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Steady-state superradiance with alkaline-earth-metal atoms
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Alkaline-earth-metal-like atoms with ultranarrow transitions open the door to a new regime of cavity quantum
electrodynamics. That regime is characterized by a critical photon number that is many orders of magnitude
smaller than what can be achieved in conventional systems. We show that it is possible to achieve superradiance
in steady state with such systems. We discuss the basic underlying mechanisms as well as the key experimental

requirements.
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I. INTRODUCTION

Superradiance, first introduced by Dicke over 50 years
ago [1], is one of the pillars of cavity quantum electrodynamics
(CQED). Superradiance occurs due to the constructive inter-
ference of the probability amplitudes for spontaneous decay
of several atoms. Because of its generality and conceptual
simplicity it is a paradigm system for collective behavior.
Recent applications of superradiance include the imaging
of the coherence properties of Bose-Einstein condensates
[2-4] and efficient coupling of atoms [5] and ions [6] to
light as building blocks of quantum information networks.
Superradiance has also been studied for the collective emission
of matter waves rather than photons [7].

Usually superradiance is transient; atoms initially prepared
in the excited state relax to the ground state rapidly and
the collective emission terminates. To date superradiance
has not been achieved in a continuous fashion. The goal of
this article is to show that steady-state superradiance can be
achieved with ultracold alkaline-earth-metal atoms in high-
finesse cavities. Such systems are experimentally available in
the form of optical lattice clocks [8,9]. Recently Bose-Einstein
condensates of such atoms have also become available with
calcium [10] and strontium atoms [11,12].

Atoms with a two-electron level structure possess narrow
intercombination lines that, due to selection rules, are dipole
forbidden and typically have lifetimes many orders of mag-
nitude longer than those of dipole-allowed transitions. The
long-lived excited state is essential for superradiance in steady
state because it allows the buildup of population inversion
even as the population of the excited state is drained by the
collective decay. For dipole-allowed transitions, on the other
hand, superradiant decay is so rapid that it would exhaust the
supply of excited-state atoms before it could be replenished by
repumping, and consequently the superradiant emission must
cease.

Besides being of fundamental importance, steady-state
superradiant systems are also interesting because of their
potential applications. The most immediate application is
the possibility to build active optical clocks where the light
serving as a frequency standard is derived directly from the
atoms [13,14]. Such systems have the potential to improve the
stability of the best clocks by about 2 orders of magnitude.
Another area of application is to strongly correlated physics.
The atoms in this system evolve into exotic many-particle
states due to their collective interaction with the light field.
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These states could be of interest for quantum information
purposes as well as for the exploration and study of many-
particle phases of condensed matter.

II. MODEL

The model that we consider is depicted in Fig. 1(a). N
two-level atoms with excited state |e) and ground state |g)
decay with rate I', = CI" through the mode of a cavity, where
C = g*/(I'k) is the single-atom cooperativity parameter. The
transition from |e) to |g) is assumed to be a narrow intercombi-
nation line. The atomic free space spontaneous emission rate
is I', the single-photon Rabi frequency is g, and the cavity
decay rate is «. For simplicity we assume that all atoms couple
identically to the cavity mode. The rate I', is assumed to be
much larger than the rates for noncollective decay processes
and dephasing. That approximation requires that NC > 1. At
the same time the atoms are being noncollectively repumped
to the excited state with an effective rate w. This could be
achieved by resonantly driving a transition to a third state with
Rabi frequency €2 that decays rapidly with rate y to |e).

There are two key experimental requirements for realizing
the physics discussed here. The most important requirement is
that the collective decay be dominant over all other decay and
decoherence processes, that is, NCT" > I', 1/T5, where T is
the spin dephasing time. The second requirement is that one
must be able to repopulate the atomic excited state at a rate
equal to the collective decay rate, that is, it must be possible
to achieve w ~ NCT" without significant atomic losses.

