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Low-loss nonlinear polaritonics
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We propose a large low-loss cross-phase modulation between two coupled surface polaritons propagating
through a double electromagnetically induced transparency medium situated close to a negative-index
metamaterial. In particular, a mutual π phase shift is attainable between the two pulses at the single-photon
level.
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I. INTRODUCTION

A low-loss, nanoscale, all-optical switch [1] could revo-
lutionize photonics through its compatibility with proposed
nanophotonic structures, its speed, and its efficacy at low light
levels. Although such a device is needed, its creation has
been prevented by the poor trade-off between confinement
of light and losses and the incompatibility of low light
levels with strong Kerr nonlinearity. Some of these challenges
may be ameliorated by ongoing research. For example, giant
cross-phase modulation (XPM) could be enabled by double
electromagnetically induced transparency (double EIT or
DEIT) [2–4]. Furthermore, surface plasmons [5] could exploit
subwavelength optics [6], albeit with large losses that may be
lessened by clever strategies [7–9].

We show that by coupling two surface polaritons (SPs)
in a DEIT medium situated close to an interface between a
dielectric and a negative-index metamaterial (NIMM) [10,11],
such that material properties are judiciously chosen [12], giant
cross-phase modulation between the two SPs can be achieved
in a low-loss, subwavelength confinement regime. In particular
a mutual π phase shift between the two pulses is attainable
for weak fields with a mean photon number of one, thereby
opening the prospect of deterministic single-photon quantum
logic gates for quantum computing [13].

The mutual phase shift between two pulses is achieved by
creating a Kerr-nonlinear refractive index simply expressed
as n = n0 + n2I for n0 the linear refractive index, n2 the
coefficient for the nonlinear index, and I the intensity of the
light field. For two separate field modes a and b, the mutual
phase shift of a due to b is phase difference experienced by a

due to its interaction with b compared to the phase shift if b

were turned off. Similarly, the mutual phase shift of b is the
phase difference experienced by that mode for a on vs the case
of a off.

In natural media, n2 is quite small. Furthermore, the
mutual phase shift is proportional not only to n2 but also
to the energy density of the field and the interaction time
between the two pulses. Typically interaction time is quite
short, and energy density is diffraction-limited. Fortunately,
double electromagnetically induced transparency combined
with strongly driven cross-phase modulation simultaneously
creates a large n2 nonlinearity, compresses the energy of
the pulse in the direction of propagation, and increases the
interaction time by slowing or even stopping the pulses [2,3].

However, the resultant mutual phase shift is expected to be
at best on the order of 10−5 radians per photon squared. In other
words, for modes a and b with mean photon number of one,
the mutual phase shift is only around 10−5 rad, which is far
too small for weak-field all-optical phase-triggered switches.

One way to boost the nonlinear phase shift is to compress
the field energy in the transverse direction. Then all the
ingredients are in place for huge mutual phase shifts between
pulses a and b. Transverse confinement is made possible
by bringing a second medium in close proximity to the
interaction region and driving this second medium. In this case,
exponential confinement of the second medium’s evanescent
field can produce the desired strong confinement, but there is a
problem: some of the electromagnetic field energy penetrates
into the second medium, whereas almost all the field energy
should be in the first medium for weak-field phase-triggered
all-optical switches to work.

Field penetration in medium 2 can be restricted to a metal
medium: the field is then converted to a plasmon with an
evanescent field that acts on the nonlinear medium located
above medium 2. Using a metal, though, has the serious
drawback that the plasmon is notoriously lossy. This loss must
be avoided for switching to be efficient.

Recently we discovered that making medium 2 a negative-
index metamaterial (NIMM) rather than a dielectric or a
metal combines the best field-confinement features of both.
Specifically, it is possible to minimize losses for selected expo-
nential confinement of the field [12]. Thus an electromagnetic
pulse excites a “low-loss surface polariton” (LLSP) in this
NIMM, for which dielectric permittivity ε0ε(ω) and magnetic
permeability µ0µ(ω) are both negative, with ω the LLSP mode
carrier frequency and both ε and µ dimensionless.

