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Controlled generation of field squeezing with cold atomic clouds coupled
to a superconducting transmission line resonator
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We propose an efficient method for controlled generation of field squeezing with cold atomic clouds trapped
close to a superconducting transmission line resonator. It is shown that, based on the coherent strong magnetic
coupling between the collective atomic spins and microwave fields in the transmission line resonator, two-mode
or single-mode field squeezed states can be generated through coherent control on the dynamics of the system.
The degree of squeezing and preparing time can be directly controlled through tuning the external classical fields.
This protocol may offer a promising platform for implementing scalable on-chip quantum information processing
with continuous variables.
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Squeezed fields have both fundamental and practical im-
plications in quantum optics [1] and quantum information
processing [2–5]. Controlled generation of field squeezing
in the microwave or optical range has been investigated
in various physical systems such as cavity QED [6–11]
and superconducting quantum circuits [12–14]. Solid-state
superconducting quantum circuits are believed to possess
the advantages of integration and scaling in a chip [15].
Ultracold atoms are very attractive in view of long coherence
times and the well-developed techniques for detecting and
manipulating the ground electronic (hyperfine) states. Hybrid
systems consisting of ensembles of atomic or molecular
system and superconducting transmission line resonators have
been intensively investigated [16–25]. Recently, J. Verdu and
coauthors have shown that strong magnetic coupling of an
ultracold atomic gas to a superconducting waveguide cavity is
possible [19]. This interesting work opens up the possibility
for utilizing this hybrid system in the field of quantum optics
and quantum information. The present work is to design a
scheme for producing squeezed state of the transmission line
cavity fields using the hybrid system, which may be used
to implement on-chip quantum information processing with
continuous variables.

In this Brief Report, we propose to controllably generate
two-mode or single-mode squeezed states of the electromag-
netic fields confined in a superconducting transmission line
resonator. It is shown that, based on the strong magnetic
coupling of a cold atomic gas to a transmission line resonator
[19–21], under certain conditions the coupled system of atomic
spins and cavity modes can behave as three coupled harmonic
oscillators with controllable coefficients. Through coherent
control on the dynamics of the system, at some instants the
atomic spins are decoupled from the cavity modes, leaving
the cavity fields in a squeezed state. The distinct advantage of
this method compared to the traditional intra-cavity parametric
amplification is that the degree of squeezing and preparation
time can be efficiently controlled through tuning the intensities
and detunings of external classical fields. Compared to other
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proposals based on electric-dipole coupling between atoms
and fields in cavity QED [6–11], this scheme, utilizing strong
magnetic coupling of atomic spins to cavity modes [19], has
the advantage of being immune to charge noise and could
constitute qubits with much longer coherence times. Combined
with the technology of atom chip and circuit QED, our study
may open promising perspectives for the implementation
of on-chip quantum information processing with continuous
variables in the microwave regime.

This proposal consists of an ensemble of N cold atoms
trapped above the surface of a superconducting transmission
line resonator [16–20], as sketched in Fig. 1. The transmission
line resonator consists of three conducting stripes: the central
conductor plus two ground planes. The electromagnetic field
of the resonator is confined near the gaps between the
conductor and the ground planes. A cloud of cold atoms can
be trapped close to the resonator by a variety of macroscopic
electrostatic traps or other atom chip technology. Two classical
fields of frequencies ω1 and ω2 drive dispersively the atoms,
establishing a couple of Raman system through two cavity
modes of frequencies of ν1 and ν2. The two ground states of the
atoms are labeled |g〉 and |h〉, and the intermediate states as |e1〉
and |e2〉. The intermediate states |e1〉 and |e2〉 can be replaced
by a single level [6], provided the two Raman channels remain
distinct. The classical fields drive dispersively the transitions
|g〉 ↔ |e1〉 and |h〉 ↔ |e2〉 with Rabi frequencies �1 and
�2. The cavity modes couple the transitions |h〉 ↔ |e1〉 and
|g〉 ↔ |e2〉 with coupling constants g1 and g2. The detunings
for these transitions are �1 = ωe1g − ω1 = ωe1h − ν1, �2 =
ωe2h − ω2, and δ2 = �2 − ωe2g + ν2. Then in the interaction
picture and under the dipole and rotating wave approximation,
the Hamiltonian describing this case is given by (let h̄ = 1)

