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Transfer behavior of quantum states between atoms in photonic crystal coupled cavities
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In this article, we discuss the one-excitation dynamics of a quantum system consisting of two two-level atoms
each interacting with one of two coupled single-mode cavities via spontaneous emission. When the atoms and
cavities are tuned into resonance, a wide variety of time-evolution behaviors can be realized by modulating the
atom-cavity coupling strength g and the cavity-cavity hopping strength λ. The dynamics is solved rigorously
via the eigenproblem of an ordinary coupled linear system and simple analytical solutions are derived at several
extreme situations of g and λ. In the large hopping limit where g � λ, the behavior of the system is the linear
superposition of a fast and slow periodic oscillation. The quantum state transfers from one atom to the other atom
accompanied with weak excitation of the cavity mode. In the large coupling limit where g � λ, the time-evolution
behavior of the system is characterized by the usual slowly varying carrier envelope superimposed upon a fast
and violent oscillation. At a certain instant, the energy is fully transferred from the one quantum subsystem to the
other. When the two interaction strengths are comparable in magnitude, the dynamics acts as a continuous pulse
having irregular frequency and line shape of peaks and valleys, and the complicated time-evolution behaviors are
ascribed to the violent competition between all the one-excitation quantum states. The coupled quantum system
of atoms and cavities makes a good model to study cavity quantum electrodynamics with great freedoms of
many-body interaction.
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I. INTRODUCTION

Since the first proposal by Purcell [1] and early works
on atoms in cavities, cavity quantum electrodynamics (QED)
has been actively pursued for its potential insight into the
fundamental problems of light-matter interaction [2]. Recently
cavity QED has been explored as a promising scheme toward
realizing many important quantum information processing
tasks [3–6]. One requirement of distributed quantum infor-
mation processing is the coupling of the distant qubits in
order to perform state transfer which is the entanglement
generation or quantum gate operations between separate nodes
of the systems. Atomic systems are qualified to act as qubits,
as appropriate internal electronic states can coherently store
information over a very long time scale. Photons are well
suited to distribute information throughout the system due
to high transport speed and large bandwidth. High-finesse
cavities can provide good insulation against the environment
and thus can hold photons over a long enough time scale before
dissipation.

In accordance with a general desire to control quantum
systems in an all solid platform for the sake of practical
application and ease of integration, significant attention has
turned toward cavity QED in photonic crystals (PCs). PCs are
artificial structures with a periodic modulation in the dielectric
function. They exhibit photonic band gaps (PBGs), a range
of frequencies within which no propagating electromagnetic
modes are allowed [7]. A point defect in PBG materials
defines a PBG cavity, as any photon injected into that site
cannot propagate laterally away from the defect [8,9]. In this
way, PBG cavities can constitute extremely good cavities
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with superb photonic confinement (low loss and ultrasmall
mode volume) and strong coupling for an embedded quantum
system. These successes have been fueled by technological
advances in microfabrication or nanofabrication in the modern
era of nanoscience and nanotechnology. Therefore, a flexible
design of the defect geometry is allowed in the PC platform.
For example, the geometry and size of a PBG cavity can
be subtly tuned to generate a very large quality factor up
to several millions and simultaneously a very small modal
volume down to a fraction of cubic wavelength [10–12].
Previous studies on several important quantum optics problems
of atoms, such as spontaneous emission in PCs, showed that
the key physical function governing the interaction of light
with these quantum systems is the photon local density of
states (LDOS), which is a function of atom position due to
the strong inhomogeneity of Bloch-wave field in PCs [13–15].
LDOS is directly connected to the coupling strength with the
quantum emitter, for example, a quantum dot (QD), which is
often considered to be a two-level atom-like emitter [16,17].
In addition to the flexible control of light-atom interaction,
PCs also offer a good on-chip platform to transport and
communicate information of quantum states by means of
different kinds of integrated optical devices.

