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Theory of spectroscopy in an optically pumped effusive vapor
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We present a theoretical framework for studying spatially dependent absorption in a thermal vapor of multilevel
atoms, of arbitrary optical thickness. The atomic state dynamics, governed by a standard atom-optical master
equation, are self-consistently coupled to the axial evolution of the probe beam intensity and the effusive gas
dynamics. We derive steady-state equations for the spatially varying distributions of atomic populations and the
probe beam intensity. From the latter, absorption coefficients in both the saturated and unsaturated regimes can
be calculated. We present solutions to the resulting equations at various levels of approximation, including an
example of the full numerical solution of a saturated, optically thick vapor of three-level atoms, demonstrating a
breakdown of Beer’s law, among other measurable effects.
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I. INTRODUCTION

Atomic vapor cells are used widely across atomic, optical,
and laser physics. For example, they find application in
linear and nonlinear spectroscopy [1–4], laser frequency
stabilization [5–7], primary thermometry [8,9], precision
measurement [10,11], and more recently in quantum com-
munication [12–14], quantum memories [15–17], and full
quantum computation [18]. To predict and understand the
key attributes that make the cells useful for such applications
(e.g., the spectral lineshape of the absorption) the depth of
the spectroscopic features, as well as decoherence related
to atomic motion in quantum applications, it is essential to
account for the role of gas dynamics and the interchange of
energy between the optical and atomic systems.

Previous efforts have undertaken to do this under various
restrictive assumptions. Some models assumed a uniform
transverse beam intensity profile [2,19–21], or have not
accounted for the intensity dependent absorption [22]. A
common approach was the addition of a phenomenological
relaxation rate between formally stable ground-state levels
to account for beam transit effects (Ref. [23] and references
therein). A number of numerically intensive models were also
presented to solve the full density matrix model in the time
domain [20,21,24]; however, those approaches have not taken
into account the scattering of the light field by the atoms and
the resulting evolution in intensity along the beam axis.

In contrast to previous work, in this article we develop a sys-
tematic theoretical framework that self-consistently couples
multilevel atomic state dynamics, the optical beam intensity
evolution, and the gas dynamics in the effusive regime1. Using
this newly developed framework, we calculate the atomic
population distributions and the optical intensity as a function
of axial and radial coordinates for two- and three-level atoms.
The results exemplify the essential physics of optical pumping
in a saturated atomic vapor. Our approach applies to atomic
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1That is, where the mean-free path between atomic collisions is

larger than the spatial extent of the vapor cell.

vapors of arbitrary optical thickness, including regimes in
which the atomic transitions are strongly saturated. Numerical
solutions allow us to investigate high intensity beams entering
optically thick vapor cells, where we observe the transition
from saturated populations in which Beer’s law fails, to weakly
excited populations where Beer’s law is re-established as
the beam becomes strongly attenuated deep into the vapor.
Importantly, the solutions to our coupled system of population
dynamics and optical beam evolution show the effects of the
gas dynamics to be very important in many of the applications
listed previously. Ignoring them leads to qualitatively incorrect
conclusions.

We begin by revisiting the standard derivation of the
atomic population evolution equations for multilevel atomic
populations in a time-dependent field, starting from the atom-
optical master equation. Though our approach is applicable
to any atomic model, to illustrate the essential physics of
saturated atomic absorption we focus on a three-level system
with two optically active states and a dark state. We couple the
population dynamics to the thermal gas dynamics and the axial
beam evolution, to derive coupled, nonlinear, integro-partial
differential equations (PDE’s) for the atomic populations and
intensity profiles. From the axial variation of the intensity
profile, we are able to directly compute various experimentally
important quantities such as the absorption coefficient. We
show that our approach gives standard results in the limits of
weakly probed systems, for two-level atoms under uniform
illumination, and for optically thin systems.

Finally, we describe a numerical method to solve for
the spatially varying populations and laser intensity in a
self-consistent way. To illustrate the method, we provide an
example of a numerical calculation for the axial dependence of
the pump intensity in a saturated vapor of three-level atoms. We
solve for an initially Gaussian transverse beam profile, as well
as a “top-hat” beam profile, and show significant quantitative
differences in the saturated absorption of these two profiles.
Importantly we show that our model predicts that the spatial
variation of the optically pumped atomic populations will
differ from that of the spatial dependence of the probing laser
beam intensity. As atoms move through the beam, we see in our
simulations a wake of excited atoms: The steady-state atomic
populations are modified from their thermal equilibrium values
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by the nearby laser beam, a phenomenon which seems to have
been overlooked in other work [19,23,25].