Here we show that two LLSPs will interact via the
Kerr nonlinear medium, retain their low-loss nature, and
yield large mutual phase shifts (e.g., π radians). Thus, two
electromagnetic pulses can effect strong mutual phase shifts,
as shown in Fig. 1, by converting to LLSPs, then interacting
via a nonlinear medium in medium 1, followed by converting
back to electromagnetic pulses. Each of the two media has
permittivity εj and permeability µj , with j = 1 for the
upper (z > 0) dielectric medium and j = 2 for the lower
(z < 0) NIMM medium. We refer to our proposal for strong
nonlinear interactions between LLSPs as “low-loss nonlinear
polaritonics.”
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FIG. 1. (Color online) Two SPs, shown as dark (red) and white
pulses created between two media i = 1, 2 with permittivities εi and
permeabilities µi . Medium 1 is in the region z > 0 and medium 2 in
the region z < 0. The pulses propagate forward in the +x direction
and are exponentially confined to the interface z = 0. The white
spots represent multilevel atoms in the double � configuration and
are confined to a region between z = 0 and z = z0.

II. ATOMS AND FIELDS NEAR THE INTERFACE

A collection of multilevel atoms is located in medium 1
in close proximity with the interface between the two media,
as depicted in Fig. 1. Only five levels are required for our
proposed DEIT scheme, so we refer to these multilevel atoms
as five-level atoms (5LAs). These atoms could form a cold gas
(e.g., 87Rb) or a solid-state medium (e.g., Pr:YSiO). DEIT has
been demonstrated in the former [4] and EIT in both gas and
solid systems [14,15]. The 5LA structure allows the creation
of LLSPs, realizes DEIT for slowing the beams, and enables
huge cross-phase modulation, as we shall now see.

In our analysis, we treat the field modes as propagating
nearly plane waves, which provide a convenient basis for
describing pulses, and there is translational invariance in
both the x and y directions, except, of course, at the planar
dielectric-NIMM interface. The LLSP is confined in the
z direction because of evanescence, and confinement in the
x direction is due to DEIT.

To analyze low-loss nonlinear polaritonics, we require the
recently obtained LLSP dispersion relation [12]. The dielectric
(medium 1) is assumed to have constant homogeneous ε1 and
µ1, and for the NIMM,

ε2(ω) ≡ εr(ω) + iεi(ω) = εb − ω2
e

ω(ω + iγe)
, (2.1)

µ2(ω) ≡ µr (ω) + iµm(ω) = µb − ω2
m

ω(ω + iγm)
, (2.2)

where ωe (γe) corresponds to the electric plasma frequency
(decay rate) and ωm (γm) to the magnetic plasma frequency
(decay rate) [5,10]. Typical values are ωe = 1.37 × 1016 s−1

and γe = 2.73 × 1013 s−1, and we assume for the magnetic
components ωm = ωe/6 and γm = γe/1000. The background
dielectric constant εb in real metals [5] is between 1 and 10.
In our analysis, we fix εb = 2 and µb = 2.

The complex wave number along the +x axis for a plane-
wave SP mode along the x-y plane is denoted

K‖ = k‖(ω) + iκ(ω) (2.3)

for k‖ and κ the real and imaginary parts, respectively. The
normal component kj of the SP wave vector in each region is
related to K‖ by

k2
j = K2

‖ − ω2εjµj/c
2, j = 1, 2. (2.4)

The wave numbers on each side of the interface (z = 0) are
related by the boundary conditions [5], so

− k2/k1 = η ≡ ηε := ε2/ε1 (2.5)

for a transverse magnetic (TM) SP, whereas for the transverse
electric (TE) SP,

η ≡ ηµ := µ2/µ1. (2.6)

Using relations (2.4), k1 and k2 can be eliminated. We then
obtain the complex wave vector

K‖ = ω

c

√
ε2µ2

1 − ηε/ηµ

1 − η2
ε

, (2.7)

for the TM mode with the real part giving dispersion and the
imaginary part giving absorption loss. The absorption tends
to κ(ω) → 0 if γe → 0 and γm → 0. The TE mode case is
obtained by exchanging ηε ↔ ηµ.

