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Electromagnetically induced transparency in mechanical effects of light
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We consider the dynamical behavior of a nanomechanical mirror in a high-quality cavity under the action of
a coupling laser and a probe laser. We demonstrate the existence of the analog of electromagnetically induced
transparency (EIT) in the output field at the probe frequency. Our calculations show explicitly the origin of
EIT-like dips as well as the characteristic changes in dispersion from anomalous to normal in the range where
EIT dips occur. Remarkably the pump-probe response for the optomechanical system shares all the features of
the � system as discovered by Harris and collaborators.
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Since its original discovery in the context of atomic vapors,
electromagnetically induced transparency (EIT) [1–3] has
been at the center of many important developments in optical
physics [4] and has led to many different applications, most
notably in the context of slow light [5–7] and the production
of giant nonlinear effects. EIT is helping the progress toward
studying nonlinear optics at the single-photon level. EIT has
been reported in many other systems [8]. More recently, EIT
has been discovered in meta materials [9–12] where resonant
structures can be fabricated to correspond to dark and bright
modes. Resonators provide certain advantages [13] because by
design we can manipulate EIT to produce desired transmission
properties of a structure. It would thus be especially interesting
to study resonators coupled to other systems such as cavity
optomechanical systems. Such nanomechanical systems have
attracted considerable interest recently [14–21]. In this letter,
we demonstrate the possibility of EIT in the context of cavity
optomechanics.

Before discussing our model and results, we set the stage for
EIT in cavity optomechanics. As in typical EIT experiments
[1–4], for example, in the context of atomic vapors, we need
to examine the pump-probe response of a nanomechanical
oscillator of frequency ωm coupled to a high-quality cavity via
radiation pressure effects [22,23] as schematically shown in
Fig. 1. Thus, the cavity oscillator of frequency ω0 and the nano-
oscillator interact nonlinearly with each other. The system
is driven by a strong pump field of frequency ωc. This is
the coupling field. The probe field has frequency ωp and is
much weaker than the pump field. The mechanical oscillator’s
damping is much smaller than that of the cavity oscillator.
This is very important for considerations of EIT. The decay
rate of the mechanical oscillator plays the same role as the
decay rate of the ground-state coherence in EIT experiments.
The analog of the two-photon resonance condition where EIT
occurs would be ωc + ωm = ωp. We show how the absorptive
and dispersive responses of the probe change by the coupling
field and how EIT emerges. We present a clear physical origin
of EIT in such a system.

Let us denote the cavity annihilation (creation) operator by c

(c†) with the commutation relation [c,c†] = 1. The momentum
and position operators of the nanomechanical oscillator with
mass m are represented by p and q. We also introduce the
amplitudes of the pump field and the probe field inside the
cavity, εc = √

2κ℘c/(h̄ωc) and εp = √
2κ℘p/(h̄ωp), where ℘c

is the pump power, ℘p is the power of the probe field, and κ is

the cavity decay rate. Note that εc and εp have dimensions of
frequency. The optomechanical coupling between the cavity
field and the movable mirror can be described by the coupling
constant χ0 = h̄ω0/L, where L is the cavity length. The
Hamiltonian describing the whole system reads

H = h̄ω0c
†c +

(
p2

2m
+ 1

2
mω2

mq2

)
+ ih̄εc(c†e−iωct − ceiωct )

+ ih̄(c†εpe−iωpt − cε∗
peiωpt ) − χ0c

†cq. (1)

This letter deals with the mean response of the system to
the probe field in the presence of the coupling field. Because
we deal with the mean response of the system, we do not
include quantum fluctuations. This is similar to what has been
done in the context of EIT work where one uses atomic mean
value equations and all quantum fluctuations (due to either
spontaneous emission or collisions) are ignored. Thus, we
examine the mean value equations, which can be obtained
from the Hamiltonian and by addition of the damping terms.
We use the factorization assumption 〈Qc〉 = 〈Q〉〈c〉 and also
transform the cavity field to a rotating frame at the frequency
ωc, 〈c(t)〉 = 〈c̃(t)〉e−iωct . The mean value equations are then
given by

〈q̇〉 = 〈p〉
m

,

〈ṗ〉 = −mω2
m〈q〉 + χ0〈c̃†〉〈c̃〉 − γm〈p〉, (2)

〈 ˙̃c〉 = −
[
κ + i

(
ω0 − ωc − χ0

h̄
〈q〉

)]
〈c̃〉+ εc + εpe−i(ωp−ωc)t .

