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Ginzburg-Landau equation bound to the metal-dielectric interface and transverse
nonlinear optics with amplified plasmon polaritons
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Using a multiple-scale asymptotic approach, we have derived the complex cubic Ginzburg-Landau equation
for amplified and nonlinearly saturated surface plasmon polaritons propagating and diffracting along a metal-
dielectric interface. An important feature of our method is that it explicitly accounts for nonlinear terms in the
boundary conditions, which are critical for a correct description of nonlinear surface waves. Using our model we
have analyzed filamentation and discussed the bright and dark spatially localized structures of plasmons.
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I. INTRODUCTION

Surface plasmon polaritons (SPPs) are half-photon half-
electron surface waves. Thanks to their dual nature, SPPs
can be focused tighter than pure light, which is an important
property for potential applications in optical processing of
information. In the absence of lateral boundaries, propagating
SPPs are expected to diffract in the interface plane. One way
to control diffraction is to structure the surface and make
plasmonic waveguides (see, e.g., Ref. [1]). Alternatively, one
can use nonlinearity for the creation of spatial SPP solitons,
which are nondiffracting self-localized surface waves [2,3].
Other transverse effects with nonlinear plasmons, such as
self-focusing and filamentation [4] can be important for
frequency conversion, switching, and routing experiments with
photonics chips. Note, that the interplay between transverse
and nonlinear effects have attracted significant attention
outside the plasmonics and nanophotonics contexts (see, e.g.,
Refs. [5,6] for the historic accounts).

Nonlinear functionality of SPPs [7–9] can be significantly
hampered by Ohmic losses resulting in short propagation
distances. One of the possible solutions is to amplify SPPs by
doping and pumping the dielectric, so that the losses are either
partially or fully compensated [10–12]. The linear dispersion
of the amplified SPPs has been studied by several groups (see,
e.g., Refs. [13,14]). The linear results have been recently gener-
alized to the more realistic case, when linear gain is nonlinearly
saturated above the stimulated emission threshold [15].

Analytical or semianalytical approaches to describe non-
linear effects with SPPs are very important, since the first
principle numerical modeling of nonlinear and multidimen-
sional cases is still computationally demanding. Recently the
nonlinear Schrödinger equation (NLS) has been introduced
for the plasmons in a slot waveguide formed by two planar
metal dielectric interfaces [2] and at a single interface [3].
The averaging method implemented in Refs. [2,3] has been
borrowed from the theory of the dielectric waveguides [16].
In this approach, one starts from the known solution for the
linear SPPs: �F (x)eiβz, where x is the coordinate perpendicular
to the interface, z is the propagation direction, and β is the
propagation constant. Then introducing a slowly varying am-
plitude A(z,y) and assuming small nonlinearity, the Maxwell
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equations are averaged in x and the NLS equation for A is
derived [2,3].

This approach has some drawbacks. First, it is sufficiently
well justified only for the quasi-transverse fields, which
approximately satisfy the wave equation [16]. Another
problem is that it does not treat the boundary conditions
rigorously. In particular, continuity of the normal to the
interface component of the displacement Dx is guaranteed
only in the linear approximation. If the intensity of the guided
light peaks away from the interfaces and is small in the
proximity of the latter (like it typically happens in dielectric
waveguides operating on the principle of total internal
reflection), then the nonlinear terms in the boundary conditions
can be disregarded. However, the SPP intensity peaks exactly
at the interface and nonlinear contribution to the boundary
conditions is critical [15,17]. This is also true for other types
of nonlinear surface waves (see, e.g., Refs. [18–20]).

Thus, it is important to develop a rigorous procedure
of deriving the nonlinear evolution equation for surface
plasmons, such that the continuity of Dx is enforced together
with its nonlinear part. Here we develop a multiple-scale
asymptotic approach for the amplified SPPs, which treats
the nonlinear boundary conditions rigorously and reveals
the differences with the results obtained by the averaging
technique. The gain and the complex nonlinearity we use
are derived using the two-level model. Our procedure leads
to the complex Ginzburg-Landau equation that accounts for
diffraction of SPPs in the interface plane. The nonlinearity
enhancement factor derived by us is intrinsically complex,
while the averaging approach gives a real one. The difference
between the predictions of the two approaches increases
in the short wavelength limit, where SPPs are maximally
localized at the interface, and thus the nonlinear part of the
boundary condition is more important. Using our theory we
derive a criterion for SPP filamentation and discuss bright and
dark spatially localized SPPs. Strictly speaking both soliton
families are unstable, though the bright solitons demonstrate
propagation distances sufficient for their practical observation.