Understanding of the properties of the single atom-cavity
system can help to gain insight into many cavity QED problems
such as the spectrum of one-atom lasers [18], the QD-
embedded PBG cavity thresholdless laser [19,20], and giant
optical nonlinearity [21]. It also forms the basis for further
study of the physical effects of two coupled PBG cavities, each
having a single atom in it. The coupling between two cavities
can be controlled in several ways, which offers great freedom
and flexibility to engineer the transport of quantum states via
photonic processes. One way is to connect the two cavities
indirectly by a quantum channel such as conventional optical
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λ

FIG. 1. Schematic diagram of a system formed by two coupled
cavities, each of which contains a two-level atom. The atoms are
coupled to their cavity modes with strength g1 and g2. Photons can
hop between the cavities at rate λ.

fiber [22–24] or the PC waveguide [3,25,26] along which the
photonic state propagates. Another way is to directly link the
two cavities by the overlap of evanescent cavity fields [27–30],
which allows photons to hop from one cavity to the other.

In this article we study cavity QED problems in the
direct-coupling system, which is schematized in Fig. 1. Two
defects in the PC lattice were placed at a certain distance
from each other to form evanescently coupled cavities. The
coupling strength can be conveniently tuned by changing
the cavity-cavity distance in a nearly exponentially decaying
manner [31,32]. Each cavity involves a single atom having the
same resonant frequency. When atoms and cavities are tuned
into resonance and dissipation is neglected, the system exhibits
a coherent oscillatory energy exchange between the atom and
the cavity when a single excitation is initially exerted on one
of the atoms. In this system, two coupling factors are involved:
one is the atom-cavity coupling strength gj (j = 1, 2), which
is directly connected to the position of the embedded atom
due to the inhomogeneous field distribution of the cavity
defect mode. The other is the cavity-cavity hopping strength
λ, whose intensity can be modulated by changing the distance
between the two defects. The coupled PC cavities thus offer
very many freedoms to control the interaction between atoms
and photons, and photons and photons. One can expect to find
different types of dynamical evolution about the atom states
and cavity photon states, based on which interesting physical
phenomena can be exploited and harnessed.

For simplicity, we only consider a situation where g = g1 =
g2. This can be achieved by simply placing the two atoms in
the same position of the two cavities. The physical dynamics
can be clearly illustrated by three different cases of the hopping
strength relative to the atom-cavity coupling strength. The first
case is that the atom-cavity coupling strength g is much smaller
than the cavity-cavity hopping strength λ (g � λ). The quan-
tum state transfers from one atom to the other atom periodically
at a specific frequency accompanied with weak excitation of
the cavity mode. The second case is the large coupling extreme
situation where g � λ. The time-evolution behavior of the
system in this limit presents the familiar form of slowly varying
carrier envelope pulses. The third case is that the detuning
between g and λ is small, or in other words, g and λ are
comparable in magnitude. The role of competition between
the coupling strength and the hopping strength becomes im-
portant and it will result in complicated amplitude modulation
behaviors.

This article is organized as follows. In Sec. II, we derive the
quantum mechanical equations governing the time-evolution
behavior of the quantum system and present an analytical
formalism to look into the dynamics of atoms and photons.
In Sec. III, we make a detailed analysis of the three cases.
Both numerical calculations and analytical formalisms are
used to sharpen and deepen our understanding of the quantum
dynamics of the coupled atom-photon system. In Sec. IV, we
summarize this article.

II. THEORETICAL MODELS

The system under consideration is depicted in Fig. 1, which
is created in the PC platform. It consists of two coupled single-
mode cavities with the same resonant frequency. Each cavity
contains a two-level atom. The transition frequency of the
atom is at resonance with the frequency of the cavity mode.
In addition, the dissipation induced by photon loss and atom
coupling with the environment are not taken into account. By
changing the location of the atom embedded in the cavity,
different coupling strengths between the atom and the cavity
are obtained. Moreover, the energy transfer of photons between
the two cavities is described by the parameter of cavity-cavity
hopping strength, which can be efficiently modulated by the
distance between the two cavities.

In the interaction picture, the Hamiltonian governing the
coupled quantum system is in the form

HI = ih̄
∑
j=1,2

[gj (a†
j σj− − σj+aj )]

+ ih̄λ(a†
1a2 − a1a

†
2), (j = 1, 2), (1)

where a
†
j and aj are creation and annihilation operators for

the cavity modes, σj+ and σj− (j = 1, 2) are the rising and
lowering operators of atom j , gj are the coupling constants
between the atom states and the cavity modes, and λ is the
cavity-cavity hopping strength. These parameters are referred
to as the cavity QED parameters.

