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Soliton absorption spectroscopy
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We analyze optical soliton propagation in the presence of weak absorption lines with much narrower
linewidths as compared to the soliton spectrum width by using a perturbation analysis technique based on
an integral representation in the spectral domain. The stable soliton acquires a spectral modulation that follows
the associated index of refraction of the absorber. The model can be applied to ordinary soliton propagation and
to an absorber inside a passively mode-locked laser. In the latter case, a comparison with water vapor absorption
in a femtosecond Cr:ZnSe laser yields a very good agreement with experiment. Compared to the conventional
absorption measurements in a cell of the same length, the signal is increased by an order of magnitude. The
obtained analytical expressions allow further improvement in the sensitivity and spectroscopic accuracy, which
makes soliton absorption spectroscopy a promising measurement technique.
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I. INTRODUCTION

Light sources based on femtosecond pulse oscillators have
now become widely used tools for studies of ultrafast phe-
nomena, optical metrology, and spectroscopy. Such sources
combine broad smooth spectra with diffraction-limited bright-
ness, which is especially important for high-sensitivity spec-
troscopic applications. Advances in near- and mid-infrared
femtosecond oscillators have made it possible to operate
in the wavelength ranges of strong molecular absorption,
allowing direct measurement of important molecular gases
with high resolution and a good signal-to-noise ratio [1]. At the
same time, it was observed that such oscillators behave quite
differently when the absorbing gas fills the laser cavity or is
introduced after the output mirror [2,3]. The issue has become
especially important with the introduction of the mid-infrared
femtosecond oscillators such as Cr:ZnSe [4], which operate
in the 2- to 3-µm wavelength region with strong atmospheric
absorption.

As an example, Fig. 1 presents a typical spectrum of
a Cr:ZnSe femtosecond oscillator operating under normal
atmospheric conditions. It is clear that the pulse spectrum
acquires strong modulation features that resemble the disper-
sion signatures of the atmospheric lines. Being undesirable
for some applications, such spectral modulation might at the
same time open up interesting opportunities for intracavity
absorption spectroscopy. Compared with the traditional intra-
cavity laser absorption spectroscopy [5,6] based on transient
processes, this approach would have the advantage of being a
well-quantified steady-state technique that can be immediately
coupled to frequency combs and optical frequency standards
for extreme accuracy and resolution.

In this article, we present a numerical and analytical
treatment of the effect of a narrow-band absorption on a
femtosecond pulse considered as a dissipative soliton. Such a
treatment covers both passively mode-locked ultrashort pulse
oscillators with intracavity absorbers and soliton propagation
in fibers with impurities. The theoretical results are compared
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with experiment for a femtosecond Cr:ZnSe oscillator oper-
ating under normal atmospheric conditions. We prove that
the spectral modulation imposed by a narrow-band absorption
indeed accurately follows the associated index of refraction
when the absorber linewidth is sufficiently narrow.

II. THE MODEL

Our approach is based on the treatment of an ultrashort
pulse as a one-dimensional dissipative soliton of the nonlinear
complex Ginzburg-Landau equation (CGLE) [8,9]. This equa-
tion has such a wide horizon of application that the concept
of “the world of the Ginzburg-Landau equation” has become
broadly established [10]. In particular, such a model describes
a pulse with the duration T0 inside an oscillator or propagating
along a nonlinear fiber.

To obey the CGLE, the electromagnetic field with the
amplitude A(z, t) should satisfy the slowly varying amplitude
approximation provided by the relation ω0 � 1/T0, where ω0

is the field carrier frequency, t is the local time, and z is the
propagation coordinate. This approximation is well satisfied
even for pulses of nearly single-optical-cycle duration [11].
When we can additionally neglect the field variation along the
cavity round trip or the variation of material parameters along
a fiber as well as the contribution of higher-order dispersions,
the amplitude dynamics can be described on the basis of the
generalized CGLE [9,12–14]:

∂A(z, t)

∂z
= {−σ + �̂[P (z, t)] − iγ P (z, t)}A(z, t)

