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Number-phase Wigner representation for efficient stochastic simulations
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Phase-space representations based on coherent states (P ,Q, Wigner) have been successful in the creation
of stochastic differential equations (SDEs) for the efficient stochastic simulation of high-dimensional quantum
systems. However, many problems using these techniques remain intractable over long integration times. We
present a number-phase Wigner representation that can be unraveled into SDEs. We demonstrate convergence
to the correct solution for an anharmonic oscillator with small dampening for significantly longer than other
phase-space representations. This process requires an effective sampling of a nonclassical probability distribution.
We describe and demonstrate a method of achieving this sampling using stochastic weights.
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I. INTRODUCTION

Coherent states have traditionally been used as the basis
for the creation of phase-space representations [1,2]. A major
use of these representations has been the production of
stochastic differential equations that can greatly reduce the
dimensionality of a problem. For example, a set of N harmonic
oscillators which would typically require a density matrix
with D2N components (where D is the number of elements
you have in your truncated basis) to solve directly can be
changed to a set of only N stochastic differential equations. Not
only are the memory requirements of the generated stochas-
tic differential equations logarithmically smaller, they also
typically integrate much faster than a direct master equation
approach [3–8].

Unfortunately, some problems have severely limited inte-
gration times or cannot be solved at all using standard phase-
space methods [1,9,10]. A coherent state basis is inappropriate
for many problems and we demonstrate that there is a class of
quantum systems for which a number-phase-based alternative
will do better. A variety of number-phase “Wigner-like”
representations have been created in the past. The primary
reason for such a diversity of solutions to a problem, which
is quite clear in the coherent state case, is the ambiguity
of the phase operator in quantum mechanics. The problem
was originally investigated by Dirac when he attempted to
canonically quantize the electric field using number and phase
as canonical operators; however, it was soon found that such
an approach leads to irreparable contradictions [11]. A more
algebraic approach was taken by Susskind and Glogower,
which resulted in a phase operator that had many of the
required properties but was not Hermitian [12]. This issue
was investigated and improved using a variety of techniques
created by Pegg and Barnett [13,14], and many number-
phase-space representations were created using their phase
operators [15,16]. More recently, Moya-Cessa has presented
a number-phase Wigner representation based on the Susskind
and Glogower operator directly [17] which does not require
an extension or truncation of the Fock space like Pegg and
Barnett’s phase operators. However, all these approaches

were primarily motivated with visualizing quantum states and
lacked the operator correspondences required for the genera-
tion of stochastic differential equations. This paper presents
a number-phase Wigner representation that can be used to
generate stochastic differential equations. We investigate the
properties of this distribution and use it to demonstrate efficient
numerical results.

We find that a coherent state in the number-phase
Wigner representation has a nonclassical probability dis-
tribution, where sections of the distribution are negative.
Simulation of such states is important for comparative
and practical applications of the representation. Thus, we
develop a method for sampling nonclassical distributions
using stochastic weights. Stochastic weights have been used
previously to improve convergence of positive-P simulations
[18] and in the simulation of stochastic conditional master
equations [19].

II. NUMBER-PHASE WIGNER REPRESENTATION

We define our representation in such a way that a master
equation can be converted directly to the equation of motion
for the phase-space function, similar to Wigner’s original
formulation [20], as opposed to defining it by the ordering
of the operators. We take the definition

W (n,φ) = 1

2π

n∑
k=−n

〈n + k|ρ̂|n − k〉e−2iφk, (1)

where n ∈ 0, 1/2, 1, 3/2, 2, . . . , φ ∈ (0, 2π ), ρ̂ is a den-
sity matrix, and |p〉 is a Fock state (p ∈ 0, 1, 2, . . .), the
eigenstate of the number operator n̂|p〉 = p|p〉. The sum
increases by increments of 1 (not 1/2), ensuring that the
Fock states are always integers. While in many previous
phase-space representations the domain of the variables
is the set of eigenvalues of particular operators, in this
case we require n to take half-integer values as a con-
venient way to ensure that the representation is complete.
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Consider∫
dφW (n,φ)e2imφ =

n∑
k=−n

〈n + k|ρ̂|n − k〉
∫

dφ e−2i(k−m)φ

= 〈n + m|ρ̂|n − m〉, (2)

and thus n and m must take on half-integer values to ensure
that all density matrix elements (such as 〈n|ρ̂|n + 1〉) can be
extracted. We can see that this definition has many of the
properties expected from a Wigner representation:

