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Bifurcation and stability in a low-dimensional model for multiple-frequency mode-locked lasers
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Recent theoretical investigations have demonstrated that the stability of mode-locked solutions of multiple
frequency channels depends on the degree of inhomogeneity in gain saturation. In this article, these results are
generalized to determine conditions on each of the system parameters necessary for both the stability and the
existence of mode-locked pulse solutions for an arbitrary number of frequency channels. In particular, we find
that the parameters governing saturable intensity discrimination and gain inhomogeneity in the laser cavity also
determine the position of bifurcations of solution types. These bifurcations are completely characterized in terms
of these parameters. In addition to influencing the stability of mode-locked solutions, we determine a balance
between cubic gain and quintic loss, which is necessary for the existence of solutions as well. Furthermore, we
determine the critical degree of inhomogeneous gain broadening required to support pulses in multiple-frequency
channels.
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I. INTRODUCTION

Nonlinear photonic technologies are of continued scientific
interest due to their proposed performance increases over their
electronic counterparts. The two most commercially success-
ful applications of nonlinear photonics have come from two
fiber-optic-based applications: optical fiber communications
and mode-locked fiber lasers [1]. In both cases, the optical
fiber serves as a nearly ideal waveguide whose dispersion
and nonlinearity is used as the basis for controlling the light
pulses, that is, the optical bits. Indeed, the intensity-dependent
cubic (Kerr) nonlinearity exhibited in the optical fibers has
led to significant theoretical and experimental consideration
of soliton solutions of the nonlinear Schrödinger equation
(NLS) [2]

i
∂u

∂z
+ 1

2

∂2u

∂t2
+ |u|2u = 0, (1)

where u represents the electromagnetic field envelope, z is
the propagation distance, and t is the time in the frame of
reference of the propagating pulses. The robust and stable
nature of the one-soliton solutions to (1) have led to their
consideration as optical bits in a wide range of applications
far beyond optical communications and fiber lasers. Current
optical fiber-communication networks increasingly rely on
wavelength-division multiplexing (WDM) technologies in
conjunction with optical time-division multiplexing (OTDM)
of individual WDM channels. The combination of high-
repetition-rate data streams with a large number of WDM
channels has pushed transmission rates to nearly 1 TB/s [1].
This has created a demand for all-optical transmission sources
that can generate picosecond mode-locked pulses at various
wavelengths [3–6]. Here, we develop a low-dimensional the-
oretical description of the dynamics of a multiple-wavelength
mode-locked laser source. We characterize the stability and

interaction dynamics of the mode-locked soliton-like solutions
as a function of the number of frequency channels that are
mode-locked. Further, we develop a comprehensive theoretical
treatment of the bifurcation structure, via a center manifold
and normal form reduction, associated with the mode-locking
behavior.

Mode-locking is a fundamentally nonlinear phenomena
whereby an often perturbatively small intensity-discrimination
element in a laser cavity leads to the formation of stable
and robust perturbed solitons in the laser cavity [7,8]. These
mode-locked pulses often behave as global attractors to
the underlying laser system. It is the intensity-discrimination
element in the cavity that breaks the Hamiltonian and com-
pletely integrable structure of the NLS so as to achieve a
globally attracting solution. In addition to intensity discrim-
ination, amplification in the laser cavity must be applied
in order to compensate for losses in the laser cavity. For
pulsed lasers, the past decade has focused on the use of
erbium-doped fibers for amplification operating at 1550 nm.
Thus the two basic components modifying the basic NLS
description are the inclusion of the cavity amplification and in-
tensity discrimination. A wide variety of physically realizable
schemes have been proposed and developed for generating
the requisite intensity discrimination including nonlinear
interferometry in a figure eight laser [9–13], polarization
rotation in the ring laser [14–17], quantum saturable absorption
in a linear cavity configuration [18–21], spectral filtering with
polarization filters in a dispersion-controlled cavity [22–25],
and nonlinear mode-coupling in a waveguide array-based
laser [26–30].

More recently, intensity-discrimination methods have been
used to experimentally generate mode-locked pulses at mul-
tiple frequencies simultaneously [3–6], that is, multiple-
frequency mode-locking. Theoretical models of the governing
equations have also been developed to characterize the

1050-2947/2010/81(3)/033851(12) 033851-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.033851


EDWARD D. FARNUM, BRANDON G. BALE, AND J. NATHAN KUTZ PHYSICAL REVIEW A 81, 033851 (2010)

resulting nonlinear interactions among the different frequency
channels [31–34]. These theoretical studies have primarily
focused on the cubic-quintic Ginzburg-Landau model descrip-
tion for the mode-locking process [31–33], which is related to
the master mode-locking description originally proposed by
Haus [7,8]. Our objective in this article is to characterize the
low-dimensional dynamical system description of the mode-
locking process [33]. Specifically, we completely characterize
the underlying bifurcation structure of the mode-locking
process as a function of such key critical parameters as the
homogeneous and inhomogeneous gain broadening effects and
intensity discrimination parameters. Our formalism and nor-
mal form reductions are capable of a complete classification of
the mode-locking for two-frequency operation. The methods
can also be applied and extended to multiple frequencies, but
the results are more difficult to extract analytically. Highlighted
in the bifurcation analysis is the key role that the gain model
plays in determining the stability of multiple-frequency laser
operation.

The article is outlined as follows: in Sec. II the governing
equations and their low-dimensional reduction are introduced.
Section III considers the equilibrium solutions and their
stability for the reduced model for dual-frequency mode-
locking. A normal form reduction of the low-dimensional
model is presented in Sec. IV which illustrates the underlying
supercritical pitchfork bifurcation associated with the gain
model for dual-frequency interaction. Section V extends the
results to consider the underlying dual-frequency operation
as a function of the saturable absorption parameters of the
mode-locking cavity element. Section VI generalizes the
dual-frequency results to multiple-frequency mode-locking.
The results of the article are summarized and highlighted in
Sec. VII with emphasis given to the limits of the model and
its implications for physically realizable multiple-frequency
mode-locked lasers.

