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Exact master equations for the non-Markovian decay of a qubit
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Exact master equations describing the decay of a two-state system into a structured reservoir are constructed.
By employing the exact solution for the model, analytical expressions are determined for the memory kernel
of the Nakajima-Zwanzig master equation and for the generator of the corresponding time-convolutionless
master equation. This approach allows an explicit comparison of the convergence behavior of the corresponding
perturbation expansions. Moreover, the structure of widely used phenomenological master equations with a
memory kernel may be incompatible with a nonperturbative treatment of the underlying microscopic model.
Several physical implications of the results on the microscopic analysis and the phenomenological modeling of
non-Markovian quantum dynamics of open systems are discussed.
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I. INTRODUCTION

The field of open quantum systems [1–3] is of great interest
because of its relevance in applications of quantum mechanics,
as well as for a deeper understanding of the theory itself.
Indeed the study of the interaction between a quantum system
and its environment is an endeavor common to many fields,
such as quantum measurement theory, quantum communica-
tion, quantum optics, condensed matter theory, and quantum
chemistry to name a few. The field has been well assessed
as far as Markovian dynamics is concerned. For this case the
Gorini-Kossakowski-Sudarshan-Lindblad expression for the
generator of a quantum dynamical semigroup [4,5] provides a
benchmark result for both microscopic and phenomenological
approaches. However, this situation is not satisfactory when
one has to go beyond the Born-Markov approximation and
it involves systems in which a separation of time scales
between system and environment can no longer be assumed in
a realistic description. Memory effects then become important,
and a non-Markovian description is mandatory. For this case
a general consistent theoretical framework has not yet been
found, and partial results have been obtained as a result
of intense efforts (see, e.g., Refs. [6–21]). An important
step in the development of a general theory consists in the
construction of a suitable measure that quantifies the degree
of non-Markovianity for a given dynamical evolution [22,23].

In this article we obtain the exact Nakajima-Zwanzig
kernel for a two-level system coupled to a Bosonic reservoir
discussed in Ref. [2] and compare it to the exact time-
convolutionless master equation, as well as to the Markovian
approximation of the dynamics. This approach shows how
involved the transition from the approximate Markovian level
of description to the exact non-Markovian regime can be.
Indeed, the non-Markovian memory kernel is found to have
an operator structure which differs from the one that appears
in the Born-Markov approximation. Often one tries to obtain
dynamical equations of motion for non-Markovian systems
by slight modifications with respect to the Markovian case,
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for example, by considering a master equation which involves
a superoperator given by a convolution in time of the corre-
sponding Markovian superoperator [24–29]. Our results show
that such an approach, although justified as a phenomeno-
logical modeling, can be incompatible with a nonperturbative
treatment of the underlying microscopic system-environment
model. Moreover, different perturbation expansions such as
time-convolutionless and Nakajima-Zwanzig projection oper-
ator technique turn out to have different ranges of validity.
Indeed, the time-convolutionless expansion breaks down at
finite time in the strong coupling limit. On the other hand,
the Nakajima-Zwanzig approach does not preserve positivity
if restricted to second order. Furthermore, the convergence to
the exact solution is not uniform with respect to the expansion
parameter: different matrix elements of the statistical operator
such as coherences and populations are obtained with quite
different accuracy at the same perturbative order.

The article is organized as follows. In Sec. II, the model
and its exact solution are introduced and later exploited to
obtain the exact equations of motion for the reduced statistical
operator of the system. In Sec. III, we recall the structure
of the time-convolutionless master equation, pointing out two
different perturbation expansions for the generator. In Sec. IV,
the Nakajima-Zwanzig integral kernel is derived, providing
an alternative expansion with respect to the standard method.
The two results are compared in Sec. V, which also builds
on an exact analytic expression for all the quantities involved
obtained considering a Lorentzian spectral density. Finally,
conclusions are drawn in Sec. VI.

II. THE MODEL AND ITS EXACT SOLUTION

The total Hamiltonian of the model is given by

H = HS + HE + HI = H0 + HI , (1)

where

HS = ω0σ+σ− (2)

describes a two-state system (qubit) with ground state |0〉,
excited state |1〉, and transition frequency ω0. The operators
σ+ = |1〉〈0| and σ− = |0〉〈1| are the raising and lower-
ing operators of the qubit, respectively. The environmental
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Hamiltonian is taken to be

HE =
∑

k

ωkb
†
kbk, (3)

describing a collection of harmonic oscillators with creation
and annihilation operators b

†
k and bk which satisfy Bosonic

commutation relations [bk,b
†
k′] = δkk′ . The interaction Hamil-

tonian takes the form

HI =
∑

k

(gkσ+ ⊗ bk + g∗
k σ− ⊗ b

†
k). (4)

The model thus describes, for example, the coupling of the
qubit to a reservoir of electromagnetic field modes labeled by
the index k, with corresponding frequencies ωk and coupling
constants gk , and has already been discussed in Ref. [2].