The model under consideration is similar to typical many-
atom CQED systems that are studied theoretically and ex-
perimentally, except that the atomic dipole moment is many
orders of magnitude smaller. Nevertheless, the small dipole
moment can lead to profound consequences. These can be
characterized by the critical atom number ny = (kI")/g* and
the critical photon number my = I'? /g2, which tell us to what
degree quantum effects are important: ngp < 1 means that a
single atom can substantially affect the cavity field and my < 1
means that the electrical field corresponding to a single photon
in the cavity can saturate the atomic transition. For ultranarrow
intercombination lines in alkaline-earth-metal atoms, critical
photon numbers as small as my ~ 10712 can realistically
be achieved. These systems reside in an exotic region of
parameter space that has previously been inaccessible. For
example for cavity QED systems with alkali-metal atoms the
records are in the mg, ng ~ 0.01-0.001 range. It is impossible
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FIG. 1. (Color online) (a) Schematic of a coupled atom-cavity
system leading to steady-state superradiance. (b) The parameter
space of CQED spanned by the critical atom number n, and the
critical photon number my. The collective behavior of the coupled
atom-cavity system undergoes a crossover from stimulated emission
dominated (laserlike) at large m to collective spontaneous emission
dominated (superradiancelike) for small m,.

to substantially improve upon these values as can be seen by
rewriting them as no = 27 A/(Fo) and my = 47T2Veff/(Q)\. ),
where A is the cross section of the cavity mode, o = 312 o/ 2m)
is the resonant cross section of the atoms, A is the wavelength
of the resonant light, and F and Q are the finesse of the cavity
and the quality factor of the atomic transition, respectively.
Since the dimensionless Veg/ ()tg) must be at least unity on
fundamental grounds, and is typically orders of magnitude
larger, the atomic resonance Q must be extraordinarily high
to reach my ~ 10~'2, and the values of Q that are possible for
the optically allowed dipole transitions in alkali-metal atoms
and similar systems are insufficient. Incidentally, masers,
which operate in the microwave domain, have critical photon
numbers similar to those of the narrow linewidth atoms, but
are classical due to their rather large critical atom number,
and have photon energies that are many orders of magnitude
smaller than is characteristic in the optical domain.

The evolution of the system shown in Fig. 1 is given by the
master equation

dp Fe ~ ~ . s 4 P
s ——(J+J—P + oI —=2J_pJy)
Z(O_(J) (J) N AA(J) (J) ZO,(J)p\a,k (j))
(1)
Here, & (a(] ))T = |g){e| is the spin lowering operator
and J_ = (J)f = Zjv_ 5 is the collective decay operator

brought about by the couphng of the atoms to the rapidly
decaying cavity field. Here and subsequently j indicates the
atom on which the operators are acting. In deriving this master
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FIG. 2. (Color online) Emission rate as a function of repump
rate for 10 atoms. The solid orange circles are the expectation values
extracted from the Monte Carlo wave-function simulations. The solid
blue line shows the semiclassical result obtained from Egs. (3)-(5),
and the purple dashed line is the emission rate for uncorrelated
particles, N,I"..

equation we have assumed that the cavity field decays so
rapidly that the mean photon number is much smaller than
unity, and thus the field has been adiabatically eliminated.
This approximation is valid for atoms with an extremely
weak dipole moment such as those that we are interested in.
The collective decay part occurs in the superradiance master
equation first introduced by Bonifacio et al. [15]; see also [16].
The repumping can be thought of as spontaneous “absorption”
from the ground state to the excited state.

We unravel the master equation into Monte Carlo wave
function trajectories [17], and from the trajectories |1ﬂ(t))
we extract expectation values (O@)) = (lﬂ(t)|0|1ﬂ(t))
system observables O. Steady-state expectation values (O)ss
are then obtained by calculating time averages, (O)ss =

} gy (O(1)), where ; is chosen large enough to allow the
system to settle to steady state, and T is chosen long enough

for statistical errors to be controlled.