II. GOVERNING EQUATIONS AND REDUCTION

The evolution of the electromagnetic field in the laser
cavity is subject to several key physical effects. In addition
to the inherent effects of chromatic dispersion and self-
phase modulation proposed as the basis for soliton formation
and propagation [1,2], the laser cavity requires a saturating
gain to counteract the net laser cavity losses incurred from
output coupling and the intensity discrimination element. Thus
the inclusion of chromatic dispersion, self-phase modula-
tion, attenuation, bandwidth-limited gain, and an intensity-
discrimination element comprise the key components of a laser
cavity. Averaging over all these physical effects that occur per
round trip in the laser cavity, a master mode-locking model has
been developed that uses a generic nonlinear loss to provide
the necessary intensity discrimination [7,8]. A wide variety of
other theoretical models have also been developed to describe
the mode-locking process, but here we use the cubic-quintic
master mode-locking equation [7,8] that has been recently
demonstrated to make explicit connection to a passive laser
cavity with a linear polarizer [35–37]. The governing equations
can be shown, via an averaging method, to result in a coupled
set of partial differential equations for the electric field at each

WDM frequency [32,38],
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where n = 1, 2, . . . , N and N is the total number of frequency
channels being mode-locked. The model includes the non-
linear interaction associated with both self- and cross-phase
modulation. Note that the small four-wave mixing products
which appear at new sideband frequencies have been neglected
[38,39]. The normalizations for the amplitude un arise from
standard soliton scalings so that the propagation distance z and
the time t in the boosted frame are scaled in soliton units [31].
Such a scaling sets the coefficient of the self-phase modulation
and chromatic dispersion to unity. The energy equilibration
parameters are determined from the gain bandwidth parameter
τn and the linear attenuation γn. The parameter δn = (1/vgn

−
1/vg0) measures the group-velocity (vgn

) walk-off between
the individual frequency channels in the boosted time frame of
the center frequency (note that vg0 is the group-velocity of the
center frequency). Although the group-velocity is explicitly
considered, stable mode-locking forms bound state solutions
moving at the average group-velocity of the channels [32,33].
This numerical observation is critical to the low-dimensional
model developed in this manuscript.

A. Gain modeling

One of the most critical aspects of the multiple-frequency
dynamics is the gain saturation model gn(z). To our knowledge,
no experimental studies exist that quantify the multiple-
frequency gain saturation behavior. However, it is known
that in such a multiple-frequency, broadband scenario two
gain effects are present: homogeneous gain broadening and
inhomogeneous gain broadening [40]. Qualitatively, the ho-
mogeneous gain broadening effect amplifies all frequencies
equally. Thus in a multiple-frequency scenario, all frequency
channels would act to saturate the erbium optical amplifier.
The inhomogeneous gain broadening amplifies in a frequency-
dependent manner. This implies that different frequency
channels saturate independently of the entire gain spectrum
of the erbium fiber. These two effects must be modeled at least
qualitatively in order to achieve a physically relevant gain
model [33].

The qualitative gain model as in Bale, Farnum, and
Kutz [33] incorporates both homogeneous and inhomogenous
broadening effects. This simple model generalizes the standard
and well-established saturable gain model of Haus [7]. Under
this gain model, the degree of homogeneous and inhomo-
geneous gain broadening is controlled by the parameter α,
which will be treated as the primary bifurcation parameter in
this article. It is this parameter that ultimately determines the
stability of the multiple-frequency mode-locking operation.
The gain in channel n is given by

gn(z) = αGn(z) + (1 − α)Gh(z), (3)
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with

Gh(z) = 2g0

1 +
(∑N

n=1 ||un||2
) /

(N e0)
, (4a)

Gn(z) = 2g0

1 + ||un||2/e0
, (4b)

where ||un|| = ∫ ∞
−∞ |un|2dt , e0 is the saturation energy of the

cavity, and g0 measures the strength of the gain pumping.
Here Gh (Gn) models the homogeneously (inhomogeneously)
saturated gain in channel n. The inhomogeneously broadened
gain is often called the self-saturation. Note that the total
gain gn(z) models both homogeneous and inhomogenous gain
broadening as a linear combination between the two effects.
The parameter α measures the strength of each relative to each
other. Indeed, α acts as a homotopy parameter where α = 0
gives purely homogeneous gain broadening and α = 1 gener-
ates only inhomogeneous (self-saturating) gain broadening.

Variations in the gain saturation homogeneity in erbium-
doped fiber amplifiers are well known to be influenced by a
number of factors, including temperature [40]. Thus given the
absence of a comprehensive experimental study of the degree
of homogeneous to inhomogeneous gain broadening, it is
difficult to estimate the parameter α. However, provided there
is only a small amount of inhomogeneous gain broadening,
it will be shown that the laser cavity can support stable
multiple-frequency operation. This is in agreement with the
effort to use enhanced inhomogeneous gain broadening for
gain equalization in WDM systems [40]. As with WDM sys-
tems, the multiple-frequency mode-locking stability is greatly
influenced by enhancing the inhomogenous gain broadening.

B. Low-dimensional (reduced) model

The governing Eq. (2) is a partial differential equation
modeling the spatial-temporal evolution of electromagnetic
energy in the laser cavity. To obtain analytic insight into the
dynamics of this model, a variational method can be used
to describe the complete evolution problem with ordinary
differential equations that govern the evolution of a finite
set of pulse parameters. The literature regarding variational
reductions in nonlinear Schrödinger systems is vast [41] and
has been used to describe various aspects of mode-locking
behavior [42–48] as well as general Ginzburg-Landau systems
[49]. The variational method is traditionally rooted in the
Hamiltonian nature of the system; that is, it is assumed
that some conserved energy functional can be constructed.
Classical Hamiltonian theory then allows for the construction
of the associated Lagrangian via a Legendre transformation.
The variational reduction then applies the Euler-Lagrange
equations to the free parameters in the ansatz assumption.
A modified variational reduction [50] is necessary since (2)
contains dissipative terms due to gain saturation and intensity
discrimination [33]. Assuming an ansatz of the form

un(z, t) = ηn(z)sech[ωn(z)t] exp[iφn(z)] (5a)

ωn(z) =
⎛
⎝η2

n(z) + 2
N∑

j=1(j �=n)

η2
j (z)

⎞
⎠

1/2

(5b)

is motivated by the exact solutions of (2) with σ = 0 [32].
Further, simulations of (2) suggest that pulses at different
frequencies lock to the same group velocity so that no center
position variable evolution is assumed in the ansatz [32,33].
This gives the coupled amplitude evolution equations

dηn

dz
= ηn

6

(
gn

(
3 − τnω

2
n

) − 3γ + 2βnη
2
n − 8

5
σnη

4
n

)
, (6a)
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{
1 + [
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(

N−1
N

)]
2Yn + α

N

∑N
j=1(j �=n) 2Yj

}
(1 + 2Yn)

(
N + 2Yn + ∑N

j=1(j �=n) 2Yj

) /
N

,

(6b)

where the substitution Yj = η2
j /ωj and Yn = η2

n/ωn is made
for clarity. The ansatz chosen for our variational ansatz is
unchirped, in contrast to the exact solutions to Haus master
mode-locking equation, which in general have a nontrivial
phase profile. However, in the anomalous dispersion regime,
the magnitude of this phase chirp is known to be small. For
example, with the system parameters we used, the phase chirp
for solutions to the full simulations are on the order of O(10−3)
for the single-channel case and O(10−2) for the dual-channel
case. Furthermore, those hyperbolic secant solutions provide
only a guide for choosing an ansatz, since such solutions are
not generally admissible for the case when σ is not equal
to zero. Given the small size of the chirp in comparison to
the other system parameters, we decided to neglect it in our
ansatz. If, on the other hand, we had been modeling pulses
in the normal dispersion, then neglecting the chirp would
certainly be inappropriate. Moreover, our recent findings show
the variational reduction to be quite accurate in depicting the
dynamics [33].