The output field can be obtained by using the input-output
relations [24]

εout(t) + εpe−iωpt + εce
−iωct = 2κ〈c〉. (3)

We first note that in the absence of the coupling field, the
output field is given by

εout(t) + εpe−iωpt = εT εpe−iωpt = 2κ

κ − i(ωp − ω0)
εpe−iωpt .

(4)

The quadratures of the field εT , defined by εT = υp + iυ̃p,
show the absorptive and dispersive behavior as a function of
the detuning parameter (ωp − ω0). The field quadratures, as is
well known, can be measured by homodyne techniques [24].
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FIG. 1. Sketch of the optomechanical system coupled to a high-
quality cavity via radiation pressure effects.

Next, we examine the effect of the coupling field. Equa-
tions (2) are nonlinear, and therefore the steady-state response
contains many Fourier components. We solve in the limit
of arbitrary strength of the coupling field; however, we take
the probe field to be weak. We specifically are interested in
the response of the cavity optomechanical system to the probe
in the presence of the coupling field εc. Thus, we find the
component of the output field oscillating at the probe frequency
ωp. The result of such a calculation is that εT is now given by

εT = 2κ

d(δ)

{(
δ2 − ω2

m + iγmδ
)
[κ − i(
 + δ)] − 2iωmβ

}
,

(5)

where

d(δ) = (
δ2 − ω2

m + iγmδ
)
[(κ − iδ)2 + 
2)] + 4
ωmβ,

δ = ωp − ωc,


 = ω0 − ωc − 2βχ0

ωm

, (6)

β = χ2
0 |c̃0|2

2mh̄ωm

,

c̃0 = εc

κ + i

.

The coupling field has modified the output field at the probe
frequency. Note that εT is nonperturbative in terms of the
strength of the coupling field ωc. We concentrate on the output
field. However, all the results for εT also apply to the cavity
field at ωp as the two quantities are proportional to each other.

In order to understand the coupling-field-induced mod-
ification of the probe response εT , we make reasonable
approximations. We work in the sideband resolved limit
ωm � κ . This is the limit in which normal mode splitting
[20,21,25] has been discovered. Because it is known that
the coupling between the nano-oscillator and the cavity is
strongest whenever δ = ±ωm or δ = ±
, the case 
 ∼ ωm is
considered here. After some simplifications, we can write the
output field in an instructive form,

εT = υp + iυ̃p = 2κ

κ − ix + {β/[(γm/2) − ix]}
= A+

x − x+
+ A−

x − x−
, (7)

where x = δ − ωm, which is the detuning from the line center.
Further, it is seen that the denominator has two roots, which
are

x± = −i[κ + (γm/2)] ±
√

−[κ − (γm/2)]2 + 4β

2
, (8)
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FIG. 2. (Color online) Quadrature of the output field υp (solid
black curve) and the different contributions to it: the real parts of
A+/(x − x+) (dotted red curve) and A−/(x − x−) (dashed green
curve) as a function of the normalized frequency x/ωm for input
coupling laser power ℘c = 1 mW. The dot-dashed blue curve is υp

in the absence of the coupling laser.

whose nature depends on the power of the coupling laser. For
coupling powers less than the critical power

℘̃c = h̄ωc|c̃0|2
(
κ2 + ω2

m

)
[κ − (γm/2)]2

8κβ
, (9)

the two roots are purely imaginary. For ℘c > ℘̃c, the roots
are complex conjugates of each other. The region ℘c >

℘̃c corresponds to the region where normal-mode splitting
[20,21,25] occurs and has been studied recently using a very
different technique. In the context of optical physics, this is
the region where Autler-Townes splitting [26] occurs, although
sometimes the distinction between different kinds of splittings
is marred. However, for EIT, it is important to have γm � κ .

In order to bring out prominently features like EIT [1–3],
we specifically examine the case when the coupling power is
less than the critical power. Note that x+ → −i

γm

2 , x− → −iκ

as β → 0. Thus, the quadratures of the output field have
two distinct contributions in the limit of low values of the
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FIG. 3. (Color online) Quadrature of the output field υ̃p (solid
black curve) and the different contributions to it: the imaginary parts
of A+/(x − x+) (dotted red curve) and A−/(x − x−) (dashed green
curve) as a function of the normalized frequency x/ωm for input
coupling laser power ℘c = 1 mW. The dot-dashed blue curve is υ̃p

in the absence of the coupling laser.