HI = �1

N∑
j=1

∣∣ej

1

〉〈gj |ei�1t + �2

N∑
j=1

∣∣ej

2

〉〈hj |ei�2t

+ g1â1

N∑
j=1

∣∣ej

1

〉〈hj |ei�1t

+ g2â2

N∑
j=1

∣∣ej

2

〉〈gj |ei(�2−δ2)t + H.c., (1)

1050-2947/2010/81(3)/035802(4) 035802-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.035802


BRIEF REPORTS PHYSICAL REVIEW A 81, 035802 (2010)

FIG. 1. (Color online) (a) Ensembles of ultracold atoms trapped
near the surface of a superconducting transmission line resonator.
(b) Atomic level structure with couplings to the cavity modes and
driving laser fields. The atoms are initially cooled in the ground
state |g〉.

where âi is the annihilation operator for the cavity mode
with frequency νi(i = 1, 2). We consider dispersive detun-
ings |�1|, |�2|, |�1 − �2| � |�1|, |g1|, |�2|, |g2|. Since lev-
els |e1〉 and |e2〉 are coupled dispersively with both levels
|g〉 and |h〉, they can be adiabatically eliminated. Then the
interaction Hamiltonian describing the coupling of the cold
atoms to the cavity modes is [6]

HI = (β2â2 + β1â
†
1)ĉ† + H.c., (2)

where βi =
√

N�∗
i gi

�i
, ĉ = 1/

√
N

∑N
j=1 |gj 〉〈hj |. For weak ex-

citations of the atoms, the operator ĉ obeys approximate har-
monic oscillator commutation relations [ĉ, ĉ†] � 1 [22,24,25].
In such a case, we can describe the atomic excitations as a
set of harmonic oscillator states |0〉a = |g1g2 . . . gN 〉a , |1〉a =
ĉ†|0〉a , and so on. We assume β1 = iξ1, β2 = iξ2, |ξ2| >

|ξ1|, and introduce � =
√

|ξ2|2 − |ξ1|2. Then we obtain the
effective Hamiltonian

HI = H1 + H2

= iξ1â
†
1ĉ

† − iξ ∗
1 â1ĉ + iξ2â

†
2ĉ − iξ ∗

2 â2ĉ
†. (3)

The ensemble excitations and the cavity modes represent a
system of three coupled harmonic oscillators with controllable
coefficients. Hamiltonian H1 describes simultaneous creation
or annihilation of a photon in mode 1 and atomic spin
excitation, while H2 describes the exchange of excitation
quanta between mode 2 and the collective atomic spin waves.
The effective coupling strengths ξ1 and ξ2 depend on the value
of the Raman transition rates.

The Hamiltonian HI commutates with the constant of
motion N = â

†
2â2 − â

†
1â1 + ĉ†ĉ. Therefore, if the system starts

from the state |0, 0〉c|0〉a , where |n, n〉c is the two-mode
Fock state for the cavity modes, then we have N = 0 at
any time during the evolution. To calculate the evolved state,
we proceed by factorizing the temporal evolution operator
of the system. To this aim, we introduce the following
operators J1 = â1â

†
1 + ĉ†ĉ, J2 = ĉ†ĉ − â

†
2â2, J = â2ĉ

†,K =
â1ĉ,M = â1â2, which form a closed algebra [26,27]. After
straightforward derivation, the evolution operator U (t) can be
written in the form of a Baker-Hausdorff equation

U (t) = eα1K
†
eα2M

†
eα3J

†
eα4J1eα5J2eα6J eα7Keα8M. (4)

After applying U (t), the time evolution of the state vector will
be [26,27]

|
(t)〉 = U (t)|0, 0〉c|0〉a
= eα4eα1K

†
eα2M

† |0, 0〉c|0〉a

= eα4

∞∑
m,n=0

αm
1 αn

2

√
(m + n)!