II. ATOMIC MODEL

The dynamics of the state of a driven atomic system is
governed by a generalization of the optical Bloch equations.
We consider the problem of driving between two degenerate
manifolds of hyperfine states, Fg and Fe. The master equation
for the atomic density matrix ρ, takes the generic form

dρ

dt
= −i[Hatom + Hdriving(t), ρ] +

∑
j,k

γj,kD[|gj 〉〈ek|]ρ,

(1)

where {|gj 〉} and {|ek〉} are a basis of states for the hyperfine
manifolds Fg and Fe, respectively, D[b]ρ = aρb† − (b†bρ +
ρb†b)/2 for any atomic operator b and γj,k is the decay rate
between states |ek〉 and |gj 〉. In the absence of an external
magnetic field,

Hatom = ωjk

2

⎛
⎝∑

k

|ek〉〈ek| −
∑

j

|gj 〉〈gj |
⎞
⎠ , (2)

where ωjk is the transition frequency. Finally,

Hdriving(t) =
∑
j,k

�E(t) · �µjk(|j 〉〈k| + |k〉〈j |)/2, (3)

where �E(t) is the time-dependent driving field amplitude and
�µjk is the dipole moment for the transition between |ek〉
and |gj 〉. For future reference, we define the Rabi frequency
�jk(�x, t) = �E(t) · �µjk .

Since the principal objective of this article is to elucidate the
role of the effusive gas dynamics in saturation spectroscopy, we
will simplify the generic atomic model above to a three-level
system consisting of a ground-state manifold {|1〉, |2〉} and
a nondegenerate excited state |3〉. The transition |1〉 ↔ |3〉
is driven coherently by an external laser. Level |3〉 suffers
spontaneous emission to both |1〉 and |2〉. The dynamics of a
driven three-level atom is then given by the standard quantum
optical master equation2

dρ

dt
= −i[H (t),ρ] + γ31D[|1〉〈3|]ρ + γ32D[|2〉〈3|]ρ,

(4)

H (t) = �

2
(|3〉〈3| − |1〉〈1|) + �(�x,t)

2
(|3〉〈1| + |1〉〈3|),

where � = ω13 − ωL is the detuning between the driven
transition and the driving laser frequency and � ≡ �13. In
this model, we ignored direct transitions between levels |1〉
and |2〉, that is, γ12 = 0. This follows for atomic vapors such
as Rb or Cs, in which states |1〉 and |2〉 are in the same hyperfine
manifold, so transitions between them are dipole forbidden.

For our models, we assume that the diameter of the vapor
cell is much larger than that of the pump beam. As a result,
atoms approaching the beam are assumed to start in a thermal

2See, e.g., Sec. 10.5 of Ref. [26].

state

ρ(t = −∞) ∝ e−Hatom/kBT . (5)

This is predicated on the known rapid rethermalization
of atoms upon collision with the container walls [27–29].
Equation (5) represents the initial state of the atoms for our
system.

The three-level atomic model described is sufficient to
exemplify the essential physics of the problem of absorption
of a saturating beam. We note that for the purposes of detailed,
precise numerical simulations, it may well be necessary to
include the full multilevel hyperfine structure in the atomic
dynamics, at the cost of moderate additional computational
overhead. Atomic models suitable for such simulations were
described in detail in previous work [20,21,24] and Sec. 4.3 of
Refs. [30] and [31].

A. Adiabatic Elimination

Equation (4) describes coherent dynamics associated with
the driving as well as incoherent decay processes. In thermal
systems, damping causes the off-diagonal elements of ρ to
relax rapidly: They remain close to equilibrium with the pop-
ulations at all times. These elements can thus be adiabatically
eliminated by setting the time derivative to zero and solving
the remaining (approximate) algebraic equation [32,33]. For
clarity and to define notation, we recapitulate the derivation
of the population rate equations by adiabatic elimination. For
instance, the master equation gives

ρ̇13(t) = i � ρ13 + i � (ρ33 − ρ11) − �ρ13/2. (6)

One approach to adiabatic elimination follows from setting
ρ̇13 → 0, to yield an algebraic equation with solution

ρ13 = i �

i� − �/2
(ρ33 − ρ11). (7)

This expression shows that the adiabatic elimination is self-
consistent if � 	 � or � 	 �, so that the prefactor on the
right-hand side (rhs) is small. Substituting these off-diagonal
elements, which adiabatically follow the populations, into
the ordinary differential equation (ODE’s) for the diagonal
population elements yields the well-known population rate
equations

d �P
dt

= M · �P , (8)

where �P = {P1,P2,P3} = {ρ11,ρ22,ρ33} and

M =

⎛
⎜⎜⎝

− �2/�

1+4�2/�2 0 β � + �2/�

1+4�2/�2

0 0 (1 − β)�
�2/�

1+4�2/�2 0 −� − �2/�

1+4�2/�2

⎞
⎟⎟⎠ ,

where � = γ13 + γ23 and β = γ13/� is the branching ratio to
level 1. With respect our simple three-level system, if levels 1
and 2 are in the same hyperfine manifold (i.e., differ only in
the mF quantum number), then symmetry considerations
require that γ31 = γ32, so that β = 1/2. In atoms with
degenerate hyperfine manifolds, β can be calculated from
Sec. 4 of Refs. [30] or [34]. We shall employ Eq. (8) to
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calculate the atomic population dynamics, as is done in
previous work [20,21,24], though we note in passing that with
a modest increase in computational effort, we can solve the
fully quantum dynamics in Eq. (4).