In the following we work in the interaction picture with
respect to H0 = HS + HE . In this picture the Schrödinger
equation reads

d

dt
|�(t)〉 = −iHI (t)|�(t)〉, (5)

where the interaction Hamiltonian is given by

HI (t) = σ+(t) ⊗ B(t) + σ−(t) ⊗ B†(t) (6)

with

σ±(t) = σ±e±iω0t (7)

and

B(t) =
∑

k

gkbke
−iωkt . (8)

It is easy to verify that the operator

N = σ+σ− +
∑

k

b
†
kbk (9)

for the number of excitations in the system commutes both with
the total Hamiltonian H and with the interaction Hamiltonian
HI (t). This is a consequence of the fact that the rotating-wave
approximation has been used in the interaction Hamiltonian
(4). It follows that any initial state of the form

|�(0)〉 = c0|0〉 ⊗ |0〉E + c1(0)|1〉 ⊗ |0〉E
+

∑
k

ck(0)|0〉 ⊗ |k〉E (10)

evolves after time t into the state

|�(t)〉 = c0|0〉 ⊗ |0〉E + c1(t)|1〉 ⊗ |0〉E
+

∑
k

ck(t)|0〉 ⊗ |k〉E. (11)

The state |0〉E denotes the vacuum state of the reservoir, and
|k〉E = b

†
k|0〉E is the state with one particle in mode k. Note

that the amplitudes c1(t) and ck(t) depend on time, while the
amplitude c0 is constant in time because HI (t)|0〉 ⊗ |0〉E = 0.
Substituting Eq. (11) into the Schrödinger equation (5), one
finds

d

dt
c1(t) = −i

∑
k

gke
i(ω0−ωk)t ck(t), (12)

d

dt
ck(t) = −ig∗

k e
−i(ω0−ωk)t c1(t). (13)

We assume in the following that ck(0) = 0. This means that
the environment is in the vacuum state initially, and that the
total initial state is given by the product state

|�(0)〉 = [c0|0〉 + c1(0)|1〉] ⊗ |0〉E ≡ |ψ(0)〉 ⊗ |0〉E. (14)

Expressing ck(t) in terms of c1(t) by means of Eq. (13),
and substituting the result into Eq. (12), one obtains an
integrodifferential equation for the amplitude c1(t):

d

dt
c1(t) = −

∫ t

0
dt1f (t − t1)c1(t1). (15)

Given the solution of this equation, which can be found through
a Laplace transformation, the amplitudes ck(t) are determined
by Eq. (13). The kernel f (t − t1) of Eq. (15) is given by a
certain two-point correlation function of the reservoir,

f (t − t1) = 〈0|B(t)B†(t1)|0〉eiω0(t−t1)

=
∑

k

|gk|2ei(ω0−ωk)(t−t1), (16)

on which no restrictive hypothesis is made, so that the present
results are valid for an environment with a generic spectral
density.

With the help of the procedure described above, and already
used by Weisskopf and Wigner in their classical paper [30],
one finds the solution of the Schrödinger equation of the
total system with initial states of the form of Eq. (14)
lying in the sector of the Hilbert space corresponding to
zero or one excitation. By means of this solution, we
can construct the exact dynamical map describing the time
evolution of the reduced density matrix of the qubit. This is
given by

ρ(t) = trE{|�(t)〉〈�(t)|} =
(

ρ11(t) ρ10(t)

ρ01(t) ρ00(t)

)
, (17)

where ρij (t) = 〈i|ρ(t)|j 〉 for i,j = 0,1. Using Eq. (11), we
find

ρ11(t) = 1 − ρ00(t) = |c1(t)|2, (18)

ρ10(t) = ρ∗
01(t) = c∗

0c1(t). (19)

It is convenient to define the function G(t) as the solution of
the equation

d

dt
G(t) = −

∫ t

0
dt1f (t − t1)G(t1) (20)

corresponding to the initial condition G(0) = 1. We then
have c1(t) = G(t)c1(0) and, hence, the dynamics of the
elements of the reduced density matrix can be represented as
follows:

ρ11(t) = |G(t)|2ρ11(0), (21)

ρ00(t) = ρ00(0) + (1 − |G(t)|2)ρ11(0), (22)

ρ10(t) = G(t)ρ10(0), (23)

ρ01(t) = G∗(t)ρ01(0). (24)

These equations have been derived for the pure product
initial state (14); that is, they describe the time evolution
corresponding to the pure reduced system’s initial state ρ(0) =
|ψ(0)〉〈ψ(0)|. However, since any mixed initial state can be
represented as a convex-linear combination of pure initial
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states, and since the function G(t) introduced above does not
depend on the initial condition, Eqs. (21)–(24) hold true for
any pure or mixed initial state. They thus represent the exact
dynamical map �(t) which transforms the initial states into
the states at time t :

�(t) : ρ(0) �→ ρ(t) = �(t)ρ(0), t � 0. (25)

Since we have constructed this map from the exact solution of
the model, it is clear from the general theory of open quantum
systems that �(t) is completely positive and trace preserving.