It is important to note that, since only trivial phase profiles
are considered in the ansatz (5), the cross-phase modulation,
which exchanges nonlinear phase across different frequency
channels, does not explicitly account for amplitude coupling.
In this model, the direct coupling between neighboring chan-
nels largely occurs due to the homogeneous gain broadening
effects in (6). The analysis in the remainder of the manuscript
concerns the coupled amplitude Eqs. (6) in both the dual-
and N -frequency systems. Note that unless stated otherwise,
the following parameter values are taken in all simulations:
βn = 0.05, σn = 0.01, τ = 0.10, g0 = 0.25, and γ = 0.2167.

III. EQUILIBRIUM SOLUTIONS AND STABILITY FOR
DUAL-FREQUENCY OPERATION

In this section we consider dual-frequency operation with
identical equation parameters at each frequency, that is, β1 =
β2, τ1 = τ2, etc. Nonidentical parameters can be considered;
however, the complexity of the system restricts analytical
progress [33]. For the reduced model (6), the dynamics
simplifies to the coupled ordinary differential equations

dη1

dz
= η1

6

(
g1

(
3 − τω2

1

) − 3γ + 2βη2
1 − 8

5
ση4

1

)
= f1(η1, η2), (7a)

dη2

dz
= η2

6

(
g2

(
3 − τω2

2

) − 3γ + 2βη2
2 − 8

5
ση4

2

)
= f2(η1, η2), (7b)
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with the gain given by

g1 = 2g0
(
1 + (2 − α)η2

1/ω1 + αη2
2/ω2

)
(
1 + 2η2

1/ω1
)(

1 + η2
1/ω1 + η2

2/ω2
) , (8a)

g2 = 2g0
(
1 + (2 − α)η2

2/ω2 + αη2
1/ω1

)
(
1 + 2η2

2/ω2
)(

1 + η2
2/ω2 + η2

1/ω1
) . (8b)

Dual-frequency operation presents a simplified model that
allows for the visualization of the overall dynamics in a
two-dimensional phase space [51]. Further, consideration of
dual-frequency operation provides key insights for the general
N -frequency operation.

A. Equilibrium solutions

Equilibrium solutions can be found by setting the right-hand
side of (7) to zero. Here we only consider the fixed points in the
first quadrant where η1 > 0 and η2 > 0. Fixed points in other
quadrants exist and represent solutions that are out of phase.
However, (7) is invariant under the transformation ηn → −ηn;
thus it suffices to only consider solutions where η1 > 0 and
η2 > 0.

There exists an equilibrium solution P1 = (η1, η2) = (η̂, η̂)
where the amplitude in each channel is identical. This
corresponds to the ideal case where equal mode-locked pulsed
solutions at each frequency are achieved. For this equilibrium
solution, the gain (8) is independent of the choice of gain
model (independent of α) and is given by

g1 = g2 = 2g0

1 + (2/
√

3)η̂
. (9)

Substituting P1 and the gain values into f1 and f2 and setting
it to zero we obtain the quintic polynomial

F (η̂) = (6g0 − 3γ ) − 2
√

3γ η̂ + (2β − 6g0τ )η̂2

+ 4√
3
βη̂3 − 8

5
σ η̂4 − 16

5
√

3
σ η̂5 = 0, (10)

which gives the solution (numerically) for η̂. For the
physically reasonable system parameters outlined above,
F (η̂) has one real root at η̂ = 1.1966, which is in agree-
ment with the observed fixed point in the phase plane
analysis [33].

A second class of fixed points lie on the η1 and η2 axes.
The fixed points P2 = (η̂, 0) and P3 = (0, η̂) correspond to
solutions in which a single channel dominates while the field
in the other channel is zero. Again it is sufficient to find the
roots of a single polynomial,

G(η̂, α) = (6g0 − 3γ ) + (6g0(2 − α) − 9γ )η̂

+ (2β − 2g0τ − 6γ )η̂2 + [6β − 2g0τ (2 − α)]η̂3

+
(

4β − 8

5
σ

)
η̂4 − 24

5
σ η̂5 − 16

5
σ η̂6, (11)

to obtain values of η̂. Note that for P2 and P3 the position of
the roots depends on the inhomogeneity parameter α. Figure 1
shows the value of the real root of (11) as a function of α. It
is clear that, as the level of inhomogeneity is increased, the
amplitude decreases.

Finally, a third class of equilibrium solutions exists for
a restricted interval of the inhomogeneity parameter α [33].

0 0.2 0.4 0.6 0.8 1

0.8

1

1.2

1.4

1.6

1.8

2

α

η 1(α
)

Single pulse amplitude as a function of α

FIG. 1. In contrast to the η1 = η2 case, the position of the (η1, 0)
solution depends on the value of gain inhomogeneity α. In the
single pulse operation, changing α determines the amount of gain
an individual channel receives.

This represents dual-frequency operation with mode-locked
pulse solutions that have different amplitudes and widths in
each channel. Thus the (symmetric) fixed points are given by
P4 = (η̂, η̄) and P5 = (η̄, η̂), where η̂ � η̄. The values η̂ and η̄

can be found by setting the right-hand side of (7) to zero and
solving the resulting two coupled polynomials numerically. It
is important to note that there is a restricted α interval in which
real values for P4 and P5 can be found. In particular, at the
bottom of this interval the fixed point P4 coalesces with the
fixed point P2, and at the top of this interval P4 merges with
P1. Similarly, at the bottom of this interval the fixed point P5

coalesces with the fixed point P3, and at the top of this interval
P5 merges with P1 [33]. The exact interval values can be found
by the linear stability analysis that follows.

B. Linear stability analysis

The linear stability of the fixed points can be found by
examining the eigenvalues of the Jacobian matrix evaluated at
each fixed point [51],

J (η1, η2) =
[

A(η1, η2) B(η1, η2)
C(η1, η2) D(η1, η2)

]
, (12)

where

A = 1

6

[[
3 − τ

(
3η2

1 + 2η2
2

)]
g1

+ [
3 − τ

(
η2

1 + 2η2
2

)]
η1

∂g1

∂η1
− 3γ + 6βη2

1 − 8ση4
1

]
,

(13a)

B = η1

6

[
−4τη2g1 + [

3 − τ
(
η2

1 + 2η2
2

)]∂g1

∂η2

]
, (13b)

C = η2

6

[
−4τη1g2 + [

3 − τ
(
2η2

1 + η2
2

)]∂g2

∂η1

]
, (13c)
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D = 1

6

[[
3 − τ

(
2η2

1 + 3η2
2

)]
g2

+ [
3 − τ

(
2η2

1 + η2
2

)]
η2

∂g2

∂η2
− 3γ + 6βη2

2 − 8ση4
2

]
.