(i) W (n,φ) is always real:

W (n,φ)∗ = 1

2π

n∑
k=−n

∫ 2π

0
dφ 〈n − k|ρ̂|n + k〉e2iφk

= 1

2π

n∑
k=−n

∫ 2π

0
dφ 〈n + k|ρ̂|n − k〉e−2iφk

= W (n,φ). (3)

(ii) Integrating out the phase variable returns the expected
distribution for number:∫ 2φ

0
dφ W (n,φ) = 〈n|ρ̂|n〉 = P (n). (4)

(iii) Summing out the number variable returns the expected
distribution for phase:

∞∑
n=0

W (n,φ) = 1

2π

∞∑
n=0

n∑
k=−n

〈n + k|ρ̂|n − k〉e−2iφk

=
∞∑

a=0

∞∑
b=0

〈a|ρ̂|b〉e−i(a−b)φ

= 〈φ|ρ̂|φ〉 = P (φ), (5)

where a, b ∈ 0, 1, 2, . . . and |φ〉 is the eigenfunction of ei�̂ =∑∞
n=0 |n〉〈n + 1|, the exponential phase operator as defined by

Susskind and Glogower [12].
The main advantage of this representation is that it is

straightforward to derive the operator correspondences be-
tween a master equation and a partial differential equation
for the evolution of the number-phase representation. For
example, consider the correspondence for the number operator,
replacing ρ̂n̂ into our definition (1),

1

2π

n∑
k=−n

〈n + k|ρ̂n̂|n − k〉e−2iφk

= 1

2π

n∑
k=−n

〈n + k|ρ̂(n − k)|n − k〉e−2iφk

=
(

n − i

2
∂φ

)
W (n,φ). (6)

Using similar techniques for the other operators we find

ρ̂n̂ →
(

n − i

2
∂φ

)
W (n,φ),

n̂ρ̂ →
(

n + i

2
∂φ

)
W (n,φ),

ρ̂ei�̂ → eiφW

(
n − 1

2
, φ

)
,

(ei�̂)†ρ̂ → e−iφW

(
n − 1

2
, φ

)
,

ρ̂(ei�̂)† → e−iφ

[
W

(
n + 1

2
, φ

)

−
∫ 2π

0
dφ′e−2i(φ−φ′)(n+ 1

2 )W

(
n + 1

2
, φ′

)]
,

ei�̂ρ̂ → eiφ

[
W

(
n + 1

2
, φ

)

−
∫ 2π

0
dφ′e2i(φ−φ′)(n+ 1

2 )W

(
n + 1

2
, φ′

)]
. (7)

The expectation values in the phase operator correspon-
dences can be rewritten as correlations with the vacuum
as

∫ 2π

0 dφ′e−2inφ′
W (n,φ′) = 〈0|ρ̂|2n〉. Thus for large fields

where occupation of the vacuum is low, we can neglect these
terms and our operator correspondences become analogous to
the coherent Wigner case where x̂ → n̂ and p̂ → �̂ (where x̂

and p̂ are the position and momentum operators, respectively).
The canonical commutator and the Hermiticity of the phase
operator are restored in the large-field limit so this result is not
surprising.

As one must sample the distribution before any numerical
simulation, it is useful to examine the distribution for some
typical physical states. First let us consider a number state
ρ̂ = |m〉〈m|,

Wm(n,φ) = 1

2π

n∑
k=−n

〈n + k|m〉〈m|n − k〉e−2iφk

= δn,m

2π
. (8)

The state is completely defined in number but unknown in
phase as one would expect. Next let us consider a coherent
state ρ̂ = |α〉〈α|,

Wα(n,φ) = 1

2π

n∑
k=−n

〈n + k|α〉〈α|n − k〉e−2iφk

= 1

2π

n∑
k=−n

∞∑
p,q=0

αpα∗q

√
p!q!

〈n+k|p〉〈q|n−k〉e−|α|2−2iφk

= 1

2π

n∑
k=−n

|α|2ne−|α|2+2ik(arg α−φ)

√
(n + k)!(n − k)!