III. THE TIME-CONVOLUTIONLESS MASTER EQUATION

A. Exact master equation in time-convolutionless form

The exact solution determined in Sec. II enables the
construction of the exact generator KTCL of the time-
convolutionless master equation

d

dt
ρ(t) = KTCL(t)ρ(t) (26)

governing the dynamics of the reduced density matrix. The
time-convolutionless generator is defined in terms of the
dynamical map �(t) by means of

KTCL(t) = �̇(t)�−1(t), (27)

provided the inverse map �−1(t) exists. Then, using Eqs. (21)–
(24), one can show that the generator takes the following form
[2]:

KTCL(t)ρ = − i

2
S(t)[σ+σ−,ρ]

+γ (t)

[
σ−ρσ+ − 1

2
{σ+σ−,ρ}

]
, (28)

where we have introduced the definitions

γ (t) = −2 Re

[
Ġ(t)

G(t)

]
, S(t) = −2 Im

[
Ġ(t)

G(t)

]
. (29)

By construction, Eq. (26) with generator (28) represents an
exact time-local master equation. Note that the generator is
well defined as long as G(t) 	= 0. The quantity S(t) plays
the role of a time-dependent frequency shift, and γ (t) can be
interpreted as a time-dependent decay rate. We observe that
the structure of KTCL is similar to that of a Lindblad generator.
However, due to the time dependence of the coefficients
S(t) and γ (t), Eq. (26) does generally not yield a quantum
dynamical semigroup. Moreover, the time-dependent rate
γ (t) may become negative, signifying strong non-Markovian
behavior of the reduced system dynamics.

B. Perturbation expansions of the generator

In most cases of interest, the time-convolutionless generator
can only be determined through a perturbation expansion. Here
we investigate two methods of expanding the exact master
equation (26) with respect to the strength of the interaction
Hamiltonian HI . To this end, we introduce a small overall
expansion parameter α, replacing the coupling constants gk

in the interaction Hamiltonian (4) by αgk . The two-point
correlation function f (t), which is proportional to α2, is then
to be regarded as a quantity of second order.

The first method consists of using Eq. (20) to obtain a
perturbative expression for G(t), from which one directly finds
an expansion for the coefficients γ (t) and S(t) appearing in
the master equation. The expansion of G(t) is obviously of the
form

G(t) =
∞∑

n=0

α2nG(2n)(t), (30)

where G(0)(t) ≡ 1 because of the required initial condition
G(0) = 1, and Eq. (20) leads to the following recursion
relation:

G(2n)(t) = −
∫ t

0
dt1

∫ t1

0
dt2f (t1 − t2)G(2n−2)(t2). (31)

To illustrate the procedure, we determine the frequency shift
and the decay rate to fourth order in α:

−1

2
[γ (t) + iS(t)] = Ġ(t)

G(t)

= α2Ġ(2)(t) + α4[Ġ(4)(t) − Ġ(2)(t)G(2)(t)] + O(α6). (32)

With the help of these expressions, one obtains the second- and
fourth-order contributions for the coefficients of the master
equation:

γ (2)(t) + iS(2)(t) = 2
∫ t

0
dt1f (t − t1),

γ (4)(t) + iS(4)(t)

= 2
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3[f (t − t2)f (t1 − t3)

+ f (t − t3)f (t1 − t2)]. (33)

Another possibility for the construction of the perturbation
expansion is to use the general method of expanding the time-
convolutionless generator in terms of the ordered cumulants.
This procedure allows a closed expression to be written for the
coefficients of the master equation which takes the following
form (for details, see Ref. [2] and references therein):

γ (2n)(t) + iS(2n)(t)

=
∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ t2n−2

0
dt2n−12(−1)n+1

×〈f (t − t1)f (t2 − t3) · · · f (t2n−2 − t2n−1)〉oc. (34)

IV. THE NAKAJIMA-ZWANZIG MASTER EQUATION

A. The exact memory kernel

The Nakajima-Zwanzig master equation is given by

d

dt
ρ(t) =

∫ t

0
dt1KNZ(t − t1)ρ(t1), (35)

where the superoperatorKNZ(τ ) represents the memory kernel.
We construct the form of this kernel from the exact solution
of our model obtained in Sec. II. To this end, we employ the
following ansatz,

KNZ(τ )ρ =−iε(τ )[σ+σ−,ρ] + k1(τ )
[
σ−ρσ+ − 1

2 {σ+σ−,ρ}]
+ k2(τ )

[
σ+σ−ρσ+σ− − 1

2 {σ+σ−,ρ}] , (36)
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where the functions ε(τ ), k1(τ ), and k2(τ ) are real, such that the
master equation preserves Hermiticity and trace. The equations
of motion for the population ρ11(t) and the coherence ρ10(t)
obtained from this master equation read

d

dt
ρ11(t) = −

∫ t

0
dt1k1(t − t1)ρ11(t1), (37)

and
d

dt
ρ10(t)

= −
∫ t

0
dt1

{
1

2
[k1(t − t1) + k2(t − t1)] + iε(t − t1)

}
ρ10(t1).