(13d)

We first consider the linear stability at the equal amplitude
equilibrium solution P1 = (η̂, η̂). Since the amplitudes and
gain values are equal (g1 = g2 = g), it is easy to see from (13)
that the diagonal entries of J are equal [A(η̂, η̂) = D(η̂, η̂)],
as well as the off-diagonal entries [B(η̂, η̂) = C(η̂, η̂)]. Using
this symmetry, the eigenvalues are given by

λ1 = 1

6

[
3(1 − 3τ η̂2)g − 6g√

3

1 − τ η̂2(
1 + 2√

3
η̂
) η̂

− 3γ + 6βη̂2 − 8σ η̂4

]
, (14a)

λ2 = 1

6

[
(3 − τ η̂2)g − α

14g(1 − τ η̂2)√
3
(
1 + 2√

3
η̂
) η̂

− 3γ + 6βη̂2 − 8σ η̂4

]
. (14b)

Note that λ1(<0) is independent of the gain model (inde-
pendent of α). There is a critical value of α = αc where the
eigenvalue λ2 = 0. Setting (14b) to zero gives

αc = −(
√

3 + 2η̂)

× [3γ − 6βη̂2 + 8σ η̂4 − (3 − τ η̂2)g]

14ηg(1 − τ η̂2)
≈ 0.2947.

(15)

For values α < αc, the equilibrium point P1 = (η̂, η̂) is
unstable since λ2 > 0. For α = αc, P1 changes its stability
and becomes a stable node for α > αc. A detailed bifurcation
analysis of this fixed point as a function of α is considered
in the next section. The linear stability analysis of the fixed
point P1 shows that to achieve dual-frequency operation, a suf-
ficient amount of inhomogeneous gain broadening is required.
This is consistent with numerical simulations [32,33] and
efforts to enhance inhomogeneous gain broadening in WDM
systems [40].

The fixed points P2 = (η̂, 0) and P3 = (0, η̂) represent
single-channel operation. Due to the symmetry of (7), the
linear stability analysis for P2 is the same as for P3, thus
allowing us to only consider P2. Evaluating the Jacobian (12) at
the fixed point P2 we see that B(η̂, 0) = C(η̂, 0) = 0, resulting
in the eigenvalues

λ1 = A(η̂, 0), λ2 = D(η̂, 0). (16)

Since the position of η̂ depends on the value of α, characteriz-
ing the stability as a function of the gain broadening parameter
is difficult. Figure 2 shows the numerical calculation of the
eigenvalues A and D at the fixed point P2 as a function of α.
The eigenvalue associated with A is always negative, where at
α = αs = 0.1997 the eigenvalue associated with D becomes
positive. Thus a bifurcation occurs at αs where the stable fixed
point at P2 goes unstable for all α > αs . Further, it can be
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λ
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FIG. 2. The stability of the (η1, 0) solution depends only on the
sign of ∂f2

∂η2
evaluated at (η1, 0). Note that the position of η1 depends

on the choice of α. The figure shows that the single pulse solution is
stable for α < 0.1997.

shown for α values just above αs , two new stable nodes exist
on either side of the fixed point P2. Thus this instability can
be described by a standard pitchfork bifurcation [51].

The same pitchfork bifurcation occurs at P3 = (0, η̂) at
α = αs . Thus for α slightly greater than αs two new stable fixed
points exist (P4 and P5) in the first quadrant so that there are five
fixed points in total. These new equilibrium points represent
dual-frequency operation where the mode-locked pulses have
different amplitudes as denoted by P4 = (η̂, η̄) and P5 = (η̄, η̂)
in the previous subsection. A linear stability analysis of P4

and P5 can be performed numerically and reveals that these
solutions are always stable nodes. However, as discussed
in the previous section these solutions exist for a restricted
α interval. Indeed, the exact interval has been found from the
α values at the corresponding bifurcations of the fixed points
P1, P2, and P3. Thus the stable equilibrium solutions P4 and P5

exist from αs = 0.1997 < α < αc = 0.2947 for the physically
reasonable values considered.

Table I summarizes the equilibrium solutions and their
linear stability for the reduced model (7). It is clear that by
increasing the amount of inhomogeneous gain broadening,
stable dual-frequency operation can be achieved. Indeed,
it is the inhomogeneous gain broadening parameter α and
the bifurcations of the fixed points that effectively control
dual-frequency operation. In the following section a detailed
bifurcation analysis is given.

TABLE I. Summary of the fixed points and their linear stability for
dual-frequency mode-locking in the reduced model (7). The solutions
and their stability depend on the degree of the inhomogeneous
gain broadening parameter α. Note that, for the specific parameters
considered, αs = 0.1997 and αc = 0.2947.

(η1, η2) 0 � α < αs αs � α < αc α � αc

P1 = (η̂, η̂) Unstable Unstable Stable
P2 = (η̂, 0) Stable Unstable Unstable
P3 = (0, η̂) Stable Unstable Unstable
P4 = (η̂, η̄) N.A. Stable N.A.
P5 = (η̄, η̂) N.A. Stable N.A.

033851-5



EDWARD D. FARNUM, BRANDON G. BALE, AND J. NATHAN KUTZ PHYSICAL REVIEW A 81, 033851 (2010)

IV. CENTER MANIFOLD REDUCTION AND
NORMAL FORMS

The phase plane analysis of the low-dimensional model (7)
models a two-frequency interaction and shows that trajectories
appear to settle onto a nearly circular arc which connects the
fixed points on the η1 and η2 axes (fixed points P2 and P3) with
the fixed point on the line η1 = η2 (fixed point P1) [33]. It has
also previously been shown that the two-frequency interaction
generates a bifurcation from the equal pulse amplitude solution
as the parameter α decreases. Near this bifurcation point, αc,
the stability changes as one of the eigenvalues in the linearized
operator passes through zero. Near this stability transition, a
center manifold reduction can be constructed to give the slow
dynamics of the system near the fixed point with the zero
eigenvalue. The center manifold reduction also allows us to
formally classify the bifurcation structure at each fixed point
via a normal form analysis.

When the system undergoes a bifurcation, the linear
stability of the fixed point is inconclusive as one of its
eigenvalues passes through zero. Thus, higher-order terms
must be considered to determine the behavior of the system
nearby, that is, a center manifold reduction [52,53]. For each
fixed point in the phase plane, we assume that there is a
center manifold curve η2 = h(η1), such that trajectories which
are near the curve remain asymptotically close. A Taylor
expansion is constructed about the fixed point,

η2 = h(η1) = a0 + a1η1 + a2η
2
1 + a3η

3
1 + O

(
η4

1

)
, (17)

for some constants ai . When the expansion is constructed
exactly at the bifurcation point, a1 = 0 is automatically
satisfied since the linearization vanishes at the bifurcation point
where η1 = η2. Note that on the curve η2 = h(η1), the chain
rule implies that

dη2

dz
= dη2

dη1

dη1

dz
= h′(η1)f1(η1, η2) . (18)

Substituting the expansion (17) into (18) and using the
governing Eqs. (7) results in the expression

f2(η1, h(η1)) − h′(η1)f1(η1, h(η1)) = 0 . (19)

Setting this expression to zero at each order of the expansion in
η1 determines the coefficients of the center manifold reduction.
This is the general procedure used for the center manifold
reduction at all the fixed points of (7). This general technique
is applied specifically to the three fixed points of interest
(i) η1 = η2 �= 0 (fixed point P1), (ii) η1 �= 0 and η2 = 0 (fixed
point P2), and (iii) η2 �= 0 and η1 = 0 (fixed point P3). The
details of the center manifold reduction (i) are significantly
different than those of the reduction at (ii) and (iii). These
cases are considered in the following subsections.