The solution and discussion on the dynamics of the
Hamiltonian are restricted to the subspace containing zero
and one excitations. We can thus write the state vector of the
system in time t as

|�(t)〉 = |ψ0(t)〉 + |ψ1(t)〉,
|ψ0(t)〉 = |g1〉|g2〉|0〉1|0〉2,

|ψ1(t)〉 = a(t)|g1〉|g2〉|1〉1|0〉2
(2)+ b(t)|g1〉|g2〉|0〉1|1〉2

+ c(t)|e1〉|g2〉|0〉1|0〉2

+ d(t)|g1〉|e2〉|0〉1|0〉2,

where |gj 〉 and |ej 〉 are the ground and excited states of atom j ,
and |0〉j and |1〉j are the vacuum and one-photon state of the
cavity j . The zero-excitation component |ψ0(t)〉 is invariant
under the action of the Hamiltonian, so we need only consider
the dynamics of the single-excitation component |ψ1(t)〉.

We consider for the initial conditions that atom 1 is prepared
in the excited state, atom 2 is in the fundamental state, and
both cavities are in the vacuum state. The initial state can be
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written as

|ψ1(0)〉 = |e1〉|g2〉|0〉1|0〉2. (3)

The coefficients of |ψ1(0)〉 are a(0) = b(0) = d(0) and
c(0) = 1. The time evolution of the general one-excitation
state given by Eq. (3) may be calculated exactly from the
Schrödinger equation.

ȧ(t) = g1c(t) + λb(t),

ḃ(t) = g2d(t) − λa(t),
(4)

ċ(t) = −g1a(t),

ḋ(t) = −g2b(t).

In order to solve this equation set, we assume a trial solution
as a(t) = Aext , b(t) = Bext , c(t) = Cext , and d(t) = Dext .
Insertion of the trial solution into Eq. (4) leads to a set of
linear equations of a 4 × 4 eigensystem,⎛

⎜⎜⎜⎝
0 λ g1 0

−λ 0 0 g2

−g1 0 0 0

0 −g2 0 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

A

B

C

D

⎞
⎟⎟⎟⎠ = x

⎛
⎜⎜⎜⎝

A

B

C

D

⎞
⎟⎟⎟⎠ . (5)

In Eq. (5) x is the eigenvalue. The solution of Eq. (5) is
straightforward and yields four roots. The four eigenvalues
xn are given by

x1 =
{

1

2

[ − (
g2

1 + g2
2 + λ2

)

+
√(

g2
1 + g2

2 + λ2
)2 − 4g2

1g
2
2

]}1/2

,

x2 = −
{

1

2

[ − (
g2

1 + g2
2 + λ2

)

+
√(

g2
1 + g2

2 + λ2
)2 − 4g2

1g
2
2

]}1/2

,

x3 =
{

1

2

[ − (
g2

1 + g2
2 + λ2

)

−
√(

g2
1 + g2

2 + λ2
)2 − 4g2

1g
2
2

]}1/2

,

x4 = −
{

1

2

[ − (
g2

1 + g2
2 + λ2)

−
√(

g2
1 + g2

2 + λ2
)2 − 4g2

1g
2
2

]}1/2

. (6)

A close look at Eq. (6) reveals that all the eigenvalues
are pure imaginary numbers, which reflects the fact that the
quantum system does not have dissipation. As a result, each
trial function is a harmonic wave function. The general solution
of the dynamics can be described by these wave functions.

The coefficient a(t) for the one-excitation state
|g1〉|g2〉|1〉1|0〉2 is given by

a(t) =
4∑

n=1

Ane
xnt , (7)

and the coefficients of other one-excitation states can be
derived from a(t) by going back to Eq. (4). By using the
initial condition of the four one-excitation states, we can work
out the numerical value of An by simple calculations of the
following linear equations:

⎛
⎜⎜⎜⎝

1 1 1 1(
x2

1 + g2
1

)/
λx1

(
x2

2 + g2
1

)/
λx2

(
x2

3 + g2
1

)/
λx3

(
x2

4 + g2
1

)/
λx4

−g1/x1 −g1/x2 −g1/x3 −g1/x4(
x2

1 + g2
1 + λ2

)/
λg2

(
x2

2 + g2
1 + λ2

)/
λg2

(
x2

3 + g2
1 + λ2

)/
λg2

(
x2

4 + g2
1 + λ2

)/
λg2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

A1

A2

A3

A4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

a(0)

b(0)

c(0)

d(0)

⎞
⎟⎟⎟⎠ . (8)

Other quantities can be readily calculated from a(t) by
considering Eq. (4). Finally, the amplitude of each state is
given by

a(t) =
4∑

n=1

Ane
xnt ,

b(t) =
4∑

n=1

x2
n + g2

1

λxn

Ane
xnt ,

(9)

c(t) = −
4∑

n=1

g1

xn

Ane
xnt ,

d(t) =
4∑

n=1

x2
n + g2

1 + λ2

λg2
Ane

xnt .