. (9)

Finally, we also need to determine the expectation value corre-
spondence. Investigating number and phase operator ordering
is probably of little practical use as relevant observables
are typically not a simple function of ordered number and
phase operators, and rearranging such functions into a specific
ordering is not simple. Fortunately, we can find a connection
between moments of our Wigner function and antinormally
ordered ladder operators. Consider∫ 2π

0
dφ

∞∑
n=0

(
n + p+q

2

)
!ei(q−p)φ√(

n + q−p

2

)
!
(
n + p−q

2

)
!
W (n,φ)

=
∞∑

n=0

n∑
k=−n

(
n + p+q

2

)
!〈n + k|ρ̂|n − k〉 ∫ 2π

0 dφe−iφ(2k+q−p)

2π

√(
n + q−p

2

)
!
(
n + p−q

2

)
!
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=
∑

n=| q−p

2 |

(
n + p+q

2

)
!
〈
n + q−p

2 |ρ̂|n − p−q

2

〉
√(

n + q−p

2

)
!
(
n + q−p

2

)
!

=
∞∑

max{p,q}

n!〈n − p|ρ̂|n − q〉√
(n − p)!(n − q)!

=
∞∑

n=0

〈n|(â†)pρ̂âq |n〉 = Tr[âq(â†)pρ̂]. (10)

Note that we made a substitution on the fourth line and let
n → n + p−q

2 . This identity is the most straightforward way to
make expectation value correspondences for most physically
interesting observables.

III. NONCLASSICAL PROBABILITY SAMPLING

In Sec. II we have found that a coherent state in the number-
phase Wigner representation does have some negativity. Only
strictly positive probability distributions can be sampled using
traditional sampling techniques, so it is necessary to introduce
an additional degree of freedom to allow unorthodox averag-
ing. We do this by introducing a weight for each path, and in
particular we allow these weights to be negative. Traditionally,
weights have been used when combining data sets of varying
confidence, for example combining the results of different
experiments where a different number of measurements have
been taken. In this case, weights are kept strictly positive and
are a measure of the relative confidence of the data [21,22].
However, in recent times weights have become more common
as a useful tool in a variety of fields: in the simulation of
conditional master equations [19] and to improve convergence
in stochastic simulations of multimode bosonic and fermionic
fields [23,24]. In some recent applications of weights it
has been advantageous to allow weights to take negative
values, either because the weights become negative during the
implementation of an algorithm as in the field of engineering
[25–27] or for sampling purposes in Monte Carlo simulation
of fermionic systems [28,29].

We present two methods based on weights. The first is a
probabilistic method that we will prove is the optimal way
of sampling a nonclassical probability distribution in general.
The second method is a deterministic method, which may
have an advantage when the computational requirements of
the first method are too high for particular distributions. We
also quantify how these two methods can be compared.

We define weighted averages as follows:

f (x) = E[ωf (x)]

E[ω]
. (11)

We begin with the probabilistic method. Consider a probability
P (x) that is normalized, but not strictly positive. We assume
P (x) can be split into a strictly positive function, P +(x) �
0 ∀ x, and a strictly negative function, P −(x) � 0 ∀ x, as
follows:

P (x) = P +(x) + P −(x). (12)

We further require that the functions P ±(x) have finite inte-
grals, specifically C± = ∫

dx P ±(x) (note that C+ + C− =
1). We can then define two strictly positive normalized

probability distributions as P̃ ±(x) = P ±(x)/C±, which can
be sampled in a traditional manner. Now let us consider
the average produced if we sample the random variables x±

i

from the distributions P̃ ±(x) with rates λ±, and assign each
path a weight ω± = C±/λ± for a total of N samples where
1 > λ± > 0 and λ+ + λ− = 1. For a sufficiently large N we
can assume Nλ+ paths will be sampled from P +(x) and Nλ−
paths will be sampled from P −(x); the average produced by
this technique, using (11), is

f (x) =
∑λ+N

i ω+f (x+
i ) + ∑λ−N

i ω−f (x−
i )∑λ+N

i ω+ + ∑λ−N
i ω−

=
∑λ+N

i
C+
λ+ f (x+

i ) + ∑λ−N
i

C−
λ− f (x−

i )

N

=
λ+N∑

i

f (x+
i )