A. Bifurcation from the dual-pulse solution

For the fixed point P1 with equal amplitudes in the two-
frequency channels, η1 = η2 ≈ 1.1966 and the transformation

� =
√

2

2
(η1 − η2),  =

√
2

2
(η1 + η2)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

η
1

η 2

Center manifold near bifurcation, α = 0.2947

 

 

Φ = 1.69226  − .51322 Ψ2

FIG. 3. At α = αc, the fixed point P1 undergoes a pitchfork
bifurcation. Nearby trajectories quickly decay to the parabolic center
manifold, slowly following it back to P1.

is used to rotate the coordinate system in order to more easily
examine small perturbations from the fixed point. Here |�| �
1 since η1 ≈ η2.

As is typical with a center manifold reduction [52,53], it
is assumed that trajectories quickly decay along the stable
manifold and then move slowly along the center manifold. In
the original coordinate system, the center manifold is given
by (17). However, we now determine the center manifold in
the new coordinate system (�,). Thus we assume a Taylor
expansion for  of the form

 = h(�) = A0 + A2�
2 + O(�4). (20)

Since all system parameters are identical in the two channels,
the manifold will be symmetric about the  axis so that the
odd power terms in � are identically zero.

When the Taylor expansion is substituted into the governing
Eq. (7) in the transformed coordinate system, the center
manifold near the identical pulse solution is determined to
be

 =
√

2 η̂ − 0.51326�2 + O(�4). (21)

Recall that the leading-order term depends only on the system
parameters and not on the gain inhomogeneity parameter α.
The coefficient for the quadratic term A2, however, depends
on the critical value of αc determined in Sec. III B. Figure 3
shows the center manifold approximation along with the
phase-plane trajectories in the first quadrant. Nearby tra-
jectories quickly decay to the parabolic center manifold,
represented by small circles.

Substituting (21) into (7) gives the normal form for the
bifurcation to be

d�

dz
= (c1α + c2)� + (c3α + c4)�3, (22)

where for the particular parameters used c1 = −0.08608, c2 =
0.02537, c3 = 0.03495, and c4 = −0.02308. Equation (22) is
the normal form for a pitchfork (supercritical) bifurcation.
For all values of α, it has a fixed point at � = 0, which in
the original coordinates corresponds to identical dual-pulse
solutions, η1 = η2. Additionally, when α < αc = 0.2947, it
also admits solutions of � = ±√−(c1α + c2)/(c3α + c4).
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0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

α, degree of inhomogeneity

η 1

I II III

FIG. 4. In region I, an α-dependent pulse solution is supported
in a single channel. For sufficiently large α, identical mode-locked
pulses in both channels are supported, as shown in region III. At
each region’s boundary, the system undergoes a pitchfork bifurcation.
Shown are normal form reductions of fixed point P1 at αc ≈ 0.2947
(circles) and fixed point P2 at αs ≈ 0.1997 (squares).

Figure 4 depicts the pitchfork bifurcation of the fixed point
P1 (circles). The α dependence as well as the coordinate
transformation results in the distortion of the curve, so that the
two solutions do not appear symmetric in the (α, η) plane. It
should be noted that the pitchfork bifurcation is not unexpected
as the leading-order nonlinear contribution arising from (7) is
from the cubic nonlinearity.

B. Bifurcation from the single-pulse solution

It has been shown that when the effects of inhomogeneous
gain broadening are not sufficient, multiple-frequency mode-
locking is destabilized in favor of single-frequency operation
[31–34]. Determining this critical value of the parameter α is
necessary for the design and successful operation of a multiple-
frequency mode-locked laser. Mathematically, the linear sta-
bility analysis shows this critical value of inhomogeneous
gain broadening to be at αs = 0.1997 when the fixed point
on the η2 axis undergoes a pitchfork bifurcation. Thus at this
critical value of α, the linearized operator has a zero eigenvalue
that crosses into the right-half plane with the corresponding
unstable eigenvector [10]. As with the center manifold reduc-
tion of the last subsection, the stability associated with this
eigenvalue can only be determined by considering the higher-
order effects neglected in the linearization [52,53]. Thus we
construct the curve η2 = h(η1) such that trajectories near that
curve remain asymptotically near the curve. Recall that for
the single-pulse solution, the position of the fixed point is
dependent upon the bifurcation parameter α as shown in Fig. 1.
This is because under single-channel operation, changing
α modifies the gain received by the second channel. Thus,
the coefficients of the expansion must be α dependent as well.
Figure 1 depicts the dependence of the fixed point amplitude
as a function of α.

Following a similar process as outlined in the previous
subsection gives the α-dependent coefficients for the center

−2 0 2
−2

−1

0

1

2

η
1

η 2

Center manifold near bifurcation, α = 0.1997

η
1
 =h(η

2
)

η
2
=h(η

1
)

FIG. 5. At α = 0.1997, the fixed points on the η1 and η2 axes
undergo a bifurcation. Note the concavity at the fixed points on the
axis. The manifolds shown in lines with small circles.

manifold as

η2 = (1.733 − 0.8314α) + (0.4663 + 21.09α)η2
1 + O(η1)4,

(23)

where the dependence on powers of η2
1 results from the

nonlinearity of the governing Eqs. (7).
Figure 5 shows trajectories for the system at the critical

value of α = αs ≈ 0.1997. To address the curvature changes
near the fixed point, the center manifold is computed to fourth-
order,

η2 = h(η1) = 1.5402 + 0.0950η2
1 − 0.3121η4

1, (24a)

η1 = h(η2) = 1.5402 + 0.0950η2
2 − 0.3121η4

2, (24b)

for the fixed points P2 and P3. As is illustrated by the circles
in Fig. 5, these quartic center manifold reductions accurately
capture the full governing behavior at moderate distances from
the fixed points. Substituting these relations back into the
system (7) gives the pitchfork bifurcation as the normal form
for the bifurcation structure:

dη1

dz
= (k1α + k2)η1 + (k3α + k4)η3

1, (25)

where, for the particular parameters used, k1 = 0.12761,
k2 = −0.02548, k3 = −0.20436, and k4 = 0.01457. As in
the previous subsection, Eq. (25) is the normal form for
a pitchfork bifurcation. For all values of α, it admits the
fixed point solution η1 = 0. For α > αs, solutions of the
form η1 = √−(k1α + k2)/(k3α + k4) are admissible. Figure 4
(squares) depicts this supercritical bifurcation from the zero
solution at α = αs . Note that only the positive branch is
shown. The negative branch corresponds to a pair of pulses
mode-locked in anti-phase relation.