III. RESULTS

In Fig. 2 we show that Eq. (1) leads to sustained superradi-
ance by investigating the mean photon emission rate

I =T (JJ )ss, 2

together with the emission rate N, I'. that one would expect for
uncorrelated atoms, with N, being the population of the excited
state. Three qualitatively different regimes can be distin-
guished: strong pumping with w > NT, intermediate pump-
ingwithI', < w < NT';, and weak pumping withw < I'.. For
very strong pumping, w 3> NT . the emission rate approaches
the maximum possible emission rate for uncorrelated atoms,
NT,. As the pump rate decreases, the emission rate increases
beyond NT .. This implies the presence of correlations between
different atoms, resulting in a collective enhancement of
the emission rate. The behavior of the system in the weak
pumping regime, w < I, is surprising and counterintuitive in
two ways. First, nearly half the atoms remain in the excited
state even as w/ ', — 0. Second, the emission rate is greatly
suppressed below the value for uncorrelated atoms, that is,
the atoms are subradiant. Subradiance, like superradiance,
implies the presence of correlations between different atoms.
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FIG. 3. (Color online) Transition rates between J and M
eigenspaces (a—c) and populations Py ; of these subspaces (d—f)
for w = 0.1, (a, d), w =2.0I". (b, e), w = 10.0T"; (c, f), and
N =4 atoms. Red arrows (downward pointing arrows) indicate
decay dominated transitions and blue arrows (upward pointing and
diagonal pointing arrows) indicate repump dominated transitions. The
transition rates are calculated by averaging over degenerate initial
states and summing over final states. In panels (d)—(f) darker shades
indicate larger populations.

It should be noted that the experimental realization of this
subradiance is significantly more challenging than steady-state
superradiance. The reason is that in order for ordinary decay
and decoherence to be negligible compared to the collective
decay, the condition C >> 1 must be satisfied, which is much
more stringent than the condition for superradiance, NC > 1,
discussed above. Subradiance can be observed for repump
rates w such that T, T{l <K w K T'e. Another difficulty
compared to the superradiant regime is that the relaxation time
of the system w~! is much longer.

The qualitative behavior of the emission rate can be
understood if we look at the dynamics of the system in the
collective basis |J, M, &), where J characterizes the total
angular momentum, the magnetic quantum number M charac-
terizes the inversion, and the multiplicity quantum number
& enumerates the degenerate manifold at given J and M.
Figures 3(a)-3(c) show the subspaces corresponding to well-
defined J and M along with the net transition rates, for N = 4
atoms. Figures 3(d)-3(f) show the steady-state probabilities,
Py = (Py.j)ss, where Py ;=Y |J, M, £)(J, M, &|, for
the system to be in the various subspaces. The right-hand
column [panels (c) and (f)] of Fig. 3 shows the strong pumping
limit where repumping dominates the collective decay and
consequently a large fraction of the atoms accumulate in the
excited state.

In the intermediate pumping regime, w < NI, shown
in the central column [panels (b) and (e)] of Fig. 3, there
is a nontrivial competition between collective decay and
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repumping. It is apparent that for states where J ~ O(N/2)
close to its maximum possible value, the collective decay
dominates, whereas for states with small J the noncollec-
tive repumping dominates. This leads to a cycle in which
the decay and repumping balance with an enhanced aver-
age value for (J;J_), that is, an enhanced emission rate.
Note that it is important that the repumping is noncollective for
superradiance to occur in steady state. If the repumping also
preserves J, as is the situation considered in Refs. [18-20],
there is no mechanism to balance the noncollective decay
and decoherence processes that tend to decrease J and are
unavoidable in experiment.

In the weak pumping regime, shown in the left-hand column
[panels (a) and (d)] of Fig. 3, the collective emission drives
the system into states with M = —J that cannot decay by
means of J_. For M < 0 the repumping predominantly drives
transitions J — J — 1 while transitions from J — J + 1 are
rare. Thus the system evolves along a dynamical pathway with
smaller and smaller J, eventually reaching J ~ 1 where it
becomes trapped. This steady state has an almost equal number
of atoms in the ground and excited states and yet has a greatly
suppressed emission rate. This is due to subradiance arising
from strong atom-atom correlations.