+
(

α + i
β2

2

)
∂2

∂t2
A(z, t) + �̂[A(z, t)], (1)

where P ≡ |A|2 is the instant field power and α is the square
of the inverse gain bandwidth. The nonlinear terms in Eq. (1)
describe (i) saturable self-amplitude modulation (SAM) with
nonlinear gain defined by the nonlinear operator �̂ and
(ii) self-phase modulation (SPM) defined by the parameter
γ . For a laser oscillator, γ = 4πnn2lcryst/(λ0Aeff). Here, λ0 is
the wavelength, n and n2 are the linear and nonlinear refractive
indices of an active medium, respectively, lcryst is the length of
the active medium, and Aeff = πw2 is the effective area of a
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FIG. 1. Output spectrum of a 100-fs Cr:ZnSe oscillator (black
solid line) when operated in open air [panel (a)]. The atmospheric
transmission (gray) is calculated from the HITRAN database [7]
and corresponds to a full round-trip. The lower graph (b) shows
the expanded central part of the spectrum. The asterisk denotes the
absorption line that is used for quantitative evaluation in the last
section.

Gaussian mode with radius w inside the active medium. The
propagation coordinate z is naturally normalized to the cavity
length (i.e., z becomes the cavity round-trip number). For fiber
propagation, γ = 2πnn2/(λ0Aeff), where n and n2 are the
linear and nonlinear refractive indices of the fiber, respectively,
and Aeff is the effective mode area of the fiber [15]. Finally,
β2 is the round-trip net group-delay dispersion (GDD) for an
oscillator or the group-velocity dispersion parameter for a fiber
with β2 < 0, which corresponds to anomalous dispersion.

The typical explicit expressions for �̂[P ] in the case when
the SAM response is instantaneous are (i) �̂[P ] = κP (cu-
bic nonlinear gain), (ii) �̂[P ] = κ(P − ζP 2) (cubic-quintic
nonlinear gain), and (iii) �̂[P ] = κP/(1 + ζP ) (perfectly sat-
urable nonlinear gain) [9,16]. The second case corresponds to a
Kerr-lens mode-locked oscillator [8]. The third case represents,
for instance, a response of a semiconductor saturable absorber
when T0 exceeds its excitation relaxation time [17]. However, if
the latter condition is not satisfied, one has to add an ordinary
differential equation to the SAM, and Eq. (1) becomes an
integro-differential equation (see below).

The σ term is the saturated net loss at the carrier frequency
ω0, which is the reference frequency in the model. This term
is energy dependent: the pulse energy E(z) ≡ ∫ ∞

−∞ P (z, t)dt

can be expanded in the vicinity of the threshold value σ = 0 as
σ ≈ δ(E/E∗ − 1) [18], where δ = �2/g0 (� is the frequency-
independent loss and g0 is the small-signal gain, both for the

round trip) and E∗ is the round-trip continuous-wave energy,
which is equal to the average power multiplied by the cavity
period.

The operator �̂ describes an effect of the frequency-
dependent losses, which can be attributed to an absorption
within the dissipative soliton spectrum. This effect can be
caused, for instance, by the gases filling an oscillator cavity or
the fiber impurities for a fiber oscillator. Within the framework
of this study, we neglect the effects of loss saturation and
let �̂ be linear with respect to A(z, t). The expression for
�̂[A(z, t)] is more convenient to describe in the Fourier
domain, with Ã(z, ω) being the Fourier image of A(z, t). If the
losses result from the l independent homogeneously broadened
lines centered at ωl (relative to ω0) with linewidths �l and
absorption coefficients εl < 0, then the action of the operator
�̂ can be written in the form of a superposition of causal
Lorentz profiles [19,20]:

�̂[Ã] =
[∑

l

εl

1 + i(ω − ωl)/�l

]
Ã(z, ω). (2)

In the more general case, the causal Voigt profile has to be
used for �̂[Ã] [21]. Causality of the complex profile of Eq. (2)
demonstrates itself in the time domain, where one has

�̂[A(z, t)] ∝
∑

l

εl�l

∫ t

−∞
e−(�l−iωl )(t−t ′)A(z, t ′) dt ′. (3)

The conventional analysis of perturbed soliton propagation
includes an approximation of the effective group-delay dis-
persion of the perturbation as a Taylor series β ′(ω) = β ′