V. STRUCTURAL STABLILITY FOR DUAL-FREQUENCY
OPERATION: THE SATURABLE ABSORBER

The stability analysis and normal form reductions in the
previous sections were based on system parameters introduced
at the end of Sec. II. It is expected that as these parameters
are varied, the solution branches and their bifurcations will
shift, but the overall structure of the reduced model (7)
will remain qualitatively the same. In the full governing
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Eq. (2) the intensity discrimination mechanism necessary to
initiate mode-locking is modeled by a cubic (quintic) gain
(loss). The parameters β and σ denote the strength of the
cubic gain and quintic loss, respectively. In this section we
examine how varying these parameters changes the equilib-
rium solutions and their stability of (7) for dual-frequency
mode-locking.

A. Quintic loss

The quintic loss term is commonly used to saturate the
amount of nonlinear gain and thus provides a stabilization
mechanism for mode-locking [7,8]. Here we vary the quintic
loss strength σ from its value σ = 0.01 used in Sec. II. The
structure of the phase plane for varying σ is summarized in
Fig. 6, which depicts the bifurcation structure of the pulse
amplitude as a function of α. Note that only stable branches
are shown. Further, for symmetric system parameter choices,
η1 and η2 will have the same solution types; so without loss
of generality, we depict η1 alone. In region I, the gain is
dominated by homogeneous broadening so that single-channel
operation is supported, represented by the equilibrium solution
P2 of (7). It is also clear that, as α increases in region I, the
amplitude of the pulse decreases. As α increases into region II,
the zero amplitude pulse in the second channel receives more
gain, and the higher intensity pulse in channel one receives
less. Here, the zero solution bifurcates so that dual-frequency
mode-locking is supported with different amplitudes
(see Sec. IV B). This corresponds to the fixed point P4 of (7).
Further increasing α to region III, the solution branches from
region II coalesce so that dual-frequency, identical amplitude
solutions are supported, corresponding to the equilibrium
solution P3 of (7). At the interface of region II and III,
a pitchfork bifurcation exists [51] (see Sec. IV A). This
illustrates that, by increasing the quintic loss strength, a
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FIG. 6. As σ is increased, the boundaries of the stability regions
move to the left. For each value of σ , region III corresponds
to dual-frequency operation, and region I corresponds to ampli-
tudes for single-pulse operation. For sufficiently large σ , dual-
frequency operation may be sustainable for nearly all values of gain
inhomogeneity.
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FIG. 7. In the σ = 0 limit, the existence of single-pulse solutions
depends on α. For α < 0.605, there are no single-pulse solutions
since G(η) does not have a positive real root.

lesser degree of inhomogeneous gain broadening is required
to achieve dual-frequency mode-locking.

An interesting limit occurs when taking the quintic strength
parameter σ = 0. In this case identical pulse solutions at
different frequencies exist and are solutions to a cubic equation
given by (10) which gives the value η1 = η2 = η̂ = 1.5119.
The stability condition (15) with σ = 0 gives the value of αc =
0.8645, showing that neglecting the quintic loss in the model
requires a large degree of inhomogeneous gain broadening
to stabilize dual-frequency operation. This is consistent with
numerical simulations for the full partial differential Eqs. (2)
[32]. For the equilibrium solution where one mode-locked
solution exists while the other is zero, the amplitude is
determined by the quartic equation given by (11) with σ = 0.
Figure 7 (top) shows the function G(η1) as a function of α.
It is apparent that for α < 0.605, G(η1) has no positive roots.
Figure 7 (bottom) shows the eigenvalues for the single-pulse
solutions as a function of α. In contrast to the case with quintic
loss, all single-pulse solutions are unstable. Thus if the quintic
loss is ignored the parameter regime for stable solutions to
exist is severely restricted. Indeed, this is expected since the
quintic gain saturation term is used to increase the overall
stability of the model (2).

We have shown that dual-frequency operation depends on
the amount of inhomogeneous gain broadening characterized
by α and also on the strength of the quintic loss (saturable
absorption) given by σ . This suggests that engineering some
degree of quintic loss and inhomogeneous gain broadening
into the laser system is essential to achieving stable and robust
dual-frequency mode-locking. Figure 8 shows the smaller
amplitude in a dual-frequency configuration as found from
the reduced model (7). Region III corresponds to stable
dual-frequency operation, whereas region I denotes single-
pulse operation. This shows the general trends in achieving
dual-frequency mode-locking. Specifically, for any particular
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FIG. 8. As σ is increased, the boundaries of the stability regions
move to the left. For each value of σ , region III corresponds
to dual-frequency operation, and region I corresponds to ampli-
tudes for single-pulse operation. For sufficiently large σ , dual-
frequency operation may be sustainable for nearly all values of gain
inhomogeneity.

value of σ , a certain level of inhomogeneous gain broadening
is required. Furthermore, the highest intensity pulses are
achieved when reducing the quintic loss and increasing the
inhomogeneous gain broadening.

B. Cubic gain

The cubic gain term is commonly used to amplify high-
intensity portions of the pulse, thus acting as an intensity-
discrimination element [7,8]. Here we vary the cubic gain
strength β from its value β = 0.05 used in Sec. II. The
structure of the phase plane for varying β is summarized
in Fig. 9, which depicts the stable branches and bifurcation
structure of pulse amplitude η1 as a function of α. As in
Fig. 6 region I represents single-channel operation, region
II represents dual-frequency mode-locking with different
amplitudes, and region III represents dual-frequency, identical-
amplitude solutions. This illustrates that increasing β reduces
the stability region in which stable dual-frequency mode-
locking is achieved. Increasing the strength of the cubic gain β

is effectively the same as decreasing the quintic loss. Thus the
general trend suggests that increasing the amount of nonlinear
gain requires an increase in the amount of inhomogeneous
gain broadening to obtain stable dual-frequency mode-locking.
This agrees with numerical simulations of (2) [32,33]. The
mode-locking stability and its dependence on β have been
considered previously [54].
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FIG. 9. For fixed σ = 0.01, increasing β moves the solution
regions to the right, implying that stable operation is facilitated by
small values of β. This is equivalent to the claim that increased σ

provides added stability for fixed β. Again, note that this structure
breaks down around β = 0.08, where the solution branch becomes
nearly vertical at the bifurcation.

VI. MULTIPLE-FREQUENCY (N > 2) OPERATION

As the number of frequency channels is increased, there
are numerous fixed points to the system (6) [33]. Here we are
concerned with the stability of the equilibrium solution P1 =
(η1, η2, . . . , ηN ) = (η̂, η̂, . . . , η̂) where the amplitude in each
channel is identical. This corresponds to the ideal case where
N equal mode-locked pulsed solutions at each frequency are
achieved.