m!n!
|m + n, n〉c|m〉a, (5)

where eα4 = 1√
1+n1

, α1 = [ n3
1+n1

]1/2, α2 = [ n2
1+n1

]1/2. The time-

dependent parameters n1 = 〈â†
1â1〉, n2 = 〈â†

2â2〉, n3 = 〈ĉ†ĉ〉,
which can be evaluated through solving the Heisenberg
evolution of the field operators â1, â2, ĉ [26,27], i.e., n1 =
n2 + n3, n2 = |ξ1|2|ξ2|2

�4 [cos �t − 1]2, n3 = |ξ1|2
�2 sin2(�t). Gen-

erally the state (5) describes tripartite entanglement among
cavity modes and collective spin excitations. However, from
the expressions for ni(i = 1, 2, 3), we see that at the instant
Tπ = π/�, n1 = n2 = 4|ξ1|2|ξ2|2

�4 and n3 = 0. Therefore, from
Eq. (5) we can obtain

|
(Tπ )〉 = 1√
1 + n1

∞∑
n=0

[
n1

1 + n1

]n/2

|n, n〉c|0〉a

=
(

1 − r2

1 + r2

) ∞∑
n=0

[
2r

1 + r2

]n

|n, n〉c|0〉a, (6)

with r = |ξ2/ξ1|. This result shows that if at t = 0 the state
of the system is |
(0)〉 = |0, 0〉c|0〉a , then at t = Tπ , the
collective atomic spin excitations are decoupled from two
cavity modes. Moreover, the two cavity modes are in the state

|φ〉c =
(

1 − r2

1 + r2

) ∞∑
n=0

[
2r

1 + r2

]n

|n, n〉c. (7)

Obviously, state (7) is a two-mode squeezed state of the
two cavity modes [28]. The squeezing parameter is ε =
tanh−1( 2r

1+r2 ) and is determined by |ξ2/ξ1|, thus by the ratio
|β2/β1|, which means the degree of squeezing and the
preparation time can be directly controlled through tuning
the external classical fields. It is straightforward to generate
the single-mode squeezed state, if we consider the two cavity
modes are identical.

To further quantify the squeezing property of the two cavity
modes, we employ the two-mode relative number squeez-
ing parameter [29] ζ12 = σ 2(â†

1â1 − â
†
2â2)/(〈â†

1â1〉 + 〈â†
2â2〉),

where σ 2(X) = 〈X2〉 − 〈X〉2. ζ12 taking the value of 0 signifies
two-mode squeezing of the cavity fields, while ζ12 = 1 means
the two cavity modes are in independent states. In Fig. 2(a),
we display the numerical results for the time evolution of the
two-mode relative number squeezing parameter for several
values of the parameter r . We see that ideal squeezed states
between the two cavity modes occur at the instant Tπ = π/�.
When the squeezed state is generated at the time of Tπ , we
switch off the lasers and decouple the atoms to the cavity. Then
the squeezed state can be preserved until the cavity fields are
coupled out.

The squeezing of the output fields can be measured by
the standard homodyne detection. We consider the squeezing
properties of the outgoing cavity fields. We define I out

+ =
1√
2
(â1 + â

†
1 − â2 − â

†
2) and I out

− = − i√
2
(â1 − â

†
1 + â2 − â

†
2),
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FIG. 2. (Color online) (a) The parameter ζ12 vs. the time un-
der r = 1.1, 1.05, 1.01. (b) Squeezing spectrum S(ω) when � =
10κ, κ, 0.1κ (in units of �).

corresponding to the difference between the amplitude quadra-
tures and the sum of the phase quadratures of the two cavity
modes, respectively. Then the squeezing spectrum for the
output modes can be defined as [10]