III. GAS DYNAMICS

Equations (4) and (8) apply to the atomic rest frame, in
which a given atom sees a time-dependent field as it passes
through the beam. In fact, we wish to consider a thermal
ensemble of atoms characterized by a continuum of atomic
velocity classes, denoted by the velocity vector �v. This thermal
atomic gas is assumed to be at low pressure, so that the
mean-free path between collisions is larger than the spatial
extent of the vapor cell. This condition is easily met in
commercial evacuated atomic vapor cells of, for example, Cs
or Rb at room temperature. As a result, the vaporized atoms
move ballistically and collision broadening is negligible.

To couple the atomic population dynamics to the gas
dynamics, we transform from the atomic rest frame for atoms
in velocity class �v to the laboratory frame, in which the field
is spatially varying, but static. The total time derivative in
the atomic rest frame becomes the material derivative in the
laboratory frame

d/dt → ∂/∂t + �v · �∇. (9)

At steady state in the laboratory frame, the partial time
derivative vanishes, so that for each velocity class, we need
to solve the PDE

�v · �∇ �P (�x; �v) = M · �P (�x; �v). (10)

Since the laser probes the average population at a point in
space, we will ultimately average these populations over the
velocity distribution.

The initial condition, Eq. (5), in the atomic rest frame,
becomes a boundary condition in the laboratory frame. Atoms
starting at position �x0 well outside the beam have a population
distribution �P (�x0, �v) = �Ptherm.

We note that, in what follows, we will use both transverse
and cylindrical coordinate systems. In both systems, the
z axis is coincident with the center of the laser beam. For
a given velocity class �v, the transverse coordinate system is
a rectilinear system with the τ axis parallel to the transverse
velocity component (i.e., the velocity component orthogonal
to the z axis). Velocities in the transverse coordinate system are
defined by the two components vz and vτ , with v2

τ = v2
x + v2

y .
The cylindrical coordinate system is the usual one, with the
radial direction at each point defined to be both orthogonal to
and passing through the z axis. The reason for the distinction
is that the atomic motion in the effusive regime is rectilinear,
while the intensity and average population distributions at
each point in space are cylindrically symmetric. Thus the gas
dynamics, Eq. (10), are most naturally solved in the transverse
coordinate system, while the atomic population dynamics,
Eq. (8), are most naturally solved in the cylindrical coordinate
system. It should be noted that for a given atom, vr and vτ are
different if its trajectory does not pass through the center of
the beam: vτ remains constant while vr varies in time.

The principal effect of the transverse component of the ve-
locity vτ is to induce a time-dependent envelope in the atomic

rest frame, as atoms in each velocity class traverse the beam
profile. In the laboratory frame, this manifests as a wake of
excited atoms which extend beyond the limits of the laser
beam, in the direction of motion of the velocity class (see
Fig. 4). The principal effect of the axial velocity is to induce a
velocity-dependent Doppler shift, � → �vz

= � − vzω/c.

IV. AXIAL BEAM EVOLUTION

As light propagates through the medium, there are two
important processes that occur. First, the light diffracts, accord-
ing to the standard wave equation. Second, light is scattered
from atoms in the vapor, so the total power transmitted
decreases with optical depth. This latter effect leads to a
nonlinear coupling between the optical beam intensity and the
population dynamics: In regions of high intensity, the atomic
populations saturate, so scattering is weak and so the beam is
only weakly absorbed. Thus the optical scattering rate depends
on the atomic populations, which depends on the local optical
intensity, which depends in turn on the axial dependence of the
scattering rate. We therefore need to self-consistently couple
the axial beam evolution to the atomic population dynamics.

The electric field dynamics are given by the combined effect
of these two processes

∂E

∂z
= ∂E

∂z

∣∣∣∣
diff

+ ∂E

∂z

∣∣∣∣
abs

. (11)

As shown in the following, for the systems we are concerned
with, absorption is the most significant of these two processes,
and we may ignore the effects of diffraction.

A. Diffraction

An optical beam with a slowly varying envelope has an
electric field of the form E(�x, t) = Ẽ(�x, t)ei(ωt−kz). In the
paraxial approximation, the envelope diffracts according to
the Schrödinger-like, paraxial Helmholtz equation

∂Ẽ

∂z

∣∣∣∣
diff

= − i

2k
∇2

�τ Ẽ, (12)

where ∇2
�τ = ∂2/∂x2 + ∂2/∂y2 is the transverse Laplacian

[35].
The amount by which diffraction affects the beam profile

is determined by the Fresnel number NF = a2/(λ L), where a

is the beam diameter, λ = 2π/k, and L is the length of the
medium. If the Fresnel number is very large, then diffraction
is negligible and the beam simply shadows the input profile.

This can be seen by estimating the amount by which the
beam varies over an axial distance L, if the transverse profile
varies from Ẽ0 to 0 over a distance a. Then |∇2

�τ Ẽ| ∼ Ẽ0/a
2

and Eq. (12) gives

|δẼ| ∼ L

∣∣∣∣∂Ẽ

∂z

∣∣∣∣ ∼ 1

4πNF

Ẽ0. (13)

For an optical beam (λ ∼ 1 µm) of diameter 1 mm, passing
through a 10-cm-long vapor cell, 4πNF ∼ 100. Therefore,
diffraction alone should change the beam profile by less than
1% over the length of the typical experiment.
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δA

δz
laser

FIG. 1. (Color online) Light scattering off atoms within a small
volume in the pump laser.