2(ω −
ω0)2/2 + β ′

3(ω − ω0)3/6 + · · · , assuming that the additional
terms β ′

2, β
′
3, . . . are sufficiently small. This approach is

absolutely not applicable in our case, because the dispersion,
associated with a narrow-linewidth absorber can be extremely
large. For example, an atmospheric line with a typical width
� = 3 GHz and a peak absorption of only 10−3 produces
a group-delay dispersion modulation of β ′

2 = ±0.9 ns2, far
exceeding the typical intracavity values of β2 ∼ 102 to 104 fs2.
Moreover, decreasing the linewidth � (and thus reducing
the overall absorption of the line) causes the group-delay
dispersion term to diverge as β ′

2 ∝ �−2.
In the following, we shall therefore start with a numerical

analysis to establish the applicability and stability of the model,
and then present an analysis technique based on an integral
representation in the spectral domain.

III. NUMERICAL ANALYSIS

Without introducing any additional assumptions, we solve
the Eqs. (1) and (2) numerically by the symmetrized split-
step Fourier method. To provide high spectral resolution, the
simulation local time window contains 222 points with a mesh
interval of 2.5 fs. The simulation parameters for the cubic-
quintic version of Eq. (1) are presented in Table I. The GDD
parameter β2 = −1600 fs2 provides a stable single pulse with
a full width at half maximum of ≈100 fs. The single low-
power seeding pulse converges to a steady-state solution over
z ≈ 5000.

The pulse propagation within a linear medium (e.g., an
absorbing gas outside an oscillator, a passive fiber containing
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TABLE I. Laser simulation parameters. The numbers correspond
to the Cr:ZnSe femtosecond oscillator of Fig. 1 with lcryst = 0.4 cm,
w = 80 µm, λ0 = 2.5 µm, n = 2.44, n2 = 10−14 cm2/W, � = 0.075,
and g0 = 2.5�.

E∗ γ α κ ζ δ β2

20 nJ 2.5 MW−1 16 fs2 0.02γ 0.2γ 0.03 −1600 fs2

some impurities, or a microstructured fiber filled with gas)
is described by Eqs. (1) and (2) with zero α, γ , �̂, and the
initial A(0, t) corresponding to the output oscillator pulse.
The obvious effect of the absorption lines on a pulse spectrum
are the dips at ωl [Fig. 4] that simply follow Beer’s law.
This regime allows using the ultrashort pulse for conventional
absorption spectroscopy [1]. The nonzero real part of an
absorber permittivity [i.e., Im(�̂) 	= 0] significantly changes
the pulse in the time domain [22], but does not alter the
spectrum. The pulse spectrum reveals only the imaginary part
of an absorber permittivity [i.e., Re(�̂) 	= 0].

Introducing the nonzero SPM coefficient γ = |β2|/(A2
0T

2
0 )

with zero α and �̂ transforms Eq. (1) to a perturbed
nonlinear Schrödinger equation and results in true perturbed
soliton propagation. In this case, as shown in Fig. 2(b), the
situation becomes dramatically different. Besides the dips in
the spectrum shown by the gray curve corresponding to a
contribution of Re(�̂) only, there is a pronounced contribution
from the phase change induced by the dispersion of absorption
lines [solid curve in Fig. 2(b) corresponds to the complex
profile of �̂ in Eq. (2)]. As a result, the spectral profile has the
sharp bends with the maximum on the low-frequency side and
the minimum on the high-frequency side of the corresponding
absorption line. At the same time, the dips in the spectrum due
to absorption are strongly suppressed. In addition to spectral

FIG. 2. (Color online) Part of the pulse spectrum after:
(a) linear propagation for 25 dispersion lengths inside a fiber with
two absorption lines and (b) perturbed soliton propagation for
100 dispersion lengths. The gray curve in (b) corresponds to the
contribution of only Re(�̂) in Eq. (2), the black curve corresponds
to the contribution of the complex profile (2). ε1 = ε2 = −0.1 and
�1 = �2 = 40 GHz. The initial pulse profile is A(t) = A0sech(t/T0),
where T0 = 57 fs.

features, the soliton decays, slightly shifts toward the higher
frequencies, and its spectrum gets narrower due to the energy
loss.

The soliton spectrum reveals, in this case, the real part of
the absorber permittivity. However, the continuous change of
the soliton shape due to energy decay renders the problem
as a non-steady-state case. The situation becomes different in
a laser oscillator, where pumping provides a constant energy
flow to compensate the absorption loss.