The amplitudes of the four wave functions are given as

PC1(t) = a(t), PC2(t) = b(t),
(10)

PA1(t) = c(t), PA2(t) = d(t).

It has been noticed that all the eigenvalues xi (i = 1, 2, 3, 4)
are pure imaginary numbers. Besides we find that Im(x1) =
−Im(x2) and Im(x3) = −Im(x4). This means that the evolution
dynamics of all the four one-excitation states, which are the
summation of four harmonic wave functions as in Eq. (9), is
characterized by an oscillatory behavior without the amplitude
decaying with time. However, as each state contributes from
different channels, each of which is described by a harmonic
wave function, the overall dynamics may exhibit a complex
interference behavior. It turns out that the dynamics reflects
the complex competition and balance of the atom-photon
interaction and the photon-photon interaction, which ulti-
mately determine the value of xi . In general, the two-cavity
system with two atoms is a complicated problem that does
not allow simple analytic solution; however, by considering
the condition g = g1 = g2, we can get significantly simplified
and clarified insight. The condition is satisfied when the
two atoms are placed at equivalent positions in the two
cavities.
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(a)

(b)

FIG. 2. (Color online) Calculated eigenvalues Im(x1) and Im(x3)
as functions of interaction parameters of g and λ. g and λ are
dimensionless.

To have some intuitive ideas about the dynamics of the
quantum system, we calculate the eigenvalues Im(x1) and
Im(x3) as functions of the two parameters g and λ from Eq. (6).
The results are displayed in Fig. 2, where no approximation is
made. As x1 and x3 represent the frequency of the oscillatory
behavior of the cavity photon and the atomic state dynamics,
respectively, Fig. 2 clearly shows that the oscillation frequency
increases when both g and λ grow. Furthermore, Im(x1)
and Im(x3) are subject to different influences from the two
parameters. For Im(x1), the influence of g is much more
than that of λ in most situations, as can be clearly found
by drawing a horizontal line and vertical line in Fig. 2(a).
In contrast, g and λ have almost the same impact factor upon
Im(x3) in the entire parameter space, as can be seen from the
nearly isotropic configuration of the contour plots in Fig. 2(b).
Generally speaking, the dynamics of the quantum system of the
coupled cavities and atoms in all situations can be visualized
from the pictures in Fig. 2. However, there are several special
situations where the pictures can be drastically simplified
which will be addressed in much more detail in the following
section. We will see the situation where the dynamics of

the quantum system is determined either dominantly by the
cavity-atom interaction, upon which the cavity-cavity cou-
pling will add some fine modulations, or dominantly by the
cavity-cavity coupling, upon which the atom-cavity coupling
will induce some fine modifications, or cooperatively and
competitively by the two parameters with none of them
dominating.

III. RESULTS AND DISCUSSIONS

Since the system involves two coupling types, one is
the atom-cavity coupling and the other is the cavity-cavity
hopping, the detailed characterization of them in such a system
still presents some open questions of significant interest,
for example, the role of each coupling and the competition
between them in shaping the single-excitation dynamics. The
behavior of the excitation of the field mode and the atomic
mode is illustrated by the following three cases. The first case
is that the atom-cavity coupling strength g is far smaller than
the cavity-cavity hopping strength λ expressed as g � λ. The
second case can be expressed as g � λ. The third case is that
g and λ have comparable magnitude, namely, g ≈ λ.

A. The large hopping limit g � λ

In the g � λ case, due to the weak coupling strength g, the
system can be considered as two subsystems: one is the cou-
pling between two atoms in which most energy is included; the
other is the hopping of photons between the two cavities which
acts as a pathway to transfer energy. The time evolution of the
atomic states and the cavity photon states in the large hopping
limit is shown in Fig. 3, which is calculated numerically from
Eqs. (4)–(9). The curves represent the time evolution of the
amplitude of the field modes and the atomic modes under dif-
ferent parameters of g and λ. Each curve in Fig. 3 includes two
oscillating modes: the fast oscillation and the slow
oscillation.