II. MODEL

We assume that the interface between the metal and the
dielectric is at x = 0 and z,y are the in-plane coordinates.
The evolution of SPPs obeys the time-independent Maxwell
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equations:

∂2
xyEy − ∂2

yyEx − ∂2
zzEx + ∂2

zxEz = εEx, (1)

∂2
yzEz − ∂2

zzEy − ∂2
xxEy + ∂2

xyEx = εEy, (2)

∂2
xzEx − ∂2

xxEz − ∂2
yyEz + ∂2

zyEy = εEz. (3)

The coordinates are dimensionless and normalized to the
inverse wave number k = 2π/λvac, where λvac is the vacuum
wavelength. The permittivity on the dielectric side of the
interface (x > 0) is

ε = εd + χ (|Ex |2 + |Ey |2 + |Ez|2), (4)

εd = ε′
d + iε′′

d , χ = χ ′ + iχ ′′. (5)

The permittivity on the metal side (x < 0) is

ε = εm = ε′
m + iε′′

m. (6)

If SPPs are amplified by means of active inclusions in the
dielectric, then εd and χ are functions of the gain coefficient
α. The propagation constant β for linear plasmons is

β =
√

εdεm/(εd + εm), (7)

β becomes real at the threshold α = α0 [13]:

β(α0) ≡ β0, Imβ0 = 0. (8)

The linear and nonlinear permittivities for the dielectric at
α = α0 are εd (α0) = εd0 and χ (α0) = χ0.

The active inclusions are approximated by the two-level
atom susceptibility. For light intensities much smaller than the
transition saturation intensity Is we find [15,21]

εd = εb − α
i − δ

1 + δ2
, (9)

χ = α
i − δ

(1 + δ2)2
. (10)

where εb is the real dielectric constant of the background
material hosting the two-level atoms, δ = (ω − ωa)T2 is the
dimensionless detuning from the atomic resonance frequency,
ωa = 2πc/λa , normalized to the transition linewidth, T −1

2 and
α is the dimensionless gain coefficient at the line center. The
electric field is normalized to

√
Is , which implies that the

nonlinear susceptibility χ is dimensionless (see Ref. [15] for
more details). Possible dependence of the atomic lifetimes
from the distance to the interface (see, e.g., Ref. [22]) are
specific to a choice of pumping technique and are disregarded
in what follows.

The threshold gain α0 works out as

α0(ω) = 1

2ε′′
m

(|εm|2 − 2ε′′
mεbδ)

± 1

2ε′′
m

√
|εm|4 − 4ε′′

mεb(ε′′
mεb + δ|εm|2). (11)

Lossless propagation of SPPs is impossible above the critical
value of δ = δlim as determined by the condition that the square
root in Eq. (11) becomes zero. At this point, the two solutions
for α0 degenerate (see Fig. 1). δlim should not be confused with
the plasmon resonance frequency, δspp, which corresponds to
the zero of the denominator of β0. The existence boundaries
of the SPPs at α = α0 are determined by either or both of δlim

and δspp (see Fig. 1). The upper branch solution (dashed lines in

1 2

1

2

FIG. 1. (Color online) (a) Threshold gain α0 vs detuning δ for
two different atomic resonances: λa = 400 nm [line 1 (blue)] and
λa = 700 nm [line 2 (red)]. (b) β0 vs δ. Parameters and notations are
as in (a). The solid (dashed) line corresponds to the minus (plus) in
Eq. (11).

Fig. 1) corresponds to high gain coefficients implying refrac-
tive indices of order 10 or larger. In our subsequent numerical
examples we focus on relatively small |δ|’s, thereby selecting
the lower branch of α0 [minus sign in front of the square
root in Eq. (11)]. This branch corresponds to relatively small
changes of the background refractive index as achievable for
small densities of active atoms [14]. Note, that εm is frequency
dependent; that is, εm(ω) = εm(δ/T2 + ωa). Hence α0 is a
function of both δ and ωa . We choose silver as a metal in
all our calculations.