For the remainder of this article, we therefore ignore the
effects of diffraction, making the approximation

∂E

∂z

∣∣∣∣
diff

≈ 0. (14)

We note that the additional computational effort to include
Eq. (12) in the simulations (described later) is small, so may
be incorporated easily should it prove important for a particular
situation.

B. Absorption

The optical pump beam is depleted as it propagates through
the vapor. Consider a small volume δV = δA δz of the gas,
at position �x, as illustrated in Fig. 1. We assume that photons
that are spontaneously emitted from the atoms are permanently
scattered out of the beam. It follows that the number of photons
scattered, δN , as the light propagates an axial distance δz =
c δt within the small volume is

δN(�x) = #(stimulated P3 → P1) − #(absorbed P1 → P3)

= [P̄3(�x) − P̄1(�x)]
�2(�x)/�

1 + 4�2/�2
ρ0 δV δt,

where ρ0 is the atomic density and the over-bar denotes the
velocity-averaged populations. The change in intensity of the
beam is then

δI = h̄ω

δA

δN

δt
= h̄ω(P̄3 − P̄1)

�2/�

1 + 4�2/�2
ρ0 δz

(15)

⇒ ∂I

∂z
= h̄ωρ0(P̄3 − P̄1)

�2/�

1 + 4�2/�2
.

�2 and I are proportional to one another, related by [36]

I

Isat
= 2�2

�2
, (16)

where Isat = cε0h̄
2�2/(4|µ|2) (see, e.g., Sec. 4.2 of Ref. [30]),

and is tabulated for several atomic transitions in Table I. Then

∂(�2)

∂z
= κ(P̄3 − P̄1)

�2

(1 + 4�2/�2)
, (17)

where κ = h̄ωρ0�/(2Isat). The rhs of this equation exhibits
the nonlinear coupling between the optical beam intensity,
proportional to �2, and the atomic populations.

Including the velocity averaging in Eq. (17) explicitly yields

1

�2

∂(�2)

∂z
= κ

∫
d3�v Fv0 (�v)

P3(�x; �v) − P1(�x; �v)

1 + 4�2
vz

/�2
, (18)

where Fv0 (�v) = π−3/2e−(v/v0)2
/v3

0 is the Maxwell-Boltzmann
distribution with v0 = (2kBT /m)1/2.

Since � ∝ Ẽ, we see that the electric field envelope decays
according to

1

Ẽ

∂Ẽ

∂z

∣∣∣∣
abs

= 1

2 �2

∂(�2)

∂z
. (19)

Since the effects of diffraction are negligible, we will use
Eq. (18) to completely specify the axial evolution of the beam.

V. NONDIMENSIONAL COUPLED DYNAMICS

The dynamical system of the atomic populations plus
light satisfy the coupled integro-differential equations (8)3

and (18). To begin setting up the problem for solution, we
nondimensionalize space and time using z∗ = z/r0, where r0

is some characteristic length (e.g., the radius of the Gaussian
input beam), and t∗ = �t (and so, e.g., �∗ = �/�). Then

�v∗ · �∇∗ �P = M∗ · �P , (20)

3Or Eq. (4) for the full quantum dynamics.

TABLE I. Typical values for the D1 and D2 transitions in 87Rb and 133Cs from data tabulated in
Refs. [30,31]. Quantities below the line are temperature dependent and are evaluated at T = 298.
The quantity πκK/2|�=0 = √

πκ/(2ν) relates the dimensionless z̃ to dimensional z, and is the inverse
absorption length in the unsaturated regime.

87Rb 133Cs

D1 D2 D1 D2

ω (2π×THz) 2π × 377 2π × 384 2π × 335 2π × 352
� (106 s−1) 36 38 28 33
Isat (mW cm−2) 4.484 2.503 2.506 1.657

1-1 ρ0 (m−3) 9.72 × 1015 4.83 × 1015

κ (m−1) 155 299 95 178

v0 (m s−1) 242 193
�dop (2π× MHz) 2π × 305 2π × 311 2π × 216 2π × 227
ν = �dop/� 8.47 8.17 7.72 6.88
πκK/2|�=0 (m−1) 16.2 32.4 10.9 22.9
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1

�∗2

d(�∗2)

dz∗ = r0κ

∫
d3�v∗ Fv∗

0
(�v∗)

P3 − P1(
1 + 4�∗

v∗
z

2) , (21)

where v∗
0 = v0/(r0�) and �∗

v∗
z

= �∗ − v∗
z r0ω/c. For a three-

level atomic model

M∗ =

⎛
⎜⎜⎝

− �∗2

1+4�∗2 0 β + �∗2

1+4�∗2

0 0 (1 − β)
�∗2

1+4�∗2 0 −1 − �∗2

1+4�∗2

⎞
⎟⎟⎠ .

For the remainder of this section the asterisks denoting
nondimensional quantities will be dropped, and all variables
will be assumed to be nondimensional.

In cylindrical coordinates,∫
d3�vFv0 (�v) =

∫ 2π

0

dθ

2π

∫ ∞

−∞
dvzF

(z)
v0

(vz)
∫ ∞

0
dvτF

(τ )
v0

(vτ ),

where

F (z)
v0

(vz) = e−(vz/v0)2

√
πv0

,

F (τ )
v0

(vτ ) = 2vτ e
−(vτ /v0)2

v2
0

,

are the speed distributions for the axial vz and transverse v2
τ =

v2
x + v2

y velocity components.