λ+N
C+ +

λ−N∑
i

f (x−
i )

λ−N
C−. (13)

In the limit of large N the sums of random variables in (13)
converge to the integral of the probability distribution, as
required by the definition of a random variable. Thus we can
write

f (x) =
∫

dxf (x)P̃ +(x)C+ +
∫

dxf (x)P̃ −(x)C−

=
∫

dxf (x)[P +(x) + P −(x)]

=
∫

dxf (x)P (x). (14)

Thus, the nonclassical distribution P (x) is sampled by using
the dual distributions and probabilities outlined here and
computing averages using the weighted method. The weights
in this method are normalized in the sense that E[ω] = 1,
but this can be scaled arbitrarily if desired. There is still
a large degree of freedom in what we choose for λ+ and
C+, which needs to be further investigated to determine the
optimal sampling technique. Optimization requires a measure
of the accuracy of the calculated means, which is traditionally
measured using the variance. This approach is validated by the
central limit theorem, which can be extended to apply to the
weighted mean case. Assuming the weights themselves can
be treated as random variables, and remembering to take into
account correlations, we find

σ (f (x))2

= f (x)
2

N

(
E[ω2f (x)2]

E[ωf (x)]2
− 2

E[ω2f (x)]

E[ωf (x)]E[ω]
+ E[ω2]

E[ω]2

)
.

(15)

The variance reduces in the limit of large sampling, but
to make the most efficient use of resources, we want to
minimize the variance for a fixed N . As mentioned, we
have a degree of freedom in our choice of both λ+ and
C+ which can be optimized. The terms that depend on
f (x) will have a convoluted dependence on P (x) and on
the particular observable that is being calculated. The best
we can hope achieve is to minimize E[ω2]/E[ω]2; this will
reduce the uncertainty in observables as a whole. Although we
acknowledge that for specific observables and P (x)’s this is
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not necessarily true, from now on we restrict our analysis to
minimizing E[ω2]/E[ω]2 with respect to λ+ and C+. Taking
the derivative of

E[ω2]

E[ω]2
= (C+)2

λ+ + (C−)2

λ− = (C+)2

λ+ + (1 − C+)2

1 − λ+ , (16)

we find that E[ω2]/E[ω]2 is minimized when λ+ = C+

or λ+ = C+
2C+−1 = C+

C+−C− . The first case λ+ = C+ is only
possible when C+ = 1 and C− = 0 as both 0 � λ± � 1;
this scenario only occurs when the probability distribution
P (x) has no negativity and the weighted sampling technique
reduces to its traditional counterpart. The second case is of
more practical use. Remembering that C+ > 1 and C− < 0 we
see that the expression for λ+ = C+

C+−C− implies λ− = −C−
C+−C− ,

which both satisfy 0 � λ± � 1 and thus they can be sampled
traditionally. Replacing these in (16) we obtain

E[ω2]

E[ω]2
= (C+ − C−)2. (17)

This shows that the optimal sampling technique is achieved
by splitting P (x) = P +(x) + P −(x) such that (C+ − C−)2 is
minimized. This can be achieved by defining P ±(x) piecewise,
bounded by the points where P (x) crosses the x axes. Then the
random variables x±

i are sampled from the distribution P̃ ±(x)
with a rate λ± = ±C±

C+−C− and we assign each path a weight
ω± = ±(C+ − C−) for a total of N samples.

Of course, if the form of the resulting functions is
computationally difficult to sample, a method with suboptimal
sampling might be more efficient overall. An example of this
is a simulation where we wish to sample the coherent state
from Eq. (9). Splitting the function into two as outlined here
and analytically inverting the parts for sampling is not possible.
While numerically inverting the equations would be an option,
this would restrict our random samples to starting on a coarse
grid, and the majority of the advantages outlined here would
be lost. Instead we can use a simple deterministic technique
to approximate the initial sampling. The additional speed in
using this technique allows us to use a finer grid, which will
make this technique easier and competitive.