Similar to dual-frequency operation, the gain (6b) is
independent of the choice of gain model (independent of α),
and is given by

g1 = g2 = · · · = gN ≡ g = 2g0(
1 + 2√

2N−1
η̂
) . (26)

The fixed point amplitude η̂ can be found by setting (6a) equal
to zero and solving the quintic polynomial

FN = 3(2g0 − γ ) − 6γ√
2N − 1

η̂ + 2[β − (2N − 1)g0τ ]η̂2

+ 4β√
2N − 1

η̂3 − 8σ

5
η̂4 − 16σ

5
√

2N − 1
η̂5. (27)

The linear stability of the solution P1 can easily be
calculated due to the symmetry of both the fixed point P1 and
the gain Eq. (6b). The Jacobian J (η̂) is an N × N constant
matrix given by

6Jij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[3 − τ (2N − 1)η̂2]g + [3 − τ (2N + 1)η̂2]η̂ ∂gi

∂ηi

∣∣∣
P1

−3γ + 6βη̂2 − 8σ η̂4, if i = j[
−4τ η̂g + [3 − τ (2N − 1)η̂2] ∂gi

∂ηj

∣∣∣
P1

]
η̂, if i �= j .

(28)
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Note that due to the symmetry of the gain (6b), the deriva-
tives in the diagonal elements ∂gi/∂ηi |P1 are equal for all
i = 1, . . . , N . Similarly, the derivatives ∂gi/∂ηj in the off-
diagonal elements (i �= j ) are equivalent at the fixed point P1.
Since the Jacobian matrix is circulant with off-diagonal ele-
ments of equal value, there are only two distinct eigenvalues

λ1 = A − B, (29a)

λ2 = A + (N − 1)B, (29b)

where A denotes the diagonal elements in (28) and B the
off-diagonal elements. Note that λ1 has algebraic multiplicity
N − 1. Using (28) in (29) the eigenvalues are given by

λj = 1
6 [Aj (N ; η̂) + Bj (N ; η̂)(Cj (N ) + αDj (N ))], (30)

where

A1(N ; η̂) = [3 − τ (2N − 3)η̂2]g − 3γ + 6βη̂2 − 8σ η̂4,

(31a)

A2(N ; η̂) = [3 − τ (6N − 3)η̂2]g − 3γ + 6βη̂2 − 8σ η̂4,

(31b)

B1 = B2 = 3 − τ (2N − 1)η̂2)η̂g

N (2N − 1)
3
2
(
1 + 2/

√
2N − 1η̂

) , (31c)

C1(N ) = 4N − 8, (31d)

C2(N ) = 8N2 − 22N + 12, (31e)

D1(N ) = −8N2 − 2N + 8, (31f)

D2(N ) = −20N2 + 32N − 12. (31g)

Figure 10 shows the eigenvalues for the case of N = 3
(top) and N = 20 (bottom) as a function of the gain ratio
parameter α. Note that for both scenarios, λ2 < 0 for all α � 1.
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FIG. 11. The critical amount of inhomogeneous broadening (αc)
required for multiple-pulse operation depends on the number of
frequency channels N . As N becomes large, this critical value
tends asymptotically to 0.5, indicating that stable multiple-pulse
operation can always be achieved, given sufficient inhomogeneous
gain broadening.

Further, λ1 > 0 for 0 � α < αc. Here αc determines the critical
amount of inhomogeneous gain broadening for which stable
equal-pulse multiple-frequency mode-locking is achieved. The
trends of the eigenvalues depicted in Fig. 10 are consistent for
all N > 2. Indeed, λ2 is always negative whereas λ1 goes from
positive to negative at some critical value αc. We can find the
dependence of αc on N by setting λ1 to zero and solving for
α, giving

αc = − 1

D1(N )

[
A1(N ; η̂)

B1(N ; η̂)
+ C1(N )

]
. (32)

This result gives the necessary ratio of inhomogeneous gain
broadening needed to achieve equal-pulse N -frequency mode-
locking. An important result of (32) is the amount of inho-
mogeneous gain broadening necessary for stable equal-pulse
multiple-frequency mode-locking for any number of frequency
channels. Figure 11 shows the critical value of α necessary
to stabilize equal-pulse multiple-frequency mode-locking as
a function of N . We see that αc(N ) increases with N and
asymptotically approaches 0.5 for large values of N. Thus
if half of the total gain is composed of inhomogeneous gain
broadening, stable multiple-frequency mode-locking will be
achieved for all N . Indeed, these results are consistent with
numerical simulations [33] and experimental findings [40].

VII. CONCLUSIONS

The analysis presented in this manuscript considers a
low-dimensional theoretical description of the mode-locked
dynamics in a multiple-wavelength mode of operation. Al-
though the multiple-frequency models have been considered
previously [31–34], here we provide a detailed stability and
bifurcation analysis of the low-dimensional reduction. We
demonstrate that the stability of the multiple-frequency lasing
depends critically on the parameter α which measures the
ratio of homogeneous and inhomogeneous gain broadening
effects. Indeed, in order for multiple-frequency operation to
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occur and be stabilized, a sufficient amount of inhomogeneous
(channel self-saturation) gain broadening must be present.
Such theoretical findings are in agreement with experimental
efforts in WDM systems to enhance the inhomogeneous gain
broadening for stabilizing lightwave systems [40]. For dual-
frequency operation, the transition in mode-locking stability
as a function of the parameter α is completely characterized
by a center manifold reduction when the largest eigenvalue
passes through zero. The center manifold reduction shows the
fundamental bifurcation structure at the stability transition to
be a supercritical pitchfork bifurcation.

This bifurcation analysis applies in the transition from
single-frequency operation to dual-frequency operation with
differing amplitudes. It also applies to the transition from
dual-frequency operation as it goes from identical to differing
amplitudes. Thus the normal form reduction completely char-
acterizes the stability transition and bifurcation structure in the
three possible operating regimes of the laser. Various pertur-
bations to the stability structure are also considered, including
the effects of the cubic-quintic saturable absorption terms in
the full governing equations. These terms also have a profound
impact on the multiple-frequency mode-locking performance
and stability of the laser. Specifically, these terms can shift the
region of stable two-pulse operation as a function of the param-
eter α. Further, they can broaden the range of parameter space
for which pulses with different amplitudes can be stabilized.

From an applications viewpoint, the low-dimensional
model derived clearly demonstrates the critical interplay

between homogeneous and inhomogeneous gain broadening
effects. Specifically, only a small amount of inhomogeneous
gain broadening allows for multiple-frequency operation in
the laser. Further, bound-state (locked in time) mode-locking at
multiple frequencies can be supported. Thus the mode-locking
process counteracts the effects of group-velocity walk-off
between neighboring frequency channels. Thus the theoretical
analysis of the multiple-frequency mode-locking indicates that
such a mode-locking device is feasible and technologically
relevant as has been demonstrated by limited experimental
findings [3–6]. Further, the findings validate the efforts in
the WDM community to enhance the inhomogeneous gain
broadening [40] as this is clearly the key to producing
stable multiple-frequency operation. With the increasing de-
mand for increased optical bandwidth, the multiple-frequency
mode-locking model provides a promising source for WDM
signal generation which can be implemented in enabling
WDM/OTDM technologies.