In Fig. 3(a), a small coupling strength g = 0.1 and a
large hopping strength λ = 1 (all units are arbitrary) are
set to satisfy the g � λ limit. The behavior of the two
identical atoms and the two resonant filed modes exhibits
three distinct characters. First, as time goes on, the phase
change of atomic mode 1 (PA1) and field mode 2 (PC2)
undergoes a cosine oscillation. Meanwhile field mode 1 (PC1)
and atomic mode 2 (PA2) display a sinusoidal action. There
is a π/2 phase delay between atom mode 1 and atom mode
2, reflecting the transfer of energy from atom 1 to atom 2
through cavity field modes. Second, the fast oscillation period
is equal to Tf = 2π , as shown more clearly in the right-hand
zoomed view. The slow oscillation period is Ts = 100 × (2π ),
100 times the fast one, as shown in the left-hand diagram.
Third, the amplitudes of the slow and fast oscillations in the
field mode are the same; they are both equal to 0.2. Meanwhile,
the amplitude of the atomic mode fast oscillation is equal
to 0.02 and that of the slow oscillation approaches unity. It
illustrates that the quantum state transfer from atom 1 to atom
2 is accompanied with weak excitation of the cavity mode
when the initial state has a single excitation in atom 1. The
disturbance from the cavity subsystem to the atom subsystem is
small.
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FIG. 3. (Color online) Dynamics of atomic and field excitation in the case g � λ. These curves give the amplitude, as a function of time, of
the excitation of the field mode 1 (PC1), the atomic mode 1 (PA1), the field mode 2 (PC2), and the atomic mode 2 (PA2). The system parameters
are (a) g = 0.1, λ = 1.0; (b) g = 0.2, λ = 1.0; and (c) g = 0.1, λ = 2.0. The panels on the right are zoomed views of the panels on the left.
The time parameter t is dimensionless.

To find a more simplified and clarified description of the
system dynamics behavior, we turn to Eq. (6) and try to obtain
a simple description of the quantum system. Under the large
hopping limit of g1 = g2 = g � λ, we obtain the following
approximations based on Newton’s method for the photonic

state oscillation period as

x1 = −x2 ≈ i
g2

λ
,

(11)
x3 = −x4 ≈ iλ.
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The corresponding amplitudes of the harmonic functions are

A1 = A3 = −A2 = −A4 ≈ −i
g

2λ
.

The amplitudes of the four one-excitation wave functions are

PA1(t) = cos

(
g2

λ
t

)
+ g2

λ2
cos(λt), (12)

PA2(t) = sin

(
g2

λ
t

)
+ g2

λ2
sin(λt), (13)

PC1(t) = g

λ

[
sin

(
g2

λ
t

)
+ sin(λt)

]
, (14)

PC2(t) = g

λ

[
− cos

(
g2

λ
t

)
+ cos(λt)

]
. (15)

From this equation set, the first character in Fig. 3(a) is
illustrated clearly. As expected, the behavior of the system
is the linear superposition of two oscillations. The terms
oscillating at rate g2/λ are considered to be slow while the
terms oscillating at rate λ are considered to be fast. So the
oscillating period rate between the fast and slow oscillations
is g2/λ2. For the atomic subsystem, the transfer probability
of quantum states between them is given by Eqs. (12) and
(13). When an excitation is initially in atom 1, it will be
fully transferred to atom 2 at times t = (λ/g2)[π (n + 1

2 )]
(n = 0, 1, . . .). During this process, the transfer is disturbed
by the cavity subsystem leading to a fast oscillation at rate λ on
the basis of the slow oscillation and with a weak amplitude of
g2/λ2. For the cavity subsystem, the amplitudes of excitation
of the field modes are given by Eqs. (14) and (15). They are
also sensitive to the two parameters g and λ. The changes of
the amplitudes of the two oscillations are synchronized by a
factor of g/λ.