041803-2



RAPID COMMUNICATIONS

ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN . . . PHYSICAL REVIEW A 81, 041803(R) (2010)

1.0 0.5 0.0 0.5 1.0
2

1

0

1

2

3

x ωm

R
e

A

x
x

,
R

e
A

x
x

,
ν p

FIG. 4. (Color online) Same as in Fig. 2 except the input coupling
laser power ℘c = 6.9 mW and the ℘c = 0 case is not shown.

coupling laser strength. One contribution is extremely narrow
as γm � κ . This characteristic property leads to the EIT
dip. For numerical work, we use parameters from a recent
experiment on the observation of the normal-mode splitting
[21]: the wavelength of the laser λ = 2πc/ωc = 1064 nm,
L = 25 mm, m = 145 ng, κ = 2π × 215 kHz, ωm = 2π ×
947 kHz, γm = 2π × 141 Hz, and the mechanical quality
factor Q = ωm/γm = 6700. We calculate the critical power
℘̃c to be 3.8 mW. In Figs. 2 and 3, we show each contribution
in Eq. (7) separately and also the total contribution. We
observe that the narrow contribution is inverted relative to
the broad contribution, and this leads to the typical EIT-like
line shape for the quadrature υp of the output field. The value
at the dip is not exactly zero as γm 	= 0, though the value
is very small as γm � κ . This is similar to what one has in
the context of EIT in atomic systems where a strict zero is
obtained if the ground-state atomic coherence has an infinite
lifetime. In the absence of the coupling field, the narrow feature
disappears (blue curve in the Fig. 2). The narrow feature’s
width has a contribution which depends on the coupling laser
power. In leading order, the width is γm

2 + β

κ
. For the plot

of the Fig. 3, the power-dependent contribution to the width
in dimensionless units is β/κ2 ∼ 0.065. The quadrature υ̃p

exhibits dispersive behavior, and the coupling field changes the
nature of dispersion from anomalous to normal in the region
where quantum interferences are prominent. This behavior
of dispersion is similar to the one found by Harris and
collaborators in predictions of slow light [5–7] in atomic
systems.

We next present the nature of interferences in the region
when ℘c > ℘̃c in Figs. 4 and 5. A typical behavior is shown
in Fig. 4, which clearly shows how the interference of the two
contributions in Eq. (7) leads to the formation of the dip. The
two contributions in Eq. (7) lead to asymmetric profiles. In
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FIG. 5. (Color online) Same as in Fig. 3 except the input coupling
laser power ℘c = 6.9 mW and the ℘c = 0 case is not shown.

the region of EIT, the tails from these contributions interfere.
Unlike the case given by Fig. 2, the two contributions have
identical line widths. From Fig. 5, we also see how the disper-
sive behavior is changed by the coupling field from anomalous
to normal in the region where quantum interferences are
dominated. The inverted nature of the contribution A+ should
be noted, and it is this which changes the nature of dispersion.

We now explain the origin of the structure (7) for the
probe response. Let us re-examine the Hamiltonian (1). Note
that we drive the cavity with arbitrary pump field εp. This
effectively prepares the cavity in a coherent state with a
value c̃0 if all the other interactions were zero. The trilinear
interaction due to radiation pressure χ0c

†cq can now be written
as χ0q|c̃0|2 + χ0q(c̃∗

0δc + c̃0δc
†) + higher order terms if we

write the cavity operator c as c̃0 + δc. The pump thus has
resulted in a bilinear interaction between the cavity oscillator
and the mirror oscillator. The cavity oscillator is driven by
the probe field, whereas the matter oscillator has no external
drive. The cavity oscillator is damped at the rate κ, whereas the
mirror is damped at the rate γm � κ . This situation typically
results [9–13] in line shapes such as (7).

In conclusion, we have shown how an exact analog of EIT
can occur in cavity optomechanics when such a system is
driven by a weak probe in the presence of a strong-coupling
field. We find that the response function for the cavity field
at the probe frequency as well as the output field has exactly
the same features as the response of a � system provided
the damping of the nanomechanical mirror is much smaller
than the dissipation in the cavity. We further highlighted the
interference effects in two distinct regions of the coupling
power.
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