Let us consider the steady-state intra-cavity narrow-band
absorption inside a passively mode-locked femtosecond os-
cillator, where the pulse is controlled by the SPM and the
SAM, which is described by the cubic-quintic �̂ in Eq. (1)
modeling the Kerr-lens mode-locking mechanism [12]. Such
an oscillator can operate both in the negative dispersion regime
[12] with a chirp-free soliton-like pulse and in the positive
dispersion regime [18] where the propagating pulse acquires
a strong positive chirp. In this study, we consider only the
negative dispersion regime; the positive dispersion regime will
be a subject of following studies.

The results of the simulation are shown in Figs. 3 and 4, and
they demonstrate the same dispersion-like modulation of the
pulse spectrum. Figure 3 demonstrates action by three narrow
(� = 2 GHz) absorption lines centered at −10, 0 and 10 GHz
in the neighborhood of ω = 0. One can see [Fig. 3(a)] that the
absorption lines do not cause spectral dips at ωl , but produce
sharp bends, very much like the case of the true perturbed
Schrödinger soliton considered before. One can also clearly
see the collective redistribution of spectral power from higher
to lower frequencies, which enhances local spectral asymmetry
[Fig. 3(a)]. Such an asymmetry suggests that the dominating
contribution to a soliton perturbation results from the real part
of an absorber permittivity, which, in particular, causes the
time asymmetry of the perturbation in the time domain. This
asymmetry is seen in the time domain as a ns-long modulated
exponential precursor in Fig. 3(b).

The simulated effect of a single narrow absorption line
centered at ω = 0 is shown in Fig. 4 for different values

FIG. 3. (Color online) Dissipative soliton in an oscillator:
(a) central part of the spectrum and (b) power P (t). An oscillator
is filled with an absorber described by Eq. (2) with a triplet of lines:
ε1 = ε2 = ε3 = −0.005, �1 = �2 = �3 = 2 GHz, and ω1 = −10,
ω2 = 0, ω3 = 10 GHz.
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FIG. 4. (Color online) Central parts of the dissipative soliton
spectra in an oscillator with the single absorption line centered at
ω =0. (a) ε = −0.05, � = 4 GHz (solid curve, open circles, and
crosses) and 1 GHz (dashed curve, open squares, and triangles).
(b) ε = −0.005 and � = 4 GHz. The solid and dashed curves
correspond to the contribution of �̂ described by Eq. (2). Open circles
and squares describe the separate contribution of Im(�̂). Crosses and
triangles describe the separate contribution of Re(�̂).

of peak absorption ε and width �. In Fig. 4(a), ε = −0.05
and � = 4 GHz (solid curve, open circles, and crosses) and
1 GHz (dashed curve, open squares, and open triangles).
The solid and dashed curves demonstrate the action of the
complex profile (2), whereas the circles (squares) and crosses
(triangles) demonstrate the separate action of Im(�̂) and Re(�̂),
respectively. One can see that the profile of the perturbed
spectrum traces that formed by only Im(�̂) (i.e., the perturbed
spectrum traces the real part of the absorber permittivity). One
can say that the pure-phase effect [Im(�̂), circles and squares
in Figs. 4(a) and 4(b)] strongly dominates pure absorption
[Re(�̂), crosses in Figs. 4(a) and 4(b)], like that for the
Schrödinger soliton. Such a domination is enhanced with
a lowered ε [Fig. 4(b), crosses]; however, the |ε| growth
increases the relative contribution of Re(�̂) and causes the
frequency downshift of the bend [Fig. 4(a)]. The amplitude of
the bend traces ε, while its width is defined by �.