The Monte Carlo simulations provide a clear picture of the
dynamical interference and are complete in that they allow us
to include a full description of the Hilbert space evolution.
Due to the exponential scaling of the dimension of the Hilbert
space of the system with the number of particles, we are
however limited to relatively small numbers of particles (of
order 20). To consider mesoscopic particle numbers, we use a
semiclassical approximation that consists of keeping only pair
correlations. This approximation is validated by the excellent
agreement with the Monte Carlo results for small particle
numbers. Mathematically, the semiclassical approximation is
implemented by expanding expectation values of the system
operators {6\, 6\, 6} in terms of cumulants (. . .)., where

G (J) = le){e| — |g) (g|. We use that all expectation values are
symmetrlcal with respect to particle exchange, for example,
6969y = (616P) for all i # j. All nonzero cumulants
up to second order can be expressed in terms of (6{V). =
DA DA @

BD), 606®), = (66P), and (6062), = (662 —
(6{V)?, and their equations of motion are

d(a—(U)

Z

= —(w+T6"), —2r.(N — D(6'6?).,

dt
3)
dieWe® r
% —(w+F)( (1) (2)>c+76((6z(1)6z(2)>c
+6)) + T = (01", (06,
+{o"6 76, )
dleMWe®
A0 —2(w +T)(6"6?) +4r.((662),

dt

x (1+(6"),) =V = 266765 ). (5)
(2)0i3))

By dropping the small third-order cumulant (O’Z(l)d 5 cWe

obtain a closed set of equations. The steady state is found
by setting the time derivatives to zero. The resulting cubic
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equations can be solved exactly and these solutions are the
basis of the analytical curve in Fig. 2. The expressions one
obtains are, however, very complicated. Simple expressions
may be obtained in the regime I'. <« w ~ NT ', in which col-
lective emission occurs. By introducing the rescaled operators
J.=J./Nand jy = J./N, where J. = 1/2Y", 6", we find
that to leading order in 1/N the only nonzero expectation
values are (J.). and (j, j_). and they evolve according to

d(j:)e A s
d—; =—w({Jjz)e — 1/2) = NTe{jrj)es (6)
d(j j*)() LN 2 L R
= = —w(i e H NI el fde (D)
The steady-state solutions are
1 w
A EN_F[’ w < NFC
(Jedss =4 | , )
2 w 2 NFL
and
1w w
= 1-— ) w< NI
con 2 1"(.( r./» ¢
Jeidss=12" N : ©)
0, w > NI,

The fact that (j,j_)ss is of order unity for w < NT,
indicates the presence of strong correlations between atoms.
From Eq. (9) we can extract the maximum intensity,

Inax = Nzrc/& (10)

obtained at w = NT'./2. The scaling of that intensity with
N? underlines the collective nature of the light emission.
Remarkably, I,x is only a factor 1/2 smaller than the
maximum possible emission rate, FC(J,O|f+f_|J, 0). The
steady-state expectation values for w > NT'. indicate that
the atoms are fully inverted and that their polarizations are
uncorrelated with each other.

Not only is this source of light bright, however, it also
has a long coherence time—a property shared with lasers. In
lasers, the coherence time of the light field is much longer than
the cavity-ring-down time because of the fact that the field is
macroscopically occupied [21]. To find the coherence time of
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the atoms in the superradiant system considered in this article,
we study the two-time correlation function of the atomic dipole
(64(:)0 + r)&iz)(t)). Using the quantum regression theorem we
find the equation of motion

d(6"(0)6?(0)) 1 R
+T = —Q(w +Te = (N =2)(6/")5)
x (6"(1)6 2(0)), (11)

have factorized (6;”@)69@)653)(0)) ~
(6M)ss (6_(3)(1')69)(0)) and we have assumed that the
system is in steady state. Inserting (@Q))ss = Z(fz)ss from
before we find that the spins of different atoms remain
coherent with each other for 7., = N/(NT; 4+ 2w). In the
superradiant regime where w ~ NT', the coherence time is
thus still given by the long single-atom coherence time despite
the system decaying with a collectively enhanced rate. The
phase of the atomic dipole diffuses slowly which is analogous
to the slow phase diffusion of the field of a laser. This result
is significant especially with an eye to possible applications
as an ultrastable local oscillator or frequency reference.

where we

IV. CONCLUSION

In summary, we have shown that steady-state superradiance
can be achieved with atoms with an ultranarrow transition in a
cavity. Alkaline-earth-metal-like atoms are prime candidates
for realizing such systems and open up a new regime of CQED
characterized by an extremely small critical photon number. In
future work we will study the noise properties of the emitted
light and the correlated atomic state. It will be intriguing
to consider the crossover from steady-state superradiance to
lasing that occurs as the system goes from the bad-cavity limit
to the good-cavity limit.
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