(38)

On the other hand, Eq. (23) together with Eq. (20) yields

d

dt
ρ10(t) = −

∫ t

0
dt1f (t − t1)ρ10(t1), (39)

where we have set the expansion parameter α equal to 1, and we
only have to remember that f (t) is a quantity of second order.
Comparing Eq. (39) with Eq. (38), we see that the expression
within the curly braces of Eq. (38) must be equal to f (t − t1);
that is, we get the conditions

ε(τ ) = f2(τ ), (40)

k1(τ ) + k2(τ ) = 2f1(τ ), (41)

where f1(τ ) and f2(τ ) denote the real and the imaginary part
of the correlation function

f (τ ) = f1(τ ) + if2(τ ). (42)

In order for Eq. (37) to reproduce the correct solution (21),
we have to choose k1(τ ) in such a way that the solution of the
equation

d

dt
z(t) = −

∫ t

0
dt1k1(t − t1)z(t1), z(0) = 1, (43)

is given by

z(t) = |G(t)|2. (44)

Formulated in Laplace space, this means that

k̂1(u) = 1 − uẑ(u)

ẑ(u)
. (45)

Since superoperator (36) preserves the Hermiticity and the
trace of the density matrix, Eqs. (21)–(24) follow directly from
Eqs. (37) and (38). Thus, we find that Eq. (36) represents the
exact memory kernel of the model for any given two-point
correlation function. In fact, given f (τ ), the functions ε(τ ),
k1(τ ), and k2(τ ) are uniquely determined by Eqs. (40), (41),
and (45). In view of this result, the memory kernel (36) can
now be written in the form

KNZ(τ )ρ = −if2(τ )[σ+σ−,ρ] − f1(τ ){σ+σ−,ρ}
+ k1(τ )σ−ρσ+ + [2f1(τ ) − k1(τ )]σ+σ−ρσ+σ−.

(46)

This expression only involves the real and the imaginary parts
of the correlation function f (τ ) and the function k1(τ ), to be
determined from Eq. (45).

We note that the various coefficients in the memory kernel
exhibit a very different convergence behavior. In fact, we see
that the commutator and the anticommutator term in Eq. (46)
come out exactly in second order in α. It follows that the
equation of motion for the coherence ρ10 [see Eq. (39)] is
already reproduced exactly within second order, while the
exact representation of the equation for the population ρ11

generally requires the inclusion of all orders of the expansion.
This nonuniform convergence behavior of the elements of
the density matrix has also been observed in other, more
complicated models [31] and seems to be a typical feature
of the perturbation expansion of the memory kernel.

As shown below, relations (20) together with Eqs. (43)–(45)
provide a direct perturbation approach to the determination
of the functions appearing in the memory kernel. This
provides an alternative approach with respect to the standard
Nakajima-Zwanzig perturbation expansion. Moreover, this
set of equations in some cases allows a closed analytical
expression for the memory kernel to be derived.

B. Perturbation expansions of the memory kernel

Here we discuss two methods of expanding the exact
memory kernel with respect to the strength of the interaction
Hamiltonian HI .

The first expansion method relies on the expansion for G(t)
given by Eq. (30). Indeed, as shown in Sec. IV A, to obtain
the memory kernel we only need to know the function k1(t). A
perturbative expression for the latter can be easily obtained
by relying on the expansion for G(t), noting that, thanks
to Eq. (43), the Laplace transform of k1(t) can be directly
expressed by means of the Laplace transform of the function
z(t) = |G(t)|2, according to Eq. (45). This procedure leads to
the following expansion:

k1(t) =
∞∑

n=0

k
(2n)
1 (t), (47)

as described in detail in Appendix A, where the zero-order
contribution is immediately seen to be zero.