The SAM considered above is modeled by the cubic-quintic
nonlinear term �̂ in Eq. (1). Such a SAM is typically realized
by using the self focusing inside an active medium (Kerr-lens
mode locking). For reliable self-starting operation of a mode-
locked oscillator it is often desirable to use a suitable saturable
absorber (SA), such as a semiconductor saturable mirror
[23,24]. Such an absorber can be described in the simplest
case by a single-lifetime two-level model, giving the time-
dependent loss coefficient �(t) as

∂�(t)

∂t
= �0 − �(t)

Ts

− �(t)
P (t)

JsAeff
, (4)

where �0 is the loss coefficient for a small signal, Aeff is
the effective beam area on the SA, and Ts and Js are the SA
relaxation time and the saturation energy fluency, respectively.
Equation (4) supplements Eq. (1), and the SAM term �̂ in the
latter has to be replaced by [�0 − �(t)]. When the pulse width
is longer than the SA relaxation time, one can replace Eq. (4)

by its adiabatic solution so that

�̂ = η0ξP (t)

1 + ξP (t)
, (5)

where ξ ≡ Ts/(JsAeff) is the inverse saturation power.
We have simulated Eqs. (1), (2), and (4) in the case of

Js = 50 µJ/cm2 and Ts = 0.5 ps, which corresponds to the
measurement in Fig. 1. Two cases have been considered: weak
focusing (Aeff = 4000 µm2 or saturation energy Es = 2 nJ)
and hard focusing (Aeff = 1000 µm2 or saturation energy
Es = 0.5 nJ). We also considered Eq. (5) for the same peak
saturation level as weakly focused SA (i.e., ξ−1 = 4 kW). In
the latter case, the SA effectively becomes instantaneous, and
the perturbed soliton spectrum is the same as for Kerr-lens
mode locking (i.e., same as for the cubic-quintic �̂). When the
saturation energy is sufficiently large, there is no difference
between the models expressed by Eqs. (4) and (5). The effect
of a narrow absorption line is similar to that of the soliton of
the cubic-quintic Eq. (1). A decrease of the saturation energy
Es causes a downshift of the pulse spectrum as a whole, but the
narrow bend on the soliton spectrum reproduces the real part
of the absorber permittivity. One can thus conclude that the
type of the SAM is irrelevant for an effect of the narrow-band
absorption lines on a dissipative soliton spectrum.

Another important conclusion from the numerical simula-
tions is the demonstrated stability of the dissipative soliton
against perturbations induced by narrow-band absorption. In
the following analytical treatment we shall therefore omit the
stability analysis.

IV. PERTURBATIVE ANALYSIS OF SOLITON SPECTRUM

To study the transformation of the dissipative soliton
spectrum under the action of narrow absorption lines, we apply
the perturbation method [9,25]. Because the basic features
already become apparent for the perturbed Schrödinger soliton
and do not depend on SAM details, we shall consider the
simplest case of the cubic nonlinear gain �̂[P ] = κP . The
unperturbed solitonic chirp-free solution of such a reduced
equation with �̂ = 0 is a(z, t) = A0sech(t/T0) exp[iφ(t) +
iqz] with dφ/dt = � . The unperturbed soliton parameters
are [25]

� = 0,

A2
0 = 2α

κT 2
0

,

(6)
q = β2

2T 2
0

,

T0 =
√

α

σ
,

where the equation parameters are confined

β2 = −2
αγ

κ
,

(7)
σ > 0.

Thus, the soliton wave number is q = −γ σ/κ .
Its is reasonable to treat the soliton of the reduced Eq. (1) as

the Schrödinger soliton with the parameters constrained by the
dissipative terms σ , α, and κ [see Eqs. (6) and (7)]. This implies
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that the equation, which has to be linearized with respect to
a small perturbation copropagating with the soliton without
beating, decay, or growth (i.e., having a real wave number that
equals q [9]), is the perturbed nonlinear Schrödinger equation:

∂A(z, t)

∂z
= i

β2

2

∂2

∂t2
A(z, t) − iγ P (z, t)A(z, t) + �̂[A(z, t)].

(8)

Linearization of the latter with respect to a perturbation
f (t) exp(iqz) results in

iqf (t) = i
β2

2

d2f (t)

dt2
− iγ [2|a(t)|2f (t) + a(t)2f ∗(t)]

+ �̂(a + f ). (9)

In the spectral domain, Eq. (9) becomes

[k(ω) − q]f̃ (ω) + 1

π

∫ ∞

−∞
dω′U (ω − ω′)f̃ (ω′)

+ 1

2π

∫ ∞

−∞
dω′U (ω − ω′)f̃ ∗(ω′) = S(ω), (10)

where [25]

U (ω) = −πγT 2
0 A2

0ωcsch(πT0ω/2),

S(ω) = iA0πT0

cosh(πT0ω/2)

∑
l

εl

1 − i(ω − ωl)/�l

1 + (ω − ωl)2/�2
, (11)

k(ω) = −β2

2
ω2 −

∑
l

εl

(ω − ωl)/�l + i

1 + (ω − ωl)2/�2
.