〈I out
± (ω)I out

± (ω′) + I out
± (ω′)I out

± (ω)〉 = 2S±(ω)δ(ω + ω′), (8)

with I (ω) being Fourier transformation of I . The squeezing
spectrum can take value from 0 to 1. The shot noise level
corresponds to S±(ω) = 1, while the two-mode squeezing
corresponds to S±(ω) < 1. Employing the input-output theory
and quantum Langevin equations [1], we can evaluate the
squeezing spectrum S(ω). Figure 2(b) shows the numerical
calculations of the squeezing spectrum under several values
of the parameter �/κ . We see that the properties of the
spectrum are mainly related to the ratio �/κ . In the regime of
� > κ , one can find three minima in the squeezing spectrum at
ω = 0,±�, which signify three separated regions of narrow-
band squeezing. In the regime of � ∼ κ , however, the three
minima merge into a single broad one, centered around ω = 0.
Moreover, in this case one can find nearly perfect squeezing
in the center. When � < κ , the spectrum displays one very
narrow bandwidth around ω = 0, and two-mode squeezing is
significantly worsened.

In the discussions above, we have assumed that a cloud of
atoms can be trapped close to a transmission line resonator
and prepared in the ground state, and the atom-field coupling
strengths are uniform through the atomic cloud. We now
analyze these assumptions are reasonable with the state-of-
the-art technology in experiment. With the help of atom-chip
technology, an ensemble of cold atoms and a superconducting
transmission line resonator can be integrated in a hybrid
device on a single superconducting atom chip [17–20]. The
preparation of the initial atomic state can be accomplished
through the well-developed optical pumping and adiabatic
population transfer techniques. We assume modest atomic
densities, such that atomic interactions can safely be neglected
when they are in the ground state. In such a case, mechanical
interaction between atoms can be avoided, and the internal
degree of freedom of atoms can be decoupled from atomic
motion. A typical ensemble of cold Rb atoms confined in
an elongated trap on the atom chip possesses a transverse
extension of about 1 µm and a length of up to several
millimeters. Therefore, the variation of the microwave field
of the resonator is neglectable on these length scales. If we

fix the atomic cloud parallel to the transmission line resonator,
we can neglect the change in the microwave field over the
atomic cloud and assume uniform coupling constants for all
the atoms.

For experimental implementation of this protocol, a promis-
ing candidate for the atoms is 87Rb coupled to a stripline
resonator [19]. The dominant interactions with a microwave
field for Rb atoms cooled in the ground state are the magnetic
dipole transitions between the atomic hyperfine states of the
5S1/2 ground state [30]. We choose |F = 1,mF = −1〉 =
|g〉, |F = 1,mF = 0〉 = |h〉 and the intermediate states |F =
2,mF = 0〉 = |e1〉 and |F = 2,mF = −1〉 = |e2〉 [30]. If we
replace the intermediate states |e1〉 and |e2〉 by a single
level |e〉, then we can choose the atomic levels such that
|F = 1,mF = −1〉 = |g〉, |F = 1,mF = 1〉 = |h〉, and |F =
2,mF = 0〉 = |e〉. Using the experimental setup demonstrated
in Ref. [29] and other technology of circuit cavity QED [15],
an ensemble of cold Rb atoms can be positioned near the
surface of a stripline resonator. For an atomic ensemble of N ∼
106 − 108 87Rb atoms trapped several µm above the surface of
a stripline cavity, a collective coupling strength of

√
Ng/2π ∼

40–400 kHz can be obtained [19], which dominates the cavity
decay κ/2π ∼ 7 kHz. We choose the Rabi frequencies of
the classic fields as �1 ∼ g, �2 ∼ 1.1�1, and � ∼ 10g.
For the hyperfine transition between |F = 1,mF 〉 and |F =
2,mF 〉 states at a frequency of ν0 = ω0/2π = 6.83 GHz, the
frequencies of the classical fields and the cavity modes can be
ω1 ∼ ω2 ∼ ν0 − �, ν1 ∼ ν0 − �, ν2 ∼ 2ν1. With the chosen
parameters, we can obtain the angular frequency �/2π ∼ 10
kHz, and the time to prepare the squeezed state Tπ ∼ 50 µs,
with the squeezing degree ε ∼ 3 (r ∼ 1.1) and average number
of 110 photons per mode.