Here we consider for the sake of simplicity only the second-
order contribution, which is readily obtained. According to
Eq. (31) together with the initial condition G(0) = 1, the
expression for G(t) up to second order is given by

G(t) ≈ 1 −
∫ t

0
dt1

∫ t1

0
dt2f (t2), (48)

so that in the same approximation, recalling that the two-point
correlation function f (t) is a quantity of second order, one has

z(t) ≈ 1 − 2
∫ t

0
dt1

∫ t1

0
dt2f1(t2), (49)

where f1(t) denotes the real part of the correlation function.
The Laplace transform of this quantity is now easily expressed
in terms of the Laplace transform of the correlation function
according to

ẑ(u) ≈ u − 2f̂1(u)

u2
, (50)
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and, by further exploiting Eq. (45), we find

k̂1(u) ≈ 2f̂1(u). (51)

This immediately implies, for the second-order contributions
to the kernel (36),

k
(2)
1 (t) = 2f1(τ ), (52)

and therefore, due to Eq. (41),

k
(2)
2 (τ ) = 0. (53)

As shown in Appendix A, the fourth-order contribution reads

k
(4)
1 (t − t1) = −2 Re

∫ t

t1

dt2

∫ t2

t1

dt3[f (t − t3)f (t1 − t2)

+ f (t − t1)f (t3 − t2)], (54)

so that k
(4)
2 = −k

(4)
1 . Indeed Eq. (41) generally implies

k
(2n)
2 = −k

(2n)
1 for n � 2; therefore, Eq. (47) also provides an

expansion for k2(t).
The second expansion method is to employ the general

Nakajima-Zwanzig projection operator technique [32,33], in
which the memory kernel is expressed in terms of the full
propagator of the total system. The details of this method
for our model are presented in Appendix B, where it is shown
that the projection operator technique reproduces, as expected,
the preceding results obtained by the direct expansion of the
coefficients in the memory kernel.

V. DISCUSSION

A. Comparison of the time-convolutionless and the
Nakajima-Zwanzig master equations

It is interesting to compare the exact time-convolutionless
and Nakajima-Zwanzig master equations. For the considered
model, the functions appearing in Eqs. (28) and (36) are given
by Eqs. (29) and Eqs. (40) and (41), respectively.

Comparing Eqs. (28) and (36), we see that the superoperator
structure of the memory kernel differs from that of the
time-convolutionless generator. In fact, the memory kernel
[Eq. (36)] contains the term proportional to k2(τ ), which
involves the projection σ+σ− = |1〉〈1| onto the excited state.
Without such a term, Eqs. (37) and (38) for the population
and the coherence would be incompatible with the exact
expressions (21) and (23). However, a term with this structure
is missing in the time-convolutionless generator (28). A further
remarkable point is the fact that in second order k2(τ ) = 0,
according to Eqs. (41) and (52). This shows that the difference
in the superoperator structure of the memory kernel and the
time-convolutionless generator is visible only in higher orders
of the perturbation expansion.

The preceding discussion leads to some important conclu-
sions for the modeling of non-Markovian dynamics through
phenomenological master equations. In the Markovian limit
our model yields the following Lindblad generator L describ-
ing a quantum dynamical semigroup:

Lρ = − i

2
SM [σ+σ−,ρ] + γM

[
σ−ρσ+ − 1

2
{σ+σ−,ρ}

]
,

(55)

with constant frequency shift SM and decay rate γM � 0.
Usually master equations of this form are derived by applying
the Markov approximation and second-order perturbation
theory (Born-Markov approximation). A natural and widely
used non-Markovian generalization is the following. One
keeps the structure of the Lindblad generator L and introduces
a kernel function h(τ ), thus obtaining a master equation of the
form [24–28]

d

dt
ρ(t) =

∫ t

0
dt1h(t − t1)Lρ(t1). (56)

Although this equation is perfectly justified as a phenomeno-
logical ansatz, it does not generally represent the correct
structure of the memory kernel of the underlying microscopic
model. In fact, we see that even for the simple model studied
here the true memory kernel (36) is not of the form of Eq. (56).
It is rather given by a linear combination of terms of the form of
Eq. (56), where, going beyond the Born approximation, other
operator structures appear besides the Markovian Lindblad
generator: the latter are still in Lindblad form but with
different Lindblad operators. This observation seems to be
of particular relevance for the analysis of the positivity and
the complete positivity of the dynamical maps obtained from
phenomenological equations of motion.

B. Example

These considerations can be nicely illustrated considering
the example of an exponential correlation function, corre-
sponding to a Lorentzian spectral density [2]

f (τ ) = 1
2γ0λe−λ|τ |, (57)

where the parameters γ0 and λ are real and positive. For
this case both the time-convolutionless generator and the
Nakajima-Zwanzig kernel can be exactly calculated. Indeed
by means of Eq. (20) one obtains for the function G(t) the
expression