Consider sampling the function P (x). Assume that the
function is zero (or sufficiently close to zero) outside of a
volume unit of V . Divide this volume into an equally spaced
grid of N points, then at each point assign the random variable
xi the value of the point at that grid and give that path a weight
of ωi = V P (xi). Using (11) we see the average calculated
using this technique gives

f (x) =
∑

i �xP (xi)f (xi)∑
i �xP (xi)

, (18)

where �x = V/N . In the limit of large N we can assume that
the sums approximate the integrals as outlined in the following:

f (x) ≈
∫

dxP (x)f (x)∫
dxP (xi)

=
∫

dxP (x)f (x), (19)

as required. We can investigate the contribution to the variance
of a calculated mean

E[ω2]

E[ω]
=

∑
i

V �x[P (xi)]
2 ≈ V

∫
dx[P (x)]2. (20)

Unlike the previous technique we cannot optimize this ex-
pression, as V is fixed by the distribution itself. Typically this
expression will be significantly larger than the maximum effi-
ciency achieved using the first technique. When considering a
problem one needs to compare the ratio E[ω2]/E[ω] for each
of the two methods described here in order to decide whether
the computational difficulty implementing the first method
is worth the improvement to the variance. The deterministic
method, if computed as an initial condition before simulating,
can also be improved by using the breeding algorithm outlined
in Ref. [19].

IV. NUMERICAL SIMULATIONS

We now demonstrate the effectiveness of stochastic meth-
ods based on our number-phase Wigner representation by
simulating a damped anharmonic oscillator. An analytic
solution has been calculated for this problem with a coherent
state as an initial condition in [30], and it will be used to
compare the accuracy of methods. We will show that in the case
of weak damping, the number-phase Wigner representation
converges over a significantly longer time interval than both
gauge positive-P and truncated Wigner methods. We chose
to model an anharmonic oscillator because it is algebraically
analogous to simulating the nonlinear term present in the
Hamiltonian of a Bose-Einstien condensate. This nonlinear
term is typically what limits the convergence of previously
developed scalable methods. The addition of dampening was
necessary because the nonlinear term is analytic for the
number-phase Wigner representation; thus in the undampened
case it would trivially win against other scalable methods.
To make the comparison fair we added dampening which is
both physically reasonable and nontrivial for the number-phase
Wigner representation.

Consider the master equation of an anhamonic oscillator
with damping:

∂t ρ̂ = −i
χ

2
[(â†â)2, ρ] + γD[â]ρ̂. (21)

Applying the correspondences (7) we find the number-phase
space evolution to be

∂tW (n,φ) = ∂φχnW (n,φ) − γ nW (n,φ)

+ γ

√
(n + 1)2 + 1

4
∂2
φ W (n + 1, φ). (22)

Unraveling this equation into a set of stochastic differential
equations requires the application of two approximations.
First, we expand the square root as

√
(n + 1)2 + 1

4
∂2
φ = (n + 1) + ∂2

φ

8(1 + n)
+ O

(
∂4
φ

)
, (23)

and we ignore terms of order O(∂4
φ) and higher. This

approximation improves in the limit of large fields. Under
this approximation, Eq. (22) becomes

∂tW (n,φ) ≈ ∂φχnW (n,φ) + γ ∂2
φ

8(n + 1)
W (n + 1, φ)

× γ [(n + 1)W (n + 1, φ) − nW (n,φ)]. (24)
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We are unable to stochastically unravel this equation due to
the second term in (24), a nonlocal differential, so we make
the following addition and subtraction to (24):

∂tW (n,φ) ≈ ∂φχnW (n,φ) + γ ∂2
φ

8(n + 1)
W (n,φ)

× γ [(n + 1)W (n + 1, φ) − nW (n,φ)]

× γ ∂2
φ

8(n + 1)
[W (n + 1, φ) − W (n,φ)]. (25)

For a sufficiently smooth function, we can assume the term
on the last line of (25) will be small. For the coherent state,
which we intend to use as an initial condition for our problem,
this is quite a reasonable approximation. Ignoring this term,
we make a second approximation, reducing (25) to

∂tW (n,φ) ≈ ∂φχnW (n,φ) + γ ∂2
φ

8(n + 1)
W (n,φ)

+ γ [(n + 1)W (n + 1, φ) − nW (n,φ)]. (26)

We can now unravel this equation into a set of stochastic
differential equations. With some minor inspection one can
recognize that the first and second terms correspond to drift and
diffusion in φ, respectively, and the last two terms correspond
to a Poissonian jump in n:

dφt = −χnt dt +
√

γ

2
√

nt + 1
dWt,

(27)
dnt = −dNt .