VI. WEAK BEAM AND VOIGT PROFILES

Far from saturation (�∗2(r, 0) 	 1), P1 is approximately
constant everywhere, and P1 � P3 ≈ 0. Then Eq. (21)
becomes

∂ ln �2

∂z
= r0κ

∫ ∞

−∞
dvz

F
(z)
v∗

0
(vz)

1 + 4�2
vz

[P3(vz) − P1(vz)] (22)

= −P1κc/ω

∫ ∞

−∞
d�vz

F (z)
ν (� − �vz

)

1 + 4�2
vz

= −P1κπc V (�, ν)/2ω. (23)

Here, the Voigt function V is a convolution of a Gaussian
of (dimensionless) width ν = �dop/� (where �dop = ωv0/c),
centered at �∗, with a Lorentzian of (dimensionless) width
1/2 centered at the origin. This is the usual expression for
unsaturated absorption. The solution is then given by a beam
intensity that decays exponentially along the cell

ln �∗2(r, z) = −P1κ π c V (�, ν)z/2ω + ln �∗2(r, 0).

This analysis shows that one should only expect the Voigt
function to be a a good representation of the spectral absorption
line when P1 and P3 are far from saturation. As described
in detail in the Appendix, the first correction to Eq. (23) is
· · · + d2(P3−P1)

d�2 κ c I/(2 ω), where I is defined in Eq. (A1). We
estimate the size of P ′′

3 − P ′′
1 from the steady-state solution

for a two-level atom [see Eq. (31)], and find that for weak
driving P ′′

3 − P ′′
1 = −16�2 + O[�4]. This correction to the

Voigt lineshape takes the form of a doubly peaked function of
�, shown in Fig. 7. The peak to trough height of the correction
to the spectrum is ∼�2κc

5ν3ω
. This should be compared to the

height of the spectral line given by Eq. (23), which is ∼
√

πκc

2νω
.

Taking the ratio of these, we find that the relative amplitude of
the corrections is ∼0.2(�∗/ν)2 = 0.2(�/�dop)2.

VII. SATURATING MODELS

If the pump is strong enough that the populations are
partially saturated, we need to include the effects of spatial
variation in the populations. The equations become sufficiently
complicated that we resort to numerical solutions. We make
several controlled approximations and assumptions about the
pump beam to simplify the numerical integration:

1. That the absorption length is much longer than the
beam width, a. This means that the axial variation of the
beam is small for a typical atom crossing the beam. This
follows because the term ∂ρ/∂τ in Eq. (20) varies much
more over a length scale determined by a, which is much
shorter than the term ∂ρ/∂z, which varies over a distance
of order the absorption length4. Then Eq. (20) becomes
vτ ∂ �P/∂τ = M · �P .

2. That the Doppler broadening is much larger than the
natural linewidth (i.e., ν � 1). Making a change of variables
from vz to �vz

in the velocity integrals gives∫ ∞

−∞
dvzF

(z)
v∗

0
(vz)

P3 − P1

1 + 4�2
vz

≈ c

r0ω
F

(z)
v∗

0

(
c�

�r0ω

) ∫ ∞

−∞
d�vz

P3 − P1

1 + 4�2
vz

= 2K

∫ ∞

0
d�vz

P3 − P1

1 + 4�2
vz

, (24)

where we also used the symmetry of Pj with respect to � to
halve the integration range and

K = c

ωr0
F

(z)
v∗

0
(c�/�r0ω) = e−(�/�dop)2

√
πν

,

is a modified, nondimensional inverse-absorption length,
which accounts for the reduced thermal population of atoms
resonant with the laser around detuning �. Note that this
approximation leads to spectra that have a strictly Gaussian
tails at very large detuning, rather the the Lorentzian tails of
the Voigt profile.

3. That the beam is initially cylindrically symmetric. Since
the atomic velocity distribution is cylindrically symmetric,
it follows that the velocity-averaged populations and the
intensity will also be cylindrically symmetric. Then the angular
integral appearing in the velocity averaging can be replaced
by an angular integral over space,∫ 2π

0

dθ

2π
Pj [�x; �v(θ )] =

∫ 2π

0

dθ

2π
Pj (r cos θ, r sin θ, z; 0, vτ , vz).