We further consider two more situations to have a better
picture about the influence of the two parameters, g and
λ, on the dynamics of the quantum system: the first one is
g = 0.2 and λ = 1, and the other is g = 0.1 and λ = 2. The
rigorous calculation results of the dynamics of the quantum
system are displayed in Figs. 3(b) and 3(c), which also exhibit
superposition of fast and slow oscillation characteristics. Com-
pared with Fig. 3(a) (g = 0.1 and λ = 1), the fast oscillation
period for the system with g = 0.2 and λ = 1 almost does
not change (Tf = 2π ), while the slow oscillation period
shortens to Ts ≈ 26 × (2π ). And the fast oscillation period
changes to Tf = π , whereas it extends to Ts = 200 × (2π )
for the system with g = 0.1 and λ = 2. In addition, when the
ratio of g/λ grows, the fast oscillation amplitude increases
nearly proportionally. It can be seen that the change of the
period and amplitude of the fast and slow oscillations for the
quantum system shows good agreement with the approximate
solution of Eqs. (12)–(15). The previous discussion clearly
demonstrates that the two parameters g and λ influence the
system in different ways and that the latter plays a major
role in shaping and determining the dynamics of the quantum
system. Simply speaking, the population will fully transfer
from one atom to the other in the large hopping limit, and this
transfer of quantum states between atoms placed in separate
cavities is accompanied by weak population in the cavity
modes. The result is consistent with the picture discussed
in [22].

B. The large coupling limit g � λ

In contrast with the previous subsection, we now turn to
consider another extreme situation where the coupling strength
is much larger than the hopping strength, expressed as g � λ.
In this large coupling limit, the system can be considered as two
identical subsystems. Each one includes a Jaynes-Cummings
(JC) model described by the atom-cavity interaction and the
two subsystems interact through coupling between the two
cavities. When g � λ, unlike the behavior in the large hopping
limit, the excitation of each mode displays the slowly varying
amplitude envelope superimposed with some small and fast
oscillations. Such a feature can be seen clearly in Fig. 4, which
is obtained by directly referring to Eqs. (6), (9), and (10) and
performing numerical calculations. The transfer of photons in
this system is clearly described in Fig. 4(a) for the parameters
of g = 10 and λ = 1. An excitation that is initially in atomic
mode 1 first passes gradually to field mode 1, then through
the cavity-cavity coupling flows to another field mode 2, and
finally moves from field mode 2 to atomic mode 2. At a
certain instant, the amplitude of oscillation reaches it largest
magnitude in one JC subsystem, which is equal to unity, and
this means that the energy is fully transferred from the other
JC subsystem to this one. Similar to the aforementioned large-
hopping case, the transfer rate and amplitude of the quantum
states can be controlled by the two parameters g and λ. This
can be found from the three situations illustrated in Fig. 4.

Similar to the large hopping case, we can also obtain
a simplified while more clarified picture in the current
large coupling situation. Starting from Eq. (6) and applying
Newton’s method to the g � λ condition, we find that the
approximate formulas for the harmonic oscillation frequencies
are given by

x1 = −x2 ≈ i(g − λ/2),
(16)

x3 = −x4 ≈ i(g + λ/2),

and the amplitudes of the harmonic wave functions are

A1 = A3 = −A2 = −A4 ≈ − i

4
.

The amplitude of the four one-excitation wave functions is

PA1(t) = cos(gt) cos

(
λ

2
t

)
, (17)

PC1(t) = sin(gt) cos

(
λ

2
t

)
, (18)

PC2(t) = − sin(gt) sin

(
λ

2
t

)
, (19)

PA2(t) = − cos(gt) sin

(
λ

2
t

)
. (20)

According to Eqs. (17) to (20), perfect state transfer can
be achieved both between the atom and the atom and between
the atom and the field mode in the current system parameters.
With this basic picture in mind, we turn back to take a closer
look at the dynamics illustrated in Fig. 4 for different sets
of parameters of g and λ. For the parameters of g = 10 and
λ = 1, the dynamics displayed in Fig. 4(a) shows a periodic
train of optical pulse-like oscillation patterns where a fast
oscillation curve (with a period of Tf = 2π/10) is superposed
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FIG. 4. (Color online) Dynamics of atomic and field excitation
in the case g � λ. These curves give the amplitude, as a function of
time, of the excitation of the field modes and the atomic modes. The
system parameters are (a) g = 10, λ = 1.0; (b) g = 12, λ = 1.0; and
(c) g = 10, λ = 1.2.