G(t) = e−λt/2

[
cosh

(
λt

2
δ

)
+ 1

δ
sinh

(
λt

2
δ

)]
, (58)

where δ = √
1 − 2γ0/λ. Note that this function is always

real. Furthermore, it stays positive for any time t in the
weak coupling regime γ0 < λ/2, while for strong coupling
(γ0 > λ/2), the parameter δ becomes purely imaginary and the
function G(t) starts to oscillate. In particular it goes through
zero for the first time when t is equal to the smallest positive
solution of

t = 2

λδ̂
(nπ − arctan δ̂), (59)

where δ̂ = √
2γ0/λ − 1 and n ∈ N. Building on Eq. (58), one

can obtain the exact expressions for the functions γ (t) and
S(t) appearing in the time-convolutionless generator, given by
S(t) = 0 and

γ (t) = 2γ0
sinh

(
λt
2 δ

)
δ cosh

(
λt
2 δ

) + sinh
(

λt
2 δ

) . (60)

In order to obtain the Nakajima-Zwanzig kernel, one considers
the Laplace transform of the function z(t) = |G(t)|2, which is
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found to be

ẑ(u) = (u + λ)(u + 2λ) + γ0λ

(u + λ)[(u + λ)2 − λ2 + 2γ0λ]
, (61)

so that according to Eq. (45) one has

k̂1(u) = γ0λ
u + 2λ

(u + λ)(u + 2λ) + γ0λ
. (62)

Transforming back to the time domain we finally get

k1(t) = γ0λe−3λt/2

[
cosh

(
λt

2
δ′

)
+ 1

δ′ sinh

(
λt

2
δ′

)]
, (63)

where δ′ = √
1 − 4γ0/λ. Substituting this result into Eq. (46),

we find the exact memory kernel for the case of an exponential
correlation function.

The exact expressions for Eqs. (60) and (63) already allow
for an important comparison. While the function on the right-
hand side of Eq. (63) represents an analytic function of γ0

(remember that γ0 is a quantity of second order in the expansion
parameter α), so that the Nakajima-Zwanzig memory kernel
has an infinite radius of convergence, the same does not hold
true for the time-convolutionless generator. Indeed the time-
convolutionless expansion breaks down in the strong coupling
regime γ0 > λ/2, when the function G(t) given in Eq. (58)
goes through zero. This behavior corresponds to the divergence
of the decay rate γ (t) given in Eq. (60).

Considering an expansion in γ0 of the function k1(t) due
to the fact that the correlation function Eq. (57) is real, one
obtains

K(2)
NZ(τ )ρ = 2f (τ )

[
σ−ρσ+ − 1

2 {σ+σ−,ρ}], (64)

so that up to second order the corresponding master equation
is indeed of the form of Eq. (56) with the exponential kernel
function h(t) = 2f (t). However, in fourth order, further terms
appear which are not present in Eq. (56):

K(4)
NZ(τ )ρ = k

(4)
1 (τ )(σ−ρσ+ − σ+σ−ρσ+σ−), (65)

where

k
(4)
1 (τ ) = γ 2

0 [e−λτ (1 − λτ ) − e−2λτ ]. (66)

As shown in Ref. [9], this implies in particular that if one
truncates the expansion to first order in γ0 the complete
positivity (and even the positivity) of the resulting dynamical
map is violated for strong couplings in the Nakajima-Zwanzig
case. On the contrary, the second-order time-convolutionless
master equation always guarantees complete positivity, as
can be seen considering the second-order approximation for
Eq. (60) given by

γ (2)(t) = γ0(1 − e−λt ). (67)

VI. CONCLUSIONS

We have constructed the exact Nakajima-Zwanzig memory
kernel for a specific model describing the decay of a two-level
system into a reservoir of field modes which is initially in a
vacuum state. The construction of the memory kernel is based
on the analytical solution of the Schrödinger equation within
the Hilbert-space sector describing states with zero or one
excitation and is valid for a generic spectral density. Since

the dynamical map giving the reduced system dynamics of the
two-state system is known exactly, there is, of course, no reason
in principle to resort to any kind of master equation in order to
determine the dynamical behavior of the system. However, the
present results lead to several important implications, which
are relevant for more realistic physical systems and their
microscopic or phenomenological modeling and for which
analytical results cannot be obtained. Indeed for this model
both the time-convolutionless generator and the Nakajima-
Zwanzig kernel can be exactly expressed in terms of functions
for which perturbative expansions are given. Furthermore, the
analytical expression of these functions has been obtained
for a reservoir with an exponential correlation function,
corresponding to a Lorentzian spectral density. This allows
for a direct comparison of the two approaches expressing
the dynamics in terms of a time-local and integrodifferential
master equation, respectively. It turns out that, contrary to what
is often expected, the Nakajima-Zwanzig master equation is
not simply obtained by convolution of the Lindblad operator
appearing in the non-Markovian case with a suitable kernel.
It actually has a different operator structure, emerging when
considering higher perturbative orders. Furthermore, this exact
analytical result shows the different convergence behavior of
the two approaches. While the Nakajima-Zwanzig kernel is an
analytic function of the coupling strength, providing a well-
defined master equation at any time, the time-convolutionless
generator breaks down at finite time in the strong coupling
regime, thus failing to reproduce the asymptotic behavior.
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APPENDIX A