III. FIRST PRINCIPLE DERIVATION OF THE
GINZBURG-LANDAU EQUATION FOR SPPs

The perturbation theory developed subsequently assumes
relatively small deviations of the gain coefficient from its
threshold value α0; that is,

α − α0 ≡ α0g, |g| � 1. (12)
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The ansatzes for the field components in the dielectric and the
metal are

Ex,j = [
A

(0)
x,j + A

(1)
x,j + O(|g|5/2)

]
eiβ0z,

Ey,j = [
A

(0)
y,j + O(|g|2)

]
eiβ0z, (13)

Ez,j = [
A

(0)
z,j + A

(1)
z,j + O(|g|5/2)

]
eiβ0z, j = d,m,

where A
(0)
x,j ∼ |g|1/2, A

(1)
x,j ∼ |g|3/2, A

(0)
y,j ∼ |g|, A

(0)
z,j ∼ |g|1/2,

and A
(1)
z,j ∼ |g|3/2. All A’s are the functions of z, y, and x.

However, their dependencies on z and y are assumed to be
slow relative to the fast oscillations of eiβ0z:

∂y ∼ |g|1/2, ∂z ∼ |g|. (14)

Though the y component deviates from zero, when the field
has finite size along y, it is expected to remain relatively
small, ∼|g|.

The dielectric susceptibility is trivially expanded into the
g series:

εd = εd0 + εd1, εd1 ≡ gα0∂αεd . (15)

The only value of the nonlinear coefficient χ we re-
quire subsequently is the one taken exactly at the
threshold χ (α0) ≡ χ0.

A. |g|1/2 and |g|1 orders

By substituting Eqs. (13) into the Maxwell equations, we
find in the order |g|1/2

M̂j

[
A

(0)
x,j

A
(0)
z,j

]
= 0, j = d,m. (16)

Here

M̂j =
(

q2
j iβ0∂x

0 ∂2
xx − q2

j

)
(17)

and

q2
d = β2

0 − εd0, q2
m = β2

0 − εm. (18)

Any nonlinear and transverse, that is, y dependent, effects are
disregarded in Eq. (16).

The SPP solution of Eq. (16) is well known:

A
(0)
x,d = iβ0

qd

A(y,z)e−qdx,

A
(0)
z,d = A(y,z)e−qdx,

(19)
A(0)

x,m = − iβ0

qm

A(y,z)eqmx,

A(0)
z,m = A(y,z)eqmx.

Equations (19) satisfy continuity of the normal component
of the displacement and tangential components of the field:
εdA

(0)
x,d = εmA(0)

x,m and A(0)
z,m = A

(0)
z,d at x = 0. The former

condition implies εd0qm = −εmqd , giving (after some algebra)
the expression for β0 [see Eq. (7)].

In the order |g|1, we find the linear equations for the
y component of the field,

q2
j A

(0)
y,j − ∂2

xxA
(0)
y,j = 0, (20)

which are readily solved by

A
(0)
y,d = B(y,z)e−qdx

(21)
A(0)

y,m = B(y,z)eqmx.

To determine the unknown functions A(y,z) (|A| ∼ |g|1/2) and
B(y,z) (|B| ∼ |g|) we need to proceed to the higher orders of
our perturbation series.

B. |g|3/2 order and Ginzburg-Landau equation

Proceeding to the order |g|3/2, we find an inhomogeneous
system of differential equations for corrections to the standard
SPP solutions. The correction equations on the metal side are

M̂m

[
A(1)

x,m

A(1)
z,m

]
=

[
Kx

Kz

]
eqmx, (22)

where

Kx = β2
0 + εm

qm

∂zA − qm∂yB − iβ0

qm

∂2
yyA,

Kz = −2iβ0∂zA − ∂2
yyA.

A solution of Eqs. (22) consists of a particular solution of
the inhomogeneous problem plus a general solution of the
corresponding homogeneous system (Kx,z = 0):

A(1)
x,m = 1

2q3
m

[−iβ0Kz(1 + qmx) + 2qmKx]eqmx − c
iβ0

qm

eqmx,

A(1)
z,m = Kz

2qm

xeqmx + ceqmx, (23)

where c is a constant to be determined from the boundary
conditions.