Here, k(ω) is the frequency-dependent complex wave number
and S(ω) is the perturbation source term for �̂ corresponding
to Eq. (2).

Furthermore, one may assume phase matching between
the soliton and its perturbation. This assumption, in com-
bination with the equality U (ω) = U ∗(ω) that holds for the
Schrödinger soliton, results in

∫ ∞
−∞ dω′U (ω − ω′)f̃ ∗(ω′) =∫ ∞

−∞ dω′U (ω − ω′)f̃ (ω′).
Equation (10) for the Fourier image of the perturbation is

the Fredholm equation of the second kind. Its solution can be
obtained by the Neumann series method so that the iterative
solution becomes [25]

f̃n(ω) = S(ω)

k(ω) − q
− 3

2π [k(ω) − q]

×
∫ ∞

−∞
dω′U (ω − ω′)f̃n−1(ω′), (12)

where f̃n(ω) is the n-th iteration and f̃0(ω) = S(ω)/
[k(ω) − q].

The “phase character” of a soliton perturbation [i-multiplier
in left-hand side of Eq. (9) and the expression for the source
term (11)] demonstrates that the real part of the absorber
permittivity contributes to the real part of the soliton spectral
amplitude. Simultaneously, the resonant condition k(ω) − q =
0, which is responsible for a dispersive wave generation
caused by, for instance, the higher-order dispersions [9], is
not reachable in our case. The resonance can appear in cases
of large |ε|, κ/γ , and �lT0, but such regimes are beyond the
scope of this work.

Equation (12) can be solved numerically. Figure 5 shows
Re[f̃1(ω)] (dashed curve) and Im[f̃1(ω)] (dotted curve).
One can see that the real part of the absorber permittivity
defines Re[f̃ (ω)], while the imaginary part of the absorber
permittivity defines Im[f̃ (ω)]. This agrees with the simulation
results and is contrary to the case of linear pulse propagation.
One can also see a tiny frequency downshift θ of the f̃ (ω)
minimum from ωl like that in the simulations.

The pulse spectrum (solid curve in Fig. 5), results
from interference of the perturbation with the soliton. For
the chosen parameters of the absorption line, the zero-
order approximation f̃0(ω) (open squares) is very close to
the first-order approximation (solid curve) but is slightly
downshifted in the vicinity of the bend maximum and
minimum.

With an even narrower linewidth � of 1 GHz (Fig. 6), the
spectral perturbation gets very close to the real part of absorber
permittivity and, simultaneously, the spectral downshift θ

[location of the Im(f̃1) minimum, dashed curve] vanishes.
The curve f̃0(ω) (gray solid curves) now perfectly matches the
curve f̃1(ω) (open circles and crosses) within a broad range of ε

(gray solid curves 1 and 2 as well as circles and crosses belong
to ε = −0.005 and −0.05, respectively). The bend amplitudes
are in agreement with Eq. (11).

A superposition of three identical absorption lines, which
corresponds to the numerical spectra in Fig. 2, is shown
in Fig. 7. One can see that the lowest-order analytical
solution f̃0(ω) accurately reproduces the numerical result. It
is important that a cumulative contribution of lines into k(ω)
does not distort a superposition contribution of S(ω) into a
soliton spectrum [see Eqs. (11) and (12)]. This means that the
individual contribution of a single line within a group is easily
distinguishable and can be quantitatively assessed, opening the
way for interesting spectroscopic applications.

As Figs. 5 and 6 suggest, the zero-order approximation
f̃0(ω) = S(ω)/[k(ω) − q] is quite accurate for a description
of the perturbation in the limit of |ε| 
 1. This makes it
possible to express the perturbed spectrum of an isolated line
[see Eqs. (11) and (12)] in analytical form [25]:

P̃ (ω) ≡ |ã(ω) + f̃0(ω)|2 ≈
A2

0π
2T 2

0 sech
(

πT0ω

2

)2
(

β2

2 ω2 + q
)2 [

1 + (ω−ωl )2

�2
l

]
ε2
l + 2(ω−ωl )εl

�l

(
β2

2 ω2 + q
)