We therefore have the following set of coupled, nonlinear,
integro-differential equations to solve

vτ

∂ �P
∂τ

= M · �P , (25)

4A small fraction of atoms, ∼a2/4π (abs. length)2 ≈ 0.1% will
have velocities that are nearly parallel to the beam, and so sample
significant axial variation. This approximation ignores these.
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∂ [ln �2(r, z)]

∂z
= 2r0κ K Q(r, z)

Q(r, z) =
∫ 2π

0
dθ

∫ ∞

0
d�vz

∫ ∞

0
dvτ

F (τ )
v0

(vτ )

2π

P3−P1

1+4�2
vz

,

(26)

where Pj = Pj (r cos(θ ), r sin(θ ), z; 0, vτ ,�vz
), and recalling

that M depends on �2.
For the purpose of numerical integration, we make one fur-

ther transformation, defining z̃ = (π r0κ K/2)z∗, so Eq. (26)
becomes

∂ (ln �2)

∂z̃
= (4/π ) Q. (27)

The quantity πκ K/2 is the inverse absorption length in the
unsaturated regime, and is calculated in Table I for different
atomic transitions. There are then only three quantities that we
need to specify explicitly: β, v0 and the initial beam profile,
�2

0(r). All other parameters in the problem (L,�,�, κ , etc.)
are accounted for in the coefficient r0κK , and this simply
determines the range of z̃ over which we need to integrate
Eq. (26).

Absorption coefficient

The normalized absorbed power in a vapor of depth L is
given by

AL̃ = 1 −
∫

r dr �2(r,L̃)∫
r dr �2(r,0)

. (28)

We use this to define the averaged absorption coefficient

α = − ln(1 − AL̃)

L̃
. (29)

For weak probe beams, Beer’s law applies (i.e., AL̃ = 1 −
e−αL̃), and α will be independent of the optical depth of the
vapor, L̃. For beams that partially saturate the transition, Beer’s
law fails, and α depends on L̃.

In a given numerical simulation (with a specified input beam
profile and intensity) we are able to compute AL̃ and α for the
range of L̃ over which we extend the numerical integration.
By redimensionalizing L̃,

L̃ =
√

π

2

κ L

ν
e−(�/�dop)2

, (30)

it follows that from the single simulation, we can also compute
A and α as functions of the atom-laser detuning (via �), atomic
density (via the κ dependence), temperature (via both κ and
�dop), or physical length (via L), as appropriate for the relevant
experimental situation.

Because of saturation effects, if we wish to investigate the
effect of varying the input probe beam power or intensity, we
need to perform a different numerical simulation for each input
beam setting.

VIII. SPECIFIC CASES

We now solve the system, subject to the approximations
previously, in three different regimes. First, we solve the case

of two-level atoms (β = 1) under uniform illumination. Then
we solve for three-level atoms in optically thin and thick media
taking into account the Gaussian beam profile.

A. Two-level atoms under uniform illumination

To get some intuition into the model, we simplify the
system to the case of uniform illumination of infinite transverse
extent. Then there is no r or τ dependence [i.e., ρ = ρ(z; �vz

),
�2 = �2(z̃)]. We also take r0 = κ−1. It follows that ∂τ

�P = 0,
so M · �P = 0, and the atomic state is always at instantaneous
equilibrium with the local field intensity. Note that in this
regime there is no difference between the fully coherent
dynamics and the incoherent dynamics derived by adiabatic
elimination. In the three-level model discussed previously,
in which level 2 is a dark state, the equilibrium atomic
state is always P2 = 1, P1 = P3 = 0. This corresponds to the
condition in which all atoms reached state 2, and the vapor is
transparent. The dynamics are then trivial.

On the other hand, for a two-level system (i.e., setting β = 1
to suppress decay to level 2), the equilibrium populations are

P3(z̃; �vz
) = �2(z̃)

1 + 4�2
vz

+ 2�2(z̃)
(31)

⇒ P3 − P1 = − 1 + 4�2
vz

1 + 4�2
vz

+ 2�2(z̃)
.

Then Eq. (27) becomes

d �2

dz̃
= − 4

π

∫ ∞

0
d�

�2

1 + 4�2 + 2�2

(32)

= − �2

√
1 + 2�2

.

The solution to this ODE satisfies

z̃/2 = coth−1(
√

1 + 2�2(z̃)) −
√

1 + 2�2(z̃)

− coth−1
(√

1 + 2�2
0

) +
√

1 + 2�2
0,

0 5 10 15 20 25 30 35

0.01

0.1

1

10

100

Ω
∗2

z̃

FIG. 2. (Color online) Solution and approximations to Eq. (32)
showing the nondimensional Rabi frequency �∗2 versus nondimen-
sional length z̃ = (π κ K/2)z [also see Eq. (30)], for two-level atoms
(β = 1) under uniform illumination. The dotted blue line is Beer’s
law, applicable to the unsaturated populations, and the red line is the
highly saturated regime.
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FIG. 3. (Color online) Fractional power absorption versus pump
intensity, for different effective vapor lengths, L̃ for a two-level atom
under uniform illumination. Both axes are nondimensional.

where �2
0 = �2(0). The solution may be expressed in a simple

form in the regimes for which �2 � 1 and �2 	 1

�2(z̃) ≈

⎧⎪⎨
⎪⎩

(
2
√

1 + 2�2
0 − z̃

)2
/8 if �2 � 1,

2
√

1+2�2
0−2√

1+2�2
0+1

e2(
√

1+2�2
0−1)e−z̃ if �2 	 1.

(33)

The boundary between these regions occurs around z̃b =
2
√

1 + 2�2
0 − 2 coth−1(

√
1 + 2�2

0). The exact solution to
Eq. (32) and these approximations [Eq. (33)] are shown in
Fig. 2.