At this stage, let us discuss the effect of thermal photons
and estimate the reasonable parameter range in which the
contribution of thermal photons can be neglected. To this end,
we adopt the discussions in Ref. [19], where they consider the
elimination of thermal cavity photons in an internal very cold
Rb gas residing in one hyperfine state. This can be applied
to our setup safely, because in the squeezing scheme the
atoms also keep in the lower hyperfine state when coupling
to the cavity modes. Moreover, in Ref. [19] they also discuss
the coupling of cold Rb atoms with several internal states
to the stripline cavity, which in essence is the coupling
scheme employed here. The number of thermal photons
can be estimated as n̄T = [exp( h̄ω0

kBT
) − 1]−1. To maintain an

empty cavity thus requires n̄T � 1. With ω0/2π = 6.83 GHz
corresponding to a temperature T ∼ 350 mK, cooling to below
100 mK is thus required to eliminate the thermal photons. To
this aim, one can employ a perfectly polarized BEC with all
atoms in the lower hyperfine state coupling to the stripline
cavity. For 87Rb an effective internal temperature as low as
30 mK can be obtained. Coupling these two systems will
allow an energy flow toward the ensemble of ultracold atoms.
The photon absorption rate from the cavity into the atomic
ensemble can be estimated as γc/2π ∼ g2N/γa2π [19], with
γ −1

a the lifetime of the untrapped upper state. With a heating
rate Rh ∼ κn̄T , the suppression of the thermal photons is then
given by κ/(γc + κ). So we can remove thermal photons from
the mode as long as γc � κ , which can be fulfilled for the
parameters given above.
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We now briefly discuss how this scheme can be used as
the building blocks for quantum network with continuous
variables. We consider two distant clouds of cold atoms
A and B coupled to a transmission line cavity. The level
structure of the atoms is shown in Fig. 1(b). After the
cavity modes are prepared in the two-mode squeezed
state, we hope to use this squeezing source to prepare the
two atomic ensembles in a squeezed state. To accomplish
this task, we assume the following coupling schemes for
ensembles A and B, |g〉 ↔ |e1〉 ↔ |h〉 for ensemble A and
|g〉 ↔ |e2〉 ↔ |h〉 for ensemble B. Then using the stimulated
Raman adiabatic passages [31], we can accomplish the
following process, ( 1−r2

1+r2 )
∑

n=0[ 2r
1+r2 ]n|n, n〉c|0〉A|0〉B →

( 1−r2

1+r2 )
∑

n=0[ 2r
1+r2 ]n|0, 0〉c|n〉A|n〉B , where |n〉A/B = 1/√

n!c†nA/B |0〉A/B , |0〉A = |h1h2 . . . hN 〉A, |0〉B =|g1g2 . . . gN 〉B
c
†
A = 1/

√
NA

∑N
j=1 |gj 〉〈hj |, c†B = 1/

√
NB

∑N
j=1 |hj 〉〈gj |.

Therefore, we are able to prepare the atomic ensembles in a
squeezed state using the produced squeezed fields. Entangled
distant atomic ensembles are the building blocks for quantum
network [32]. Thus this protocol opens up the possibility for
implementing on-chip quantum network.

It is worth emphasizing that, compared to the existing
proposals, the present proposal possesses the following distinct
features: (i) This scheme is immune to charge noise and
could constitute qubits with much longer coherence times,

due to utilizing the strong magnetic coupling of atomic
spins to cavity modes [19]. (ii) It makes use of ultracold
atoms coupling to transmission line resonators. Therefore,
the well-developed techniques for detecting and manipulating
the ground electronic (hyperfine) states of cold atoms can be
employed here. (iii) These solid-state circuits allow dense
integration and scaling. If integrating both systems on a
single atomchip, this will offer a promising platform for the
implementation of on-chip quantum information processing.

In conclusion, we have proposed an efficient method
for controllably generating field squeezing with cold atoms
coupling to a superconducting transmission line cavity. We
show that, with the strong magnetic coupling between the
collective atomic spins and the cavity modes, single-mode or
two-mode squeezed states can be generated through coherent
control on the dynamics of the system. Our proposal may allow
the performance of on-chip quantum information processing
with continuous variables in the microwave regime.