+
(

β2

2 ω2 + q
)2 [

1 + (ω−ωl )2

�2
l

] . (13)

Equation (13) allows further simplification in the case of |ε| 
 1:

P̃ (ω) ≈ A2
0π

2sech

(√
α

σ

πω

2

)2
α

σ

⎧⎨
⎩1 + 2εlκ

γ
(
αω2

l + σ
) (ω − ωl)[

1 + (ω−ωl )2

�2
l

]
�l

⎫⎬
⎭ , (14)
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FIG. 5. (Color online) Central part of the dissipative soliton
spectra perturbed by f̃1(ω) (solid curve) or f̃0(ω) (open squares)
as well as the profiles of Re(f̃1) (dashed curve) and Im(f̃1) (dotted
curve) from Eq. (12). The single absorption line is centered at ω =0,
ε = −0.005, and � = 4 GHz.

where Eqs. (6) and the condition α�2
l 
 1 have been

used.
Equation (14) demonstrates that the spectral bend follows

the real part of the absorber permittivity. The spectral down-
shift of the bend is an effect of O(ε2) and is not included
in Eq. (14). The perturbation is represented by the term
in square brackets and its relative amplitude is proportional
to ε. Furthermore, the aspect ratio of the kink grows with
(i) the increase of the relative contribution of the SAM κ/γ ,
(ii) the gain bandwidth 1/

√
α, (iii) the approach of the

resonance frequency ωl to the center of soliton spectrum
[but the ratio of the aspect ratio to the local soliton spectral
power increases with |ωl| because the former decreases as ω−2

l

whereas the latter falls faster as cosh(πT0ωl/2)2], and (iv) the

FIG. 6. (Color online) Central part of the dissipative soliton
spectra perturbed by f̃1(ω) (open circles and crosses) or f̃0(ω) (solid
gray curves) as well as the profiles of Re(f̃1) (solid black curve) and
Im(f̃1) (dashed curve) from Eq. (12). The single absorption line with
� = 1 GHz is centered at ω = 0, ε = −0.005 (black solid and dashed
curves as well as open circles and solid gray curve 1), and ε = −0.05
(crosses and solid gray curve 2).

FIG. 7. (Color online) Central part of the dissipative soliton
spectra perturbed by f̃0(ω) (black solid curve) and profiles of Re(f̃0)
(dashed curve) and Im(f̃0) (dotted curve) from Eq. (12). The triplet
of absorption lines is centered at ω1 = −10, ω2 =0, ω3 = 10 GHz,
ε1 = ε2 = ε3 = −0.005, and �1 = �2 = �3 = 2 GHz.

approach to the soliton stability border, which corresponds to
vanishing σ . It should be noted that smaller σ entails growth
in the soliton width [Eq. (6)].

Because the soliton parameters are interrelated, it is
instructive to express σ through the observable parameters
such as the soliton energy E or the soliton width T0. When
αω2

l 
 σ (e.g., ωl ≈ 0 or an oscillator operating far from the
stability border σ =0), the perturbation amplitude is inversely
proportional to γ κE2:

2εlκ

γ
(
αω2

l + σ
) ≈ 32εlα

γ κE2
= 2εlκT 2

0

γα
. (15)

For a fixed gain bandwidth, the amplitude scales with
the pulsewidth squared: T 2

0 . Ultimately, the latter equation
is equivalent to

2εlκ

γ
(
αω2

l + σ
) ≈ −2εl

q
. (16)

That is, the relative perturbation amplitude near the soliton
central frequency is the ratio of the incurred loss coefficient
to the soliton wave number, regardless of the z-coordinate
normalization. Therefore, this analytical expression that has
been derived for the self-consistent oscillator should also be
valid for soliton propagation in a long fiber when the conditions
of applicability |ε| 
 1 and �l 
 1/T0 are met. The final form
of the soliton spectrum thus becomes

P̃ (ω) = P̃0(ω)

⎡
⎣1 − 2

q

∑
l

εl

(ω − ωl)/�l

1 + (ω−ωl )2

�2
l

⎤
⎦ , (17)

where P̃0(ω) is the spectrum of an unperturbed soliton.