The right-hand sides of the corresponding equations in the
dielectric are more cumbersome due to nonlinear terms:

M̂d

[
A

(1)
x,d

A
(1)
z,d

]
= e−qdx

{[
Lx

Lz

]
+

[
Nx

Nz

]
e−2xReqd

}
, (24)

where

Lx = − 1

qd

(
β2

0 + εd0
)
∂zA + iβ0

qd

εd1A + qd∂yB + iβ0

qd

∂2
yyA,

Lz = −2iβ0∂zA − εd1A − ∂2
yyA,

Nx = iβ0

qd

(
β2

0

|qd |2 + 1

)
χ0|A|2A,

Nz = −
(
εd0qd + 2β2

0 Reqd

)(|qd |2 + β2
0

)
εd0qd |qd |2 χ0|A|2A.

Solutions of Eqs. (24) are given by

A
(1)
x,d = 1

2q3
d

[iβ0Lz(1 − qdx) + 2qdLx] e−qdx

+ 1

q2
d

[
Nx + iβ0Nz(2Reqd + qd )

4Reqd (Reqd + qd )

]
e−2Reqdx−qdx,

A
(1)
z,d =

[
− Lz

2qd

x + Nze
−2Reqdx

4Reqd (Reqd + qd )

]
e−qdx . (25)

The arbitrary constant terms in Eqs. (25) have been omitted,
as this does not lead to any loss of generality.

033850-3



A. MARINI AND D. V. SKRYABIN PHYSICAL REVIEW A 81, 033850 (2010)

Combining Eqs. (19), (21), (23), and (25) with Eqs. (13)
and substituting the calculated fields into the boundary
conditions

[εd + χ (|Ex,d |2 + |Ey,d |2 + |Ez,d |2)]Ex,d = εmEx,m,

Ez,m = Ez,d, Ey,m = Ey,d, (26)

we find that the latter are satisfied in the order |g|3/2 only
providing that

c = Nz

4(qd + Reqd )Reqd

(27)

and the amplitude A solves the complex Ginzburg-Landau
equation

2iβ0∂zA + ∂2
yyA + f A + γ |A|2A = 0, (28)

where

f ≡ g
α0ε

2
m∂αεd(

εd0 + εm

)2 ,

γ ≡ hχ0, h ≡ β4
0

ε2
d0

qd

(|qd |2 + β2
0

)
(qd + Reqd ) |qd |2

.

All the terms containing B(y,z) cancel out, leaving this
function undetermined until the higher-order corrections are
accounted for. Thus taking the plasmonic field as in Eqs. (13)
with the amplitude A obeying Eq. (28) we are guaranteed
that the nonlinear boundary conditions are satisfied up to and
including the |g|3/2 terms.

The first and second terms in Eq. (28) describe the
propagation and diffraction of SPPs. Ref accounts for the
shift of the propagation constant away from β0, when gain
deviates from the threshold. Imf accounts for the gain excess
(α > α0, Imf < 0) or shortage (α < α0, Imf > 0). The
nonlinear term provides an additional shift of the propagation
constant (Reγ |A|2) and of the nonlinear loss (Imγ |A|2) that
counterbalances the linear gain. Note, that the transformation
back to physical units results in the appearance of a k2 factor
in the third and fourth terms of Eq. (28).

C. Comparison with the averaging approach

Parameter h in the expression for γ is the nonlinearity
enhancement factor. h accounts for the difference between
the nonlinear responses of SPPs and free waves propagating
far from the interface. h is complex; therefore, even when
atomic nonlinearity is purely dispersive or purely absorptive,
the effective SPP nonlinearity is a mixture of both types. This
contrasts with results using the averaging approach [2,3,16],
where h is real.

The averaging approach yields a well-known expression
for the effective nonlinearity of guided modes. Following this
method, one should replace h in Eq. (28) with h̃ [2,3]:

h̃ =
∫ +∞

0 dx| �F |4∫ +∞
−∞ dx| �F |2 . (29)

Here �F is the plasmonic field given by Eq. (19)
with A = 1.
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FIG. 2. (Color online) (a) Nonlinearity enhancement coefficients
Reh (solid line) and h̃ (dashed line) calculated using two different
approaches vs λa . (b) Imh. Varying δ inside the transition linewidth
leads only to a small difference in h. The graphs shown correspond to
δ = −0.5. The short-wavelength boundary of both plots corresponds
to the point where β0 becomes imaginary.