with a slowly varying oscillatory envelope (with a period of
Ts = 4π ). When the parameters change to g = 12 and λ = 1
[Fig. 4(b)], Ts does not change whereas Tf is shortened to
2π/12. On the other hand, when the parameters change to
g = 10 and λ = 1.2 [Fig. 4(c)], Ts changes to a smaller value

of Ts = 4π/1.2 while Tf stays the same at 2π/10. All these
features of the dynamics of the quantum system conform
well with the simple models depicted in Eqs. (17)–(20),
which clearly show that the fast oscillation feature is entirely
correlated with the large coupling strength with Tf = 2π/g

while the slowly varying envelope is merely determined by
the cavity hopping strength with Ts = 4π/λ.

The physical picture for the quantum system is now quite
clear and simple. The small hopping strength induces slow
energy flow between the two cavities, while the large coupling
strength leads to rapid exchange of energy between the atom
and the cavity field within each cavity. As each atom-cavity
subsystem only weakly interacts with its neighbor, there is
enough time for the energy that is initially stored in the atom
to 100% transfer to the cavity photon. Near the completion of
this transfer, the photon begins to tunnel into the neighboring
cavity, which also reaches 100% after some time. Finally, in
the second cavity, the photon can also transfer its energy to
the atom 100% after some time. As the time goes on, the
inverse process starts to take action, and we see the periodic
cycling dynamics of all the quantum states with respect to time.
Both the numerical calculation and the analytical model show
that the total cycling period is about T = 4π/λ. The observed
oscillatory behavior manifests the fundamental characteristics
of cavity QED in atom-cavity systems.

C. Small detuning between g and λ

Previously we have considered two extreme situations
where one parameter (g or λ) is much larger in quantity than
the other one. The dynamics of the quantum system basically
involves one fast and one slow oscillatory process, in good
correspondence with the nature of one strong and one weak
interaction in the system. The dynamics thus looks quite simple
and easy to classify the physical origin of each oscillatory
process. Mathematically, one is able to greatly simplify the
physical analysis and extract the accurate values of oscillation
period and frequency from the simple models as described in
Eqs. (12)–(15) and Eqs. (17)–(20).

Essentially it is possible to construct the aforementioned
simple physical picture because the two processes do not
have violent competition with each other. The reason is that
the two physical processes are far apart in the time scale of
interaction. For general situations where the two parameters g

and λ take arbitrary values, the physics process becomes much
more complicated. This is particularly true when the detuning
between the coupling strength and hopping strength is small,
or in other words when g is comparable to λ in magnitude. The
competition between the two coupling mechanisms will lead
to interesting properties in the time evolution of the dynamics
of the quantum states.

We have considered the different situations. We have fixed
the atom-cavity coupling strength as g = 1 while gradually
increasing the cavity-cavity hopping strength from λ = 0.8
to λ = 1.0, λ = 1.5, and λ = 2. The aim is to see how
the dynamics of the quantum system is influenced by the
relative interaction strength. The calculated results of the time
evolution of the four one-excitation states are displayed in
Figs. 5(a)–5(d), respectively. Note that the linear quantum
system has exact scalability in time scale with respect to the
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FIG. 5. (Color online) Dynamics of atomic and field excitation in the cases where the detuning between g and λ is small. These curves
give the amplitude, as a function of time, of the excitation of the field modes and the atomic modes. The system parameters are g = 1.0,
(a) λ = 0.8; (b) λ = 1.0; (c) λ = 1.5; and (d) λ = 2.0.

g and λ together as a whole, so only the relative strength
has important implications. When both g and λ increase by
a common factor of P , the dynamics of the quantum system
does not change its form, only the time scale is scaled by a
factor of 1/P . This can be clearly seen from Eqs. (6)–(10).