In this appendix we consider how to obtain a perturbative
expansion for the function k1(τ ), which according to Eq. (36)
and Eqs. (40) and (41) determines the memory kernel in the
Nakajima-Zwanzig master equation. To this end, one considers
the solution of Eq. (20), which is of the form Eq. (30) with
G(0) = 1 and G(2n)(t) explicitly given by

G(2n)(t) = (−1)n
∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ t2n−1

0
dt2n

×
n∏

i=1

f (t2i−1 − t2i), (A1)

where f (t) is the two-point correlation function of the
reservoir, so that

z(t) = |G(t)|2

= 1 + 2 Re
∞∑

n=1

(−1)n
∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ t2n−1

0
dt2n

×
n∏

i=1

f (t2i−1 − t2i) +
∣∣∣∣∣

∞∑
n=1

(−1)n
∫ t

0
dt1

×
∫ t1

0
dt2 · · ·

∫ t2n−1

0
dt2n

n∏
i=1

f (t2i−1 − t2i)

∣∣∣∣∣
2

. (A2)
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Considering terms up to fourth order in the expansion
parameter, one has

z(t) = 1 − 2 Re
∫ t

0
dt1

∫ t1

0
dt2f (t2)

+ 2 Re
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t4

0
dt4f (t1 − t2)f (t3 − t4)

+
∣∣∣∣
∫ t

0
dt1

∫ t1

0
dt2f (t2)

∣∣∣∣
2

+ · · · , (A3)

and, denoting real and imaginary parts of f (t) as in Eq. (42),
also

z(t) = 1 − 2
∫ t

0
dt1

∫ t1

0
dt2f1(t2) + 2

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

×
∫ t3

0
dt4[f1(t1−t2)f1(t3−t4)−f2(t1−t2)f2(t3−t4)]

+
∣∣∣∣
∫ t

0
dt1

∫ t1

0
dt2f1(t2)

∣∣∣∣
2

+
∣∣∣∣
∫ t

0
dt1

∫ t1

0
dt2f2(t2)

∣∣∣∣
2

+ · · · .

(A4)

Introducing the functions

hi(t) =
∫ t

0
dt1

∫ t1

0
dt2fi

(
t2

)
, i = 1,2, (A5)

one obtains, for the Laplace transform of z(t),

ẑ(u) = u − 2uf̂1(u)

u2
+ 2

u3

[
f̂1

2
(u) − f̂2

2
(u)

]
+ ĥ2

1(u) + ĥ2
2(u) + · · · , (A6)

and thanks to Eq. (45),

k̂1(u) = 2f̂1(u) + 2

u

[
f̂1

2
(u) + f̂2

2
(u)

]
−u2

[
ĥ2

1(u) + ĥ2
2(u)

] + · · · . (A7)

Now using the fact that the functions hi are equal to zero
together with their derivatives at t = 0 so that

d̂2

dt2
h2

i (u) = u2ĥ2
i (u), (A8)

one has

k1(τ ) = 2f1(τ ) + 2
∫ τ

0
dt1

∫ t1

0
dt2f1(t1 − t2)f1(t2)

+ 2
∫ τ

0
dt1

∫ t1

0
dt2f2(t1 − t2)f2(t2)

− 2

∣∣∣∣
∫ τ

0
dt1f1(t1)

∣∣∣∣2

− 2

∣∣∣∣
∫ τ

0
dt1f2(t1)

∣∣∣∣2

− 2f1(τ )
∫ τ

0
dt1

∫ t1

0
dt2f1(t1 − t2)

− 2f2(τ )
∫ τ

0
dt1

∫ t1

0
dt2f2(t1 − t2) + · · · . (A9)

We now exploit the identity∫ τ

0
dt2

∫ t2

0
dt3f (t2 − t3)f (t3) −

∣∣∣∣
∫ τ

0
dt2f1(t2)

∣∣∣∣2

+
∫ τ

0
dt2

∫ t2

0
dt3f (τ − t3)f (t2) = 0, (A10)

which can be checked by noting that the function of t defined
by the left-hand side of Eq. (A10) has a vanishing derivative
and is equal to zero for t = 0. We are thus left with

k1(τ ) = 2f1(τ ) − 2
∫ τ

0
dt2

∫ t2

0
dt3[f1(τ − t3)f1(t2)

+ f1(τ )f1(t2 − t3)] − 2
∫ τ

0
dt2

∫ t2

0
dt3[f2(τ − t3)

× f2(t2) + f2(τ )f2(t2 − t3)] + · · · (A11)

and, thanks to the fact that real and imaginary parts of f (t) are
even and odd, respectively,

k1(τ ) = 2f1(τ ) − 2
∫ τ

0
dt2

∫ t2

0
dt3[f1(τ − t3)f1(−t2)