We fix the detuning and plot h and h̃ as functions of the
resonance wavelength, λa in Fig. 2. On the short wavelength
side the plots in Fig. 2 are limited by the zero of the
denominator of β0. Through this it is seen that the two
approaches give qualitatively similar dependencies in the
long-wavelength limit, while in the short-wavelength limit
our calculations predict a significantly higher nonlinearity
enhancement. Physically, one can identify two factors de-
termining changes in h with the resonance wavelength. The
tendency for Reh and h̃ to decrease with decreasing λa is
linked to the fact that SPP intensity on the metal side increases
relative to the intensity on the dielectric side, as the wavelength
decreases. Since the metal is linear in our model, it should
lead to a drop in the nonlinearity enhancement coefficient.
However the smaller wavelengths reaching the SPP resonance
imply that the SPP field profile is getting squeezed closer to
the interface on both sides and therefore the nonlinear part
of the boundary conditions becomes more important. This
makes the difference between Reh and h̃ and the deviation of
Imh from zero pronounced in the short-wavelength limit (see
Fig. 2).
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IV. FILAMENTATION AND TRANSVERSELY
LOCALIZED SPPS

A. Filamentation of SPPs

The plane wave solution of Eq. (28) is

A0 = ρ exp

[
i

z

2β0
(Ref − ρ2Reγ )

]
,

(30)
ρ2 = − Imf

Imγ
> 0.

−Imf > 0 implies the gain above threshold; that is, α > α0.
Imγ > 0 implies absorptive nonlinearity compensating for the
excess gain. Together these conditions lead to the existence of
the SPP solution with the constant stationary amplitude, ρ.
The expression for ρ, however, diverges and our approach
breaks down if the nonlinear absorption becomes zero; that
is, Imγ = 0. This critical case requires one to account for
quintic nonlinear terms in the perturbation expansion, which
goes beyond our present objectives.

The solution (30) can be unstable with respect to a pattern
forming filamentation instability, as known for the generic
Ginzburg-Landau equation [23]. In order to study the stability
problem we perturb A0 with small amplitude waves carrying
transverse momentum p:

A = (1 + q+eκz+ipy + q∗
−eκ∗z−ipy)A0. (31)

Inserting Eq. (31) into Eq. (28) and linearizing for small |q±|
we find two solutions for κ . The unstable one is given by

2β0κ = Imf +
√

Im2f − p2
(
p2 − 2p2

max

)
. (32)

The filamentation instability sets in providing Reκ > 0. In
Fig. 3, it is seen that the Reκ vs p plot has the typical two-peak
shape. The maximal instability growth rate is achieved for

p = ±pmax, p2
max ≡ ρReγ. (33)

The characteristic filament size in physical units is w ≈
λvac/pmax. w as a function of λa is plotted in Fig. 4.

The instability domain in the (δ,α) plane is shown in Fig. 5.
Filamentation is present for the self-focusing effective non-
linearity; that is, Reγ > 0. If the nonlinearity enhancement

1

2

3

FIG. 3. (Color online) Growth rate κ of the filamentation insta-
bility expressed in physical units as a function of momentum p.
λa = 594 nm, δ = −0.3, α0 = 0.0063, and g = 0.4, 0.5, and 0.6
for the blue (line 1), the green (line 2), and the red (line 3) curve,
respectively.

3
2

1

FIG. 4. (Color online) The characteristic filament size w scaled
back into physical units vs λa for δ = −0.5, g = 0.1, 0.3, and 0.5
for the blue (line 3), the green (line 2), and the red (line 1) curve,
respectively.

factor is real, then Reγ = 0 simply implies Imχ = 0, which is
achieved at the line center δ = 0. In this case, the nonlinearity
changes from focusing (filamentation) to defocusing (no
filamentation) at the atomic resonance, that is, exactly as in
the bulk material. However, the fact that Imh 
= 0 leads to the
offset of the instability boundary away from δ = 0 (see Fig. 5).
Gain values corresponding to approximately 50% above
threshold imply the development of a filamentary pattern over
distances of 1–3 mm.