The time-evolution curves in the four panels of Fig. 5 exhibit
complicated structures of the variations. Unlike those shown
in Figs. 3 and 4, the dynamics does not accord with a simple
and regular periodic oscillation form for all values. As can
be found from Eq. (9), the feature of dynamics is largely
determined by the commensurability or incommensurability of
the eigenvalues x1 and x3. The node-to-node or peak-to-peak
distances and the magnitude of peaks and valleys are irregular
in most cases [Figs. 5(a), 5(b), and 5(d)]. Only when the
eigenvalues x1 and x3 are commensurable with each other,
for instance x1 = 0.5i and x3 = 2i in Fig. 5(c), will regular
periodic oscillations appear. However, one thing can be found
here that is in common with Figs. 3 and 4. The dynamics
is still composed of a faster variation form superposed with
a slower variation form. In addition, there appears to be
an apparent trend of change in Fig. 5. When λ increases,
the frequency of the slow variation, which is not a precise

word as the curves are not periodic, changes little, while
the frequency of the fast variation grows gradually. The
fast oscillation behavior at λ = 2 and g = 1 is somewhat
similar to that found in Fig. 3 for the large λ situations.
The complicated time evolution of the quantum states man-
ifests the complex interaction and violent competition among
the four one-excitation states that are ignited and driven by the
coupled atom-cavity system. No single process dominates the
time evolution and all the states contribute at the same order
of magnitude and at the same time scale. The current coupled
system can thus well model a strongly correlated quantum
system.

IV. CONCLUSION

In summary, we have considered a quantum system that
consists of two identical coupled cavities in PCs where
each single-mode cavity contains a two-level atom without
dissipation. We have studied systematically the one-excitation
dynamics of the system via the process of spontaneous
emission in the framework of cavity QED. This system makes
a good model to investigate complex many-body cavity QED
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problems as it offers great freedom to modulate the interaction
between each atom and its cavity environment by changing
the position of each atom within the PC cavity as well as
the atom-atom interaction through cavity-cavity hopping by
simply changing the cavity-cavity distance. As the quantum
mechanical dynamics of the quantum system is correlated with
abundant interaction parameters in addition to the intrinsic
properties of each entity, we expect to see a wide variety of
physical phenomena of cavity QED.

With appropriate numerical and analytical tools at hand,
the atom-cavity coupling strength g and the cavity-cavity
hopping strength λ play an important role in the behavior
of the system. By changing the relative strength between them
in three typical situations, abundant and diversified quantum
mechanical dynamics can be clearly illustrated. The first case
is the large hopping limit, namely, g � λ. The behavior of
the system is the linear superposition of one fast and one
slow oscillation. The ratio between the fast and the slow
oscillation period is g2/λ2. For the atomic subsystem, an
excitation initially in one of the atoms will be fully transferred
to the other atom at certain times. During this process, the
transfer is disturbed by the cavity subsystem and leads to a
fast oscillation which has a weak amplitude of g2/λ2 and
an oscillation rate of λ on the basis of the slow oscillation.
For the cavity subsystem, the change of the amplitudes of
the two oscillations is subject to a maximum magnitude of
g/λ. The second case is opposite to the first case, namely,
g � λ, which is the large coupling limit. The time-evolution
behavior of the system is characterized by the familiar optical
pulse form of slowly varying carrier envelope superimposed
upon a fast and violent oscillation. At a certain instant, the
energy is fully transferred from one JC subsystem to the other.
The fast oscillation, whose period is Tf = 2π/g, is entirely
correlated with the large coupling strength, while the slowly
varying envelope is merely determined by the small cavity
hopping strength with a period of Ts = 4π/λ. The third case

is that the detuning between g and λ is small. As the two
interaction strengths are comparable in magnitude, the role
of competition between the coupling strength and the hopping
strength becomes important. As a result, the dynamics of the
quantum system acts as a continuous pulse with irregular
frequency and line shape of peaks and valleys, which indicates
that there is violent competition between all the one-excitation
quantum states. The features manifest complex physics of a
strongly correlated quantum system.

Our theory indicates that the coupled quantum system of
atoms and cavities can make a good model to study cavity
QED that involves great freedoms of many-body interaction
because the system allows for tuning and controlling of each
physical interaction parameter in a wide range. In our current
work, we only consider two parameters. We expect to see
more fruitful new physical phenomena emerge when more
parameters are involved in the strongly correlated quantum
system, such as the detuning between the atomic transition
frequency and the cavity resonance frequency, the dissipation
of both the cavity mode and the atomic states, and difference
in the coupling strength of the two atom-cavity systems. As
major progress of nanotechnology has been made in realizing
PC high-Q nanocavities, we expect that these technological
advances together with deeper physical insights can help to
bring into reality more and more the power of controlling
nanoscale light interaction with quantum systems at will.
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