted curves are [starting from
(a) to (d)] εI = (7 + 1/4), (11 + 1/4), (15 + 1/4), (19 + 1/4)
and the angles of the glass plate are θ = 0◦, 10◦, 16◦, 19◦.
Here, we remark that the measurement in the {P,M} basis
with εI = n + 1

4 is equivalent to a measurement in the {L,R}
basis with εI = n.

We can see that the experimental results match well
with the theoretical predictions. Actually, we can observe

the transitions between wavelike and particle-like behaviors
by controlling the length difference between the arms of
the interferometer. Namely, the visibility of the double-slit
interference pattern decreases when this length difference
increases.

IV. CONCLUSIONS

In this article we have both theoretically and experimentally
studied the effects of a decoherence mechanism in the wave
and particle-like behaviors in a double-slit quantum erasure
photonic setup. In particular, we have studied the effect of
the decoherence mechanism in the measurement basis which
exhibits the wavelike behavior with maximum visibility.

The decoherence mechanism affects the coherence terms
of the reduced density operator for both single-photon and
two-photon states. This mechanism is based on a conditional
modification of the polarization of the idler. The conditional
operation acting on polarization is implemented by means of
a MZI, where the length difference between the arms of the
interferometer add a conditional phase. This allows for going
from a coherent to a completely incoherent state in a fully
controlled manner. This mechanism is suitable for studies of
controlled decoherence in entangled polarization systems of
photons. Furthermore, the incorporation of another MZI in
the case of two-photon states allows a wider control of the
degree of coherence, opening new possibilities concerning the
controlled study of decoherence in optical systems.

We have observed that, in the implementation of the
double-slit quantum eraser, the WPI is deleted by properly
selecting the measurement polarization basis. Besides, we
have observed that the visibility of the interference pattern
in a quantum erasure experiment not only depends on the
choice of the measurement basis but also is a function of the
purity of the which-path marker state. In our case, even in the
region of partial coherence (partially mixed density operator),
it is possible to find specific values of εI for deleting the
which-path-information.
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[13] G. Björk, J. Söderholm, A. Trifonov, T. Tsegaye, and
A. Karlsson, Phys. Rev. A 60, 1874 (1999).

[14] A. Trifonov, G. Björk, J. Söderholm, and T. Tsegaye, Eur. Phys.
J. D 18, 251 (2002).

[15] T. J. Herzog, P. G. Kwiat, H. Weinfurter, and A. Zeilinger, Phys.
Rev. Lett. 75, 3034 (1995).

[16] T. Tsegaye, G. Björk, M. Atatüre, A. V. Sergienko, B. E. A.
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