B. Bright and dark localized SPPs

The cubic Ginzburg-Landau equation is known to have
a wide variety of localized solutions, which can be relevant
in the SPP context under different circumstances. Detailed
classification of these solutions can be found in, for example,
Refs. [23,24]. Here we briefly introduce the most ubiquitous
of those, which are bright Pereira-Stenflo [25] and dark
Nozaki-Bekki [26] localized solutions.

−2 −1 0 1 2
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

δ

α

Filamentation

FIG. 5. Lossless SPPs exist above the solid line corresponding
to α = α0. SPPs are unstable with respect to filamentation on
the left from the dashed vertical line, corresponding to Reγ = 0.
λa = 400 nm.
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FIG. 6. (Color online) Propagation of a bright localized solution
and instability of its background: λa = 594 nm, δ = −0.3, α =
0.0183, α0 = 0.0063.

Both bright and dark localized solutions exist under
the same conditions: Imf < 0 (positive gain) and Imγ > 0
(nonlinear absorption). The bright solution is given by

A(y,z) = ρ

√
3

2
[sech(Ky)]1+ia exp(iuz), (34)

and the dark one is given by

A(y,z) = ρ
tanh(sy)

[cosh(sy)]ib
exp(ivz). (35)

Explicit expressions for the parameters entering Eqs. (34) and
(35) are given in the Appendix. In the limit |y| → ∞ the dark
solution tends toward the plane wave solution (30).

The bright solution is unstable because its zero background
is unstable above threshold. This instability is relatively
slow to develop and practical observation of bright solitons
over distances of hundreds of microns is still possible (see
numerical modeling results in Fig. 6). The dark solution is
known to be unstable with respect to the core instability
through most of its existence domain (see, e.g., Ref. [27]),
which is complemented by the filamentation of background,
provided the effective Kerr nonlinearity is self-focusing.
Figure 7 shows an example of the core instability, where one
can see that for the chosen parameters it develops over the
shorter distance, if compared to the instability of the zero
background of the bright solution in Fig. 6.

FIG. 7. (Color online) Destabilization of the dark soliton due to
core instability: λa = 594 nm, δ = −0.3, α = 0.0183, α0 = 0.0063.

V. SUMMARY

We have considered nonlinear propagation of the amplified
and diffracting surface plasmon polaritons above the threshold
beyond which the plasmon propagation constant becomes
real. Starting from the first principle Maxwell equations,
we have developed a technique allowing derivation of the
complex cubic Ginzburg-Landau equation for the slowly
varying plasmon amplitude. The nonlinear plasmon solutions
found by our method are guaranteed to satisfy nonlinear
boundary conditions at the interface to the required accuracy.
This distinguishes our approach and results from the recently
proposed derivation of the nonlinear Schrödinger equation for
surface plasmons, which satisfies boundary conditions only
in the linear approximation [2,3]. We have found that the
nonlinearity enhancement factor is always complex and hence
mixes real and imaginary parts of the intrinsic nonlinearity
of a dielectric. This mixing changes conditions required
for the filamentation of plasmons and the existence of the
dark (Nozaki-Bekki) and bright (Pereira-Stenflo) spatially
localized waves, relative to the respective conditions in bulk
medium. Though both of the localized solutions are unstable
with respect to growth of small perturbations, the bright
ones demonstrate quasi-stable propagation over distances of
hundreds of microns and are likely to be practically observable.
Finding mechanisms leading to the stabilization of these
structures is an important topic for future research.
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APPENDIX

The parameters entering Eq. (34) are expressed in
terms of the parameters for the Ginzburg-Landau equation
Eq. (28) as

a = −3Reγ

2Imγ
+

√
2 +

(
3Reγ

2Imγ

)2

,

K2 = − 1

2a
Imf,

u = 1

2β0
Ref + a2 − 1

4β0a
Imf.

Parameters entering Eq. (35) are

b = −3Reγ

2Imγ
−

√
2 +

(
3Reγ

2Imγ

)2

,

s2 = 1

3b
Imf,

v = 1

2β0
Ref − 1

3bβ0
Imf.
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