The fractional absorption is then

AL̃ = �2
0 − �2(L̃)

�2
0

. (34)

This is plotted in Fig. 3, showing both unsaturated (�2
0 	 1)

and saturated (�2
0 � 1) regimes.

Using the approximate forms for �2, valid in each of these
regimes, we derive approximate expressions for the absorption
coefficients

AL̃ ≈
⎧⎨
⎩

(
2
√

8�2
0−L̃

)
L̃

8�2
0

if �2
0 � 1

1 − e−L̃ if �2
0 	 1.

The former expression, for �2
0 � 1 represents the highly

saturated regime. The latter, applicable to a weak probe, is
simply Beer’s law, with a dimensionless absorption coefficient
of unity.

B. Optically thin three-level model

In the event that the vapor is optically thin, so that the
fractional absorbed power is small, we use the approximation

AL̃ ≈ −L̃

∫
r dr ∂z̃�

∗2(r, 0)∫
r dr �∗2(r, 0)

(35)

= −4L̃

π

∫
r dr Q∗(r, 0)�∗2(r, 0)∫

r dr �∗2(r, 0)
,

where the second step follows from Eq. (27). To evaluate the
integral, we solve Eq. (25) numerically for the populations at
z = 0, from which we derive Q. Redimensionalizing [using
Eq. (30)] we find

A� = − 2√
π

κ L

ν
e−(�/�dop)2

∫
r dr Q∗(r, 0)�∗2(r, 0)∫

r dr �∗2(r, 0)
. (36)

The ratio of integrals in this expression is a numerical factor,
and is straightforwardly computed numerically for specific
values of the problem parameters. Clearly the absorption
coefficient has a Gaussian dependence on the detuning, as
expected in the regime ν � 1.
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(a) (b) (c)
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r∗

0

5
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z
0
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Ω∗2

~

FIG. 4. (Color online) An example solution to the equations for a specific velocity class, vτ = 1 chosen to be parallel to the y axis, in
an optically thick vapor with parameters β = 0.8, �∗

�0
2 = 10, and v∗

0 = 1. The initial boundary condition is given by �P (y = −3, x) = �Ptherm,
where y = −3 is far outside the beam, (i.e., is effectively −∞). Shown are contour plots of (a) P1 and (b) P3, evaluated at z̃ = 1, �∗

vz
= 0.

The dotted circles at r = √
2 represent the 1/e2 intensity of the input Gaussian beam profile. The intensity distribution �2(r, z), in which all

velocity classes are integrated over (c). Quantities shown are all dimensionless.
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∆
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FIG. 5. (Color online) Absorption coefficient versus � for dif-
ferent axial positions in the vapor, that is, for L̃|�=0 = √

πκ L/(2ν)
taking values 0 (lower curve) 3, 6, 9, 12, and 15 (upper curve),
calculated from data in Fig. 4(c), using Eq. (29). The breakdown
of Beer’s law near zero detuning is evident: If it applied, these
curves will fall on top of one another for all �. The lower curve, at
L̃ = 0, is a Gaussian: the absorption curves become increasingly less
Gaussian.

C. Optically thick three-level model

For a vapor with finite absorption, we need to solve the full
dynamical problem. Here, we take r0 = a, the radius of the
Gaussian input beam, so �∗

0
2(r) = �∗

�0
2 e−r2

.
To numerically solve the nonlinear coupled equations (25)

and (27), we adopt a self-consistent approach:
1. Guess �∗2(r, z̃) [e.g., �∗2(r, z̃) = �∗

�0
2 e−r2−z̃/2].

2. Solve Eq. (25) numerically, treating �∗2(r, z̃) as a known
function.

3. Calculate Q(r, z̃) found in step 2, by numerically
integrating over the populations for all velocity classes and
angles. In practice, Monte Carlo methods work well for this
multidimensional integral.

4. Solve Eq. (27) numerically using Q determined in step
3, with initial condition �∗

0
2(r) = �∗

�0
2 e−r2

.
5. Iterate back to step 2.

After several iterations, this process converges to self-
consistent solutions for the populations and the intensity
profile.

For numerical integration, the transverse boundaries should
be chosen to be τ ∗ � 1, so that the Gaussian beam profile is
well represented. The axial integration should extend over 0 �
z̃∗ � π �c

2ωv0
κL = πκL/2ν. The transverse velocity integration

v∗
τ , should extend over a range several times v∗

0 so that the
Maxwellian velocity distribution is well represented. Finally,
�vz

should be integrated over 0 � �∗
vz

� 10, so that the
Lorentzian is well represented.

To illustrate the simulation, we solve for a specific set
of parameters5. Assuming � ∼ 106/s, v0 ∼ 103 m/s at room
temperature, we get v∗

0 ∼ 1 for a beam of radius a = 1 mm.
We arbitrarily choose β = 0.8 and �∗

�0 = 10. For numerical
routines, in this example, we integrate over −3 � x∗, y∗ � 3,
0 � �∗

vz
� 10, 0 � v∗

τ � 3, and 0 < z̃ � 15.
After a few iterations the self-consistent intensity profile

converges to a relative variation between successive iterations
of �0.1% at each spatial point, validating the procedure.
Because we employ Monte Carlo integration routines, we do
not expect more iterations to improve this figure further.