Here dWt is an Ito Wiener process and dNt is a Poisson
jump process with a rate E[dNt ] = γE[n]dt . We integrate
(28) and then compare the expectation value of position to
two other leading scalable stochastic differential methods:
gauge-P + [18,31] and truncated Wigner [6]. Gauge-P + is the
longest converging exact stochastic method for an anharmonic
oscillator, for which it can generate the following equations of
motion:

dφt =
{
χ [n(1 − i) − 2G1(t + i)] − γ

2
(1 + i)

}
dt

+
√

2χdW 1
t ,

dψt =
{
χ [n∗(1 − i) − 2G2(T − i)] − γ

2
(1 + i)

}
dt

+
√

2χdW 2
t ,

dθ̃t = −2T
(
G2

1 + G2
2

)
dt +

√
2
(
G2dW 2

t − G1dW 1
t

)
. (28)

where α = e( 1−i
2 )φt and β = e( 1−i

2 )ψt are the stochastic co-
herent amplitude and complex conjugate. These are com-
plex conjugate at the beginning but may diverge after-
ward. We also have n = αβ∗, G1 = 0.005[i(n∗ − n)/2 −
(n∗ + n)/2 + |α|2], G2 = 0.005[i(n∗ − n)/2 + (n + n∗)/2 −
|β|2], and T = tan(θ̃t ). Position is calculated using x =

1√
2
E{Re[ω(β∗ + α)]}/E[ω], where ω = 2eRe[αβ∗] cos(θ̃t ).

Other correspondences and more details are presented in
[18]. The next stochastic differential equation technique we
consider is the coherent truncated Wigner method. It is an
approximate method that assumes higher order derivatives
beyond diffusion can be safely ignored. It has a typically longer
numerical convergence time than gauge P +; however, due to
the uncontrolled approximation, there is no indication when
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FIG. 1. (Color online) Position vs time for a dampened an-
harmonic oscillator (χ = 1 and γ = 0.001) integrated using the
number-phase Wigner representation in red (dashed), truncated
Wigner representation in green (dot dashed), gauge P + in blue
(dot dashed), and for comparison the analytic solution in black
(solid). Sampling uncertainties are plotted with dotted lines in the
respective color of the numerical solution. Inset (a) shows that the
short time period gauge P + matches the analytic solution until
divergent infinite paths dominate the evolution. The coherent Wigner
representation converges for the first section of dephasing in inset
(a); however, inset (b) shows that it does not converge during the
dampened resurrection of the coherent state. The method based on
the number-phase Wigner representation converges over the entire
integration period. The numerical integration was performed by using
the open source software package XPDEINT, which is a new version
of the XMDS package [32].

the numerical solution begins to diverge from the true solution.
The stochastic differential equations of motion are

dα =
[
iχα

(
1

2
− |α|2

)
− γ

2
α

]
dt +

√
γ

2

(
dW 1

t + idW 2
t

)
.

(29)

The observable is given by x = 1√
2
E[α + α∗].

The simulations using the different integration methods
are presented in Fig. 1. As we can see, the number-phase
Wigner representation converges for significantly longer than
the other stochastic differential equations and reconstructs the
dampened revival of the coherent states successfully. This
suggests that the number-phase Wigner representation can
integrate previously difficult quantum problems over signif-
icantly longer integration times than other coherent-based
stochastic differential equations. The anharmonic oscillator
example is of particular importance to the field of Bose-
Einstein condensation as the anharmonic term has analogous
algebraic properties to the dominant nonlinear term present in
the many-body master equation.

V. CONCLUSION

We presented a number-phase Wigner representation that
is suitable for the investigation of quantum dynamics in phase
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space. Direct operator correspondences were derived, allowing
a master equation to be written as partial differential equations
for the number-phase quasi-probability distribution. Under
some approximations, these equations can be unravelled into
a set of low-dimensional stochastic equations, hence reducing
the dimensionality of the system. This stochastic method was
used to model the damped anharmonic oscillator, and it was
shown that this method converged dramatically longer than the
truncated Wigner and gauge-P + methods. This result therefore
suggests that a stochastic method based on our number-phase
Wigner representation may be of use for currently difficult

problems where number-conserving nonlinear terms dominate
the dynamics.
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