V. DISCUSSION

In the analysis above we have shown that, for the case
of sufficiently sparse, narrow, and weak Lorentzian absorber
lines, their spectral signatures are equivalent to the dispersion-
like modulation with a relative amplitude equal to the peak
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absorption coefficient over the oscillator round trip (or nonlin-
ear length for passive propagation) divided by the soliton wave
number. For quantitative comparison with the experiment we
recall Eq. (6) and express the maximum spectrum deviation of
a single line at |ω − ωl| = �l through observable parameters:∣∣∣∣εl

q

∣∣∣∣ = χlL
T 2

0

|β2| = χlL
0.0319

|β2|(�ν)2
, (18)

where χl = 2εl is the peak absorption coefficient of the line,
L is the absorber path length, and �ν is the full width at
half maximum of the soliton spectrum. Substituting the actual
values of the setup in Fig. 1 (β2 = −820 ± 40 fs2, �ν =
113 cm−1 = 3.39 THz, round-trip air-path length L = 149 cm,
relative humidity 50% ± 1% at 21 ± 0.5◦C) and taking, for
example, the line at 4088 cm−1 (122.56 THz, marked with
an asterisk), we obtain |ε/q| = 0.33 ± 0.02 for the maximum
modulation, which is in perfect agreement with the observed
value of 31.5% [Fig. 1(b), black line]. The agreement is
remarkably accurate given the less-than-optimal resolution
of the spectrometer (0.25 cm−1) and significant third-order
dispersion of about +104 fs3 that was not accounted for in the
present analysis.

It is important to notice that the expression (18) includes
only the externally observable soliton bandwidth and the
relatively stable dispersion parameter. The alignment-sensitive
values like the saturated losses σ , nonlinearity γ , nonlinearity
saturation parameter κ , etc., which are in practice not known
with sufficient accuracy, are all accounted for by the self-
consistent soliton parameters.

Another important point is the fact that the signal amplitude
2|ε/q| can be much bigger than that from conventional
absorption spectroscopy χlL from a cell with the same
length. The signal-enhancement factor can be controlled by
the pulse parameters and it exceeds an order of magnitude
for the present case (χlL = 5% for the selected line and a
single-pass cell of resonator size). For additional sensitivity
improvement one can apply the well-developed intracavity
multipass cell technique [26]. The expression (18) suggests
that ultimate sensitivity can be obtained at the expense of the
reduced bandwidth coverage �ν. In this respect, the present
technique has the same quadratic dependence of sensitivity
on spectral bandwidth as conventional intracavity absorption
spectroscopy [5].

Further refinement of the present theory should include
a demonstration of its applicability to arbitrarily shaped
absorption features. The superposition property provides a

strong argument for such an extension, but it has to be
rigorously proven for Doppler- and more general Voigt-shaped
lines and also for the dense line groups in, for example, Q
branches. It would be interesting also to extend the theory to
the absorber lines at the soliton wings [Fig. 1(a)].

With the above issues resolved, the soliton-based spec-
troscopy may become a powerful tool for high-resolution,
high-sensitivity spectroscopy and sensing. Possible imple-
mentations include soliton propagation in gas-filled holey
fibers, as well as already presented intracavity spectroscopy
with femtosecond oscillators. The latter, being a natural
frequency-comb source, allows direct locking to optical
frequency standards, providing for ultimate resolution and
spectral accuracy.

VI. CONCLUSION

We have been able to derive an analytical solution to
the problem of a one-dimensional optical dissipative soliton
propagating in a medium with narrow-band absorption lines.
We predict the appearance of spectral modulation that follows
the associated index of refraction rather than the absorption
profile. The perturbation analysis technique is based on integral
representation in the spectral domain and is insensitive to
the diverging differential terms inherent to the Taylor series
representation of the narrow spectral lines.

The model is applicable to a conventional soliton propaga-
tion and to a passively mode-locked laser with intracavity ab-
sorber; the only difference being the characteristic propagation
distance (dispersion length and cavity round trip, respectively).
In the latter case the prediction has been confirmed for a case of
water vapor absorption lines in a mid-IR Cr:ZnSe oscillator.
The model provides very good qualitative and quantitative
agreement with experimental observations, opening a way to
metrology and spectroscopic applications of the technique,
which can provide a significant (order of magnitude and more)
enhancement of the signal over conventional absorption for the
same cell length.
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