The dispersion relation and boundary condition yield SP
amplitude vs distance z from the interface. For the NIMM-
dielectric system, the field is exponentially confined in the z di-
rection with amplitude given (for the TM polarized case) by

|E0,j (r, k‖)| ∼ e−|z|/ζj

√
Lz

exp [−κ(ω)x] , j = 1, 2, (2.8)

with characteristic mode length

Lz =
[
ε̃1

(
1 + |k‖|2

|k1|2
)

+ ω2

c2
µ̃1

|ε1|2
|k1|2

]
ζ1

+
[
ε̃2

(
1 + |k‖|2

|k2|2
)

+ ω2

c2
µ̃2

|ε2|2
|k2|2

]
ζ2, (2.9)

where

f̃j := Re

[
∂(ωfj )

∂ω

]
, (2.10)

and confinement

ζj ≈ 1

Re[kj (ω)]
, j = 1, 2. (2.11)

In the dielectric +z region,

ζ1 ≈ c

ωRe
√

ε1µ1
1−ηεηµ

η2
ε−1

, (2.12)

which characterizes the scale for confinement in the dielectric.
We shall see in the next section that these three quantities,
namely, losses, confinement, and mode length, can be
optimized to maximize the field amplitude, which is important
for the nonlinear polaritonics.

III. CROSS-PHASE MODULATION

Figure 2 demonstrates the spectral dependence of the
absorption coefficient κ and spatial confinement ζ1 of
SP modes for the NIMM-dielectric interface in the spec-
tral range close to ω0 of complete suppression of the
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FIG. 2. (Color online) Characterizing LLSPs as a function of
ω/ωe, with ωe = 1.37 × 1016 s−1, for confinement factor ζ1 (blue-
dashed), and mode length (purple-dotted) normalized to the Rb D2

wavelength λ = 780nm and absorption (red-solid) (×5.103 m−1).

losses. As seen from Fig. 2, a complete suppression of
losses is accompanied by a deconfinement of LLSP modes
(i.e., κ → 0 with ζ → ∞). One way to understand this
trade-off between confinement and losses is from energy con-
siderations: strengthening confinement of the surface polariton
on the dielectric side increases the fraction of electromagnetic
energy on the NIMM side of the interface.

Energy transport at optical frequencies on the NIMM
side involves scattering of free electrons, hence large losses.
Figure 3 depicts the fractional energies in the dielectric and
NIMM parts. For complete suppression of loss, which occurs
for a frequency designated by ω0, the field energy resides
completely in the dielectric but with poor confinement.

Frequency ω0 and decay constants γe and γm can be
chosen by judiciously selecting the properties of the NIMM
and controlling external parameters such as temperature.
Figure 2 shows that the ratio Lz/λ ∼ 60 yields a minimum
for spatial extent of the field in the dielectric medium, but a
smaller geometric transverse spatial size Lz/λ < 10 produces
similarly confined SP modes up to a factor of ∼10−3.

Now we see how these confined LLSPs will interact in
a Kerr nonlinear medium embedded in the dielectric. In
particular, we focus on the 87Rb gas system because its
D2 transition wavelength of 780 nm appears to be commensu-
rate with current NIMM technology [16]. Moreover, the 87Rb
D2 line yields DEIT [4] and is expected to yield XPM [3].
These phenomena are dominated by five of the D2 lines: the
energy diagram and level scheme are shown in Fig. 4.

Let us assume that the two interacting LLSP pulses are
excited one by one at the interface input with slightly different
adjusted group velocities va,b. Let the second LLSP pulse have
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FIG. 3. (Color online) Fractional energies in the NIMM part
(lower, brown curve), in the dielectric part (middle, blue line) and
total energy (upper, purple line) as functions of ω/ωe.
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FIG. 4. (Color online) Frequencies of two slow LLSP fields Ea,b,
of the control LLSP field �c and energy diagram for the D2 line
of 87Rb.

larger group velocity vb > va and outrace the first LLSP at the
medium output as depicted in Fig. 5.

We derive nonlinear coupled equations for two slowly
propagating LLSP fields by taking into account the spatial
confinement of the interaction with resonant atomic systems.
We note that LLSP Eb(t,x,y,z) modes experience different
strengths of the nonlinear interaction compared with other a

and b modes in the transverse y × z cross section due to highly
inhomogeneous intensities of the electromagnetic fields.