This work is supported by the National Nature Science
Foundation of China under Grant Nos. 60778021 and the
National Key Project of Basic Research Development under
Grant No. 2010CB923102. P.-B.L. acknowledges the support
from the New Staff Research Support Plan of Xi’an Jiaotong
University under No. 08141015 and the useful discussions
with Hong-Yan Li.

[1] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge
University Press, Cambridge, UK, 1997).

[2] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cambridge,
UK, 2000).

[3] A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs,
H. J. Kimble, and E. S. Polzik, Science 282, 706 (1998).

[4] S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999).
[5] B. Kraus and J. I. Cirac, Phys. Rev. Lett. 92, 013602 (2004).
[6] P. B. Li, Phys. Rev. A 77, 015809 (2008).
[7] R. Guzman, J. C. Retamal, E. Solano, and N. Zagury, Phys. Rev.

Lett. 96, 010502 (2006).
[8] S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, Phys. Rev.

Lett. 98, 240401 (2007).
[9] G. Morigi, J. Eschner, S. Mancini, and D. Vitali, Phys. Rev. Lett.

96, 023601 (2006).
[10] D. Vitali, G. Morigi, and J. Eschner, Phys. Rev. A 74, 053814

(2006).
[11] T. Werlang, R. Guzman, F. O. Prado, and C. J. Villas-Boas, Phys.

Rev. A 78, 033820 (2008).
[12] K. Moon and S. M. Girvin, Phys. Rev. Lett. 95, 140504 (2005).
[13] A. M. Zagoskin, E. Ilichev, M. W. McCutcheon, J. F. Young,

and F. Nori, Phys. Rev. Lett. 101, 253602 (2008).
[14] W. Y. Huo and G. L. Long, Appl. Phys. Lett. 92, 133102 (2008).
[15] R. J. Schoelkopf and S. M. Girvin, Nature (London) 451, 664

(2008).
[16] For a review, see M. Wallquist, K. Hammerer, P. Rabl, M. Lukin,

and P. Zoller, Phys. Scr., T 137, 014001 (2009).
[17] A. S. Sørensen, C. H. van der Wal, L. I. Childress, and M. D.

Lukin, Phys. Rev. Lett. 92, 063601 (2004).

[18] L. Tian, P. Rabl, R. Blatt, and P. Zoller, Phys. Rev. Lett. 92,
247902 (2004).

[19] J. Verdu, H. Zoubi, C. Koller, J. Majer, H. Ritsch, and
J. Schmiedmayer, Phys. Rev. Lett. 103, 043603 (2009).

[20] D. Petrosyan and M. Fleischhauer, Phys. Rev. Lett. 100, 170501
(2008).

[21] A. Imamoglu, Phys. Rev. Lett. 102, 083602 (2009).
[22] J. H. Wesenberg, A. Ardavan, G. A. D. Briggs, J. J. L. Morton,

R. J. Schoelkopf, D. I. Schuster, and K. Mølmer, Phys. Rev. Lett.
103, 070502 (2009).

[23] A. Andre, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell,
P. Rabl, R. J. Schoelkopf, and P. Zoller, Nat. Phys. 2, 636
(2006).

[24] P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf,
and P. Zoller, Phys. Rev. Lett. 97, 033003 (2006).

[25] K. Tordrup, A. Negretti, and K. Mølmer, Phys. Rev. Lett. 101,
040501 (2008).

[26] A. Ferraro, Matteo G. A. Paris, M. Bondani, A. Allevi, E. Puddu,
and A. Andreoni, J. Opt. Soc. Am. B 21, 1241 (2004).

[27] N. Piovella, M. Cola, and R. Bonifacio, Phys. Rev. A 67, 013817
(2003).

[28] C. M. Caves and B. L. Schumaker, Phys. Rev. A 31, 3068
(1985).

[29] T. Gasenzer, D. C. Roberts, and K. Burnett, Phys. Rev. A 65,
021605(R) (2002).

[30] P. Treutlein, P. Hommelhoff, T. Steinmetz, T. W. Hansch, and
J. Reichel, Phys. Rev. Lett. 92, 203005 (2004).

[31] K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys. 70,
1003 (1998).

[32] H. J. Kimble, Nature (London) 453, 1023 (2008).

035802-4