Example plots of the population and intensity distributions
are shown in Fig. 4(a), 4(b), and 4(c). Since the medium is
more absorptive at low intensities, there will be higher light
absorption in the wings than at the center of the beam, leading
to a transversal narrowing of the beam. This phenomenon is
seen in the numerical simulations.

From �2(r, z) in Fig. 4(c) one can directly calculate the
absorption coefficient as a function of �, using Eq. (29). The
result is shown in Fig. 5. The is the simulated result of an
absorption spectrum obtained in an experiment in which the

5We employ the numerical PDE and integration routines provided
in MATHEMATICA 7.0.
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FIG. 6. (Color online) (a) Comparison of a Gaussian beam profile (dark curves) and an approximately “top-hat” beam profile (light curves),
at different values of z̃, indicated, for �∗

0
2 = 10, β = 0.8, and v∗

0 = 1. (b) Absorption coefficient over distance, showing the quantitative
difference in absorption between the Gaussian and top-hat profiles, for equal input powers.
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FIG. 7. (Color online) Generic form of the correction to the Voigt
profile.

laser frequency is scanned through the transition, for different
optical depths of the vapor (i.e., different vapor pressures, or
different physical vapor cell lengths). Notably, the curves are
not coincident around � = 0, where the transition is saturated
and Beer’s law breaks down. In the wings, � > �dop, the
transition is not saturated, and the curves are coincident,
indicating that Beer’s law holds, in accordance with intuition.
The lowest curve is a Gaussian, implying that the upper curves
are more sharply peaked than a Gaussian distribution.

D. Comparison of top-hat and Gaussian profiles

Previous studies assumed a top-hat profile (constant over
some finite range of r , then zero) for the transverse laser
profile [2,19,20]. Our approach enables us to directly compare
this assumption with the more realistic Gaussian profile. To
make a fair comparison, we make the incident power of both
profiles equal, so that

�
(G)
0

2
(r) = �∗

�0
2
e−r2

,

�
(U )
0

2
(r) = �∗

�0
2
H (1 − r),

where H is a smooth approximation to the unit step.
Figure 6(a) shows the beam profile at different axial points,

and Fig. 6(b) shows the absorption coefficient as a function of
the axial distance. Clearly, the absorption is stronger for the
Gaussian profile, which follows because a significant fraction
of the beam power is in the wings of the profile, where the
absorption is not saturated, and is therefore higher. As a
consequence of the different axial dependence, we see that
when combined with Eq. (30), the shape and amplitude of the
absorption spectrum will be different in the two cases

IX. CONCLUSION

In this work we describe a model for saturation spec-
troscopy of an atomic vapor, including the effusive gas dy-
namics. The model reduces to known results in the appropriate
limits, and provides a numerical approach to simulating

nontrivial beam profiles. The axial and radial dependencies
of the beam intensity is determined self-consistently with
the population distribution, from which we directly compute
absorption coefficients and spectra.

The main objective here is to develop a theoretical frame-
work for self-consistently coupling the optical pump, atomic
population, and gas dynamics. We therefore chose the sim-
plest atomic model that demonstrates saturation phenomena,
namely a vapor of three-level atoms. While this atomic model
is overly simplistic for quantitative predictions in realistic
atomic vapors, it nevertheless captures the important physics.
Furthermore, the framework we developed easily adapts to
more sophisticated atomic models, consisting of multiple
degenerate hyperfine manifolds. We therefore anticipate that
this work will serve as a useful theoretical and computational
tool with which to understand high precision measurements of
thermal atomic vapors.
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APPENDIX: CORRECTIONS TO THE VOIGT PROFILE

If the excited state populations are nonnegligible, then
there will be some dependence on the axial velocity, leading
to corrections to the Voigt profile. These corrections can be
derived from the observation that Pj is symmetric in �vz

.
Expanding P in powers of �vz

yields the quadratic correction
Pj (�vz

) ≈ Pj (0) + �2
vz

P ′′
j (0)/2 + · · ·. The correction to the

rhs of Eq. (22) is then

· · · + (P ′′
3 − P ′′

1 )κc

2ω

∫ ∞

−∞
d�vz

�2
vz

F (z)
ν (� − �vz

)

1 + 4�2
vz

.

It is straightforward to show that

I ≡
∫ ∞

−∞
dx x2 F (z)

ν (� − x)

1 + 4x2

(A1)

= ν4

4

d2V

d�2
+ ν2�

dV

d�
+

(
�2 + ν2

2

)
V.

To get some idea of the behavior of I, we approximate
the Voigt function as a Gaussian of variance ν2 + 1/4 [i.e.,

V (�, ν) ≈ e
− �2

ν2+1/4 /
√

π (ν2 + 1/4)], where the additional 1/4
accounts for the Lorentzian contribution to the linewidth. Then

I =
(

1

8
√

π ν
+ 4(�/ν)2 − 3

64
√

π ν3
+ O[1/ν5]

)
e
− �2

ν2+1/4 .

The first term simply represents a small rescaling of the
amplitude of the Voigt profile (which we ignore), while the
second term is a doubly peaked function, shown in Fig. 7. As
illustrated, the peak to trough height of I is δI ≈ 1/(40 ν3).
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