− f2(τ − t3)f2(−t2) + f1(τ )f1(t3 − t2)

− f2(τ )f2(t3 − t2)] + · · ·
= 2f1(τ ) − 2 Re

∫ τ

0
dt2

∫ t2

0
dt3[f (τ − t3)f (−t2)

+ f (τ )f (t3 − t2)] + · · · . (A12)

Upon the change of variables t2 → t2 − t1, t3 → t3 − t1, one
has the following for the second- and fourth-order contribution
to k1(τ ):

k
(2)
1 (t − t1) = 2f1(t − t1) (A13)

k
(4)
1 (t − t1) = −2 Re

∫ t

t1

dt2

∫ t2

t1

dt3[f (t − t3)f (t1 − t2)

+ f (t − t1)f (t3 − t2)]. (A14)

APPENDIX B

Here we derive the contributions to the memory kernel
Eq. (36) up to fourth order by employing the standard
Nakajima-Zwanzig projection operator technique. Since the
initial state of the system and bath is of the factorized form of
Eq. (14), we can employ the standard projection operator

Pw = TrE(w) ⊗ ρE, (B1)

where w is a state of the system plus environment and ρE

denotes the vacuum state of the reservoir. This projection
operator is the same used to obtain Eq. (34), and for it the
initial state Eq. (14) is indeed an eigenoperator. Introducing
further the superoperators

L(t)ρ(t) = −i[HI (t),ρ(t)] (B2)

with HI (t) as in Eq. (6), and

G(t,t1) = T exp

[∫ t

t1

dsQL(s)

]
, (B3)

where T denotes time ordering and Q = 1 − P , the
Nakajima-Zwanzig memory kernel appearing in Eq. (35) is
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given by

KNZ(t − t1)ρ(t1) = TrE [L(t)G(t,t1)QL(t1)ρ(t1) ⊗ ρE] .

(B4)

Noting that for this model PL(t1) · · ·L(t2n+1)P = 0, one has

KNZ(t − t1)ρ(t1)

= TrE[L(t)L(t1)ρ(t1) ⊗ ρE]

+
∫ t

t1

dt2

∫ t2

t1

dt3 {TrE [L(t)L(t2)L(t3)L(t1)ρ(t1) ⊗ ρE]

− TrE [L(t)L(t2)PL(t3)L(t1)ρ(t1) ⊗ ρE]} + · · · . (B5)

Using Eqs. (6) and (16), one readily obtains

TrE[L(t)L(t1)ρ(t1) ⊗ ρE]

= (−i)2[f (t − t1)σ+σ−ρ(t1) − f (t1 − t)σ−ρ(t1)σ+
− f (t − t1)σ−ρ(t1)σ+ + f (t1 − t)ρ(t1)σ+σ−], (B6)

so that the second-order contribution is given by

K(2)
NZ(τ )ρ = −if2(τ )[σ+σ−,ρ]

+ 2f1(τ )
[
σ−ρσ+ − 1

2 {σ+σ−,ρ}], (B7)

which due to Eq. (46) confirms the result of Eq. (52). Setting

I1(t,t2,t3,t1)ρ(t1) = TrB[L(t)L(t2)L(t3)L(t1)ρ(t1) ⊗ ρE]

(B8)

and

I2(t,t2,t3,t1)ρ(t1) = TrB[L(t)L(t2)PL(t3)L(t1)ρ(t1) ⊗ ρE],

(B9)

a lengthy but straightforward calculation leads to the results

I2(t,t2,t3,t1)ρ(t1)

= f (t − t2)f (t3 − t1)σ+σ−ρ(t1) + f (t2 − t)f (t1 − t3)

× ρ(t1)σ+σ− + 2 Re[f (t − t2)f (t1 − t3)]σ+σ−

× ρ(t1)σ+σ− − 4f1(t − t2)f1(t1 − t3)σ−ρ(t1)σ+ (B10)

and

I1(t,t2,t3,t1)ρ(t1)

= I2(t,t2,t3,t1)ρ(t1) − 2 Re[f (t − t3)f (t1 − t2) + f (t − t1)

× f (t3 − t2)]σ−ρ(t1)σ+ + 2 Re[f (t − t3)f (t1 − t2)

+ f (t − t1)f (t3 − t2)]σ+σ−ρ(t1)σ+σ−. (B11)

Thus, for the fourth-order expression, one has

K(4)
NZ(t − t1)ρ

= −2 Re
∫ t

t1

dt2

∫ t2

t1

dt3[f (t − t3)f (t1 − t2) + f (t − t1)

× f (t3 − t2)][σ−ρσ+ − σ+σ−ρσ+σ−], (B12)

which according to Eq. (46) confirms Eq. (54).
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