ACKNOWLEDGMENTS

B. G. Bale acknowledges the support by the Engineer-
ing and Physical Sciences Research Council (Grant No.
EP/FO2956X/1). J. N. Kutz acknowledges support from the
National Science Foundation (NSF) (DMS-0604700) and
the US Air Force Office of Scientific Research (AFOSR)
(FA9550-09-0174).

[1] G. P. Agrawal, Nonlinear Fiber Optics (Academic Press,
New York, 1989).

[2] A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[3] Y. Shiquan, L. Zhaohui, Y. Shuzhong, D. Xiaoyyi, K. Guiyun,

and Z. Qida, in Proceedings of SPIE (SPIE, Bellingham, WA,
2003), Vol. 4974, p. 43.

[4] H. Dong, G. Zhu, Q. Wang, and N. K. Dutta, in Proceedings of
SPIE (SPIE, Bellingham, WA, 2004), Vol. 5349, p. 117.

[5] Z. Ahned and N. Onodera, Electron. Lett. 32, 455 (1996).
[6] C. Wu and N. K. Dutta, IEEE J. Quantum Electron. 36, 145

(2000).
[7] H. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
[8] J. N. Kutz, SIAM Rev. 48, 629 (2006).
[9] I. N. Duling III and M. L. Dennis, Compact Sources of Ultrashort

Pulses (Cambridge University Press, Cambridge, UK, 1995).
[10] I. N. Duling III, Electron. Lett. 27, 544 (1991).
[11] D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and

M. W. Phillips, Electron. Lett. 27, 542 (1991).
[12] M. L. Dennis and I. N. Duling III, Electron. Lett. 28, 1894

(1992).
[13] J. W. Haus, G. Shaulov, E. A. Kuzin, and J. Sanchez-Mondragon,

Opt. Lett. 24, 376 (1999).
[14] K. Tamura, H. A. Haus, and E. P. Ippen, Electron. Lett. 28, 2226

(1992).
[15] H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum

Electron. 30, 200 (1994).

[16] M. E. Fermann, M. J. Andrejco, Y. Silverberg, and M. L. Stock,
Opt. Lett. 18, 894 (1993).

[17] K. M. Spaulding, D. H. Yong, A. D. Kim, and J. N. Kutz, J. Opt.
Soc. Am. B 19, 1045 (2002).

[18] F. X. Kartner and U. Keller, Opt. Lett. 20, 16 (1995).
[19] J. N. Kutz, B. C. Collings, K. Bergman, S. Tsuda, S. Cundiff,

W. H. Knox, P. Holmes, and M. Weinstein, J. Opt. Soc. Am. B
14, 2681 (1997).

[20] S. Tsuda, W. H. Knox, E. A. DeSouza, W. J. Jan, and J. E.
Cunningham, Opt. Lett. 20, 1406 (1995).

[21] F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer,
M. H. Ober, C. Speilmann, E. Wintner, and A. J. Schmit, IEEE
J. Quantum Electron. 28, 2097 (1992).

[22] B. Proctor, E. Westwig, and F. W. Wise, Opt. Lett. 18, 1654
(1993).

[23] H. A. Haus, J. G. Fujimoto, and E. P. Ippen, J. Opt. Soc. Am. B
8, 2068 (1991).

[24] F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys.
Rev. Lett. 92, 213902 (2004).

[25] A. Chong, J. Buckley, W. Renninger, and F. Wise, Opt. Express
14, 10095 (2006).

[26] J. N. Kutz, in Dissipative Solitons, edited by N. N. Akhmediev
and A. Ankiewicz (Springer-Verlag, Berlin, 2005), Lecture
Notes in Physics, Vol. 661, pp. 241–265.

[27] J. Proctor and J. N. Kutz, Opt. Lett. 30, 2013 (2005).
[28] J. Proctor and J. N. Kutz, Opt. Express 13, 8933 (2005).

033851-11



EDWARD D. FARNUM, BRANDON G. BALE, AND J. NATHAN KUTZ PHYSICAL REVIEW A 81, 033851 (2010)

[29] J. Proctor and J. N. Kutz, Math. Comp. Sim. 74, 333
(2007).

[30] J. N. Kutz and B. Sandstede, Opt. Express 16, 636 (2008).
[31] E. Farnum, L. Butson, and J. N. Kutz, J. Opt. Soc. Am. B 23,

257 (2006).
[32] E. Farnum and J. Kutz, J. Opt. Soc. Am. B 25, 1002 (2008).
[33] B. Bale, E. Farnum, and J. Kutz, J. Opt. Soc. Am. B 25, 1479

(2008).
[34] B. Bale, E. Farnum, and J. Kutz, IEEE J. Quantum Electron. 44,

976 (2008).
[35] H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and

F. Sanchez, Phys. Rev. A 65, 063811 (2002).
[36] A. Komarov, H. Leblond, and F. Sanchez, Phys. Rev. E 72,

025604(R) (2005).
[37] A. Komarov, H. Leblond, and F. Sanchez, Phys. Rev. A 71,

053809 (2005).
[38] A. Hasegawa and Y. Kodama, Solitons in Optical Communica-

tions (Oxford University Press, Oxford, 1995), Chap. 10.
[39] L. F. Mollenauer, S. G. Evangelides, and J. P. Gordon,

J. Lightwave Technol. 9, 362 (1991), see Appendix.
[40] E. Desurvire, Erbium-Doped Fiber Amplifiers Principles and

Applications (Wiley Interscience, New York, 1994).
[41] B. Malomed, Prog. Opt. 43, 71 (2002).
[42] B. Bale and J. Kutz, J. Opt. Soc. Am. B, 25, 1193 (2008).

[43] C. Jirauschek, U. Morgner, and F. Kärtner, J. Opt. Soc. Am. B
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(2007).

[45] N. Usechak and G. Agrawal, Opt. Express 13, 2075 (2005).
[46] N. Usechak and G. Agrawal, J. Opt. Soc. Am. B 22, 2570

(2005).
[47] S. Namiki, E. Ippen, H. Haus, and C. Yu, J. Opt. Soc. Am. B 14,

2099 (1997).
[48] S. Namiki, E. Ippen, H. Haus, and C. Yu, J. Opt. Soc. Am. B 14,

2099 (1997).
[49] E. N. Tsoy, A. Ankiewicz, and N. Akhmediev, Phys. Rev. E 73,

036621 (2006).
[50] D. Anderson, M. Lisak, and A. Berntson, Pramana J. Phys. 57,

917 (2001).
[51] P. G. Drazin, Nonlinear Systems (Cambridge University Press,

Cambridge, UK, 1992).
[52] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dy-

namical Systems and Bifurcation of Vector Fields (Springer,
New York, 1983).

[53] S. Wiggins, Introduction to Applied Nonlinear Dynamical
Systems and Chaos (Springer, New York, 2003).

[54] T. Kapitula, J. N. Kutz, and B. Sandstede, J. Opt. Soc. Am. B
19, 740 (2002).

033851-12