All these nonlinear interactions within the cross section
do not alter the usual form of the nonlinear equation for the
traveling probe pulse with amplitude Eb(t,x,y,z):

(
1

vb

∂

∂t
+ ∂

∂x
− i

∂2

2k‖∂y2

)
Eb

= i
[
χ (3)

a Ia + χ
(3)
b Ib

]
Eb, (3.1)

leading only to averaged nonlinear Kerr coefficients χ (3)
a and

χ
(3)
b , where

Ia,b = |Ea,b(t,x,y)|2. (3.2)

The term proportional to χ
(3)
b describes the self-phase modu-

lation (SPM) of the Eb(t,x,y) field.

υb υa> 
x 

FIG. 5. (Color online) Spatial and temporal diagram of excitation
and interaction of two slow LLSP pulses propagating with group
velocities vb > va , with the a pulse in white and the b pulse in dark
red, in the presence of a control field �c shown in light blue. The
second (dark red) LLSP pulse outraces the first (white) LLSP pulse
in the medium output. The dashed lines on the left and right indicate
conceptually how the fields are directed into and out of the interaction
region, and the solid lines on other side represent the waveguide that
brings the field in and out.
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SPM accompanies the XPM effect with a similar mag-
nitude, and SPM can lead to unwanted effects: temporal
distortion of the pulse including chirping [17,18], squeezing
the amplitude quadrature [19], and quantum limits to all-
optical switching with coherent states in Kerr media [20–22].
For XPM, the problem of temporal distortion and chirping
can be significantly alleviated by beam shaping to enable a
uniform phase across one of the two pulses in the medium [23],
and switching limits can be compensated interferometrically
[21,22]. If SPM is compensated, then χ

(3)
b in Eq. (3.1) can be

effectively neglected.
In the transverse y direction, the beams are focused by

lenses, so confinement is diffraction-limited in this dimension.
The problem of beam spreading is not significant because the
propagation length for LLSPs is small. The diffraction limit in
the y direction could be reduced by inserting defects into the
multilevel atomic medium [5] or by creating a surface groove
in the interface [24], so we can ignore the term proportional
to

1

2k‖

∂2

∂y2
(3.3)

in Eq. (3.1) as well.
When the two pulses pass through a 5LA system of Rb gas

of spatial thickness z0 in the z direction, the resultant Kerr
nonlinearity is

χ (3)
a = 2πn1z0

h̄4vb,0|�c|2
�

[(
k̃p
a + k̃

p
b − k̃c

)
z0

]
×〈|d24 · Eb|2|d15 · Ea|2〉 (3.4)

for

�(u) = e−u sinhu

u
. (3.5)

Here the group velocity of the lth (l = a, b) slowly propagating
LLSP pulse in the presence of resonant atoms is

vl = vl,0

1 + βl

, (3.6)

where vl,0 is the group velocity of the lth LLSP pulse in the
absence of atoms. Also we have

βb = 2πn3z0�
[(

k̃
p

b − k̃c
)
z0

] 〈|d35 · Eb|2〉
h̄2|�c|2

. (3.7)

The atomic transition dipoles are d24 and d15 between levels
2 and 4 and between 1 and 5, respectively, as shown in Fig. 4.
The classical electric field vector is Ea,b for the a and b LLSP
pulses, with energies corresponding to a single photon in each
field, respectively. Averaging over the orientation of the atomic
dipole moments is included in the expectation value 〈· · ·〉; z0

is the spatial thickness of the atomic medium along the z

direction, k̃p

a,b is the real part of the wave vector of the SP field
(a or b) along z, k̃c is the control field wave vector along z,�c

is the Rabi frequency of the control field, nm is the atomic
density on the mth level, and  is the spectral detuning.

Thus we see that, in comparison with free light fields, the
nonlinear LLSP interactions demonstrate a robustness of the
homogeneous phase shift in the cross section similar to
the propagation of light in the single mode waveguide. The
corresponding nonlinear phase shift experienced by the weak

LLSP field b, after passing through the other weak LLSP pulse
a, is

ϕb = 1

(1/va − 1/vb)

χ (3)
a

va,0
. (3.8)

The resultant phase shift on field b in a medium of length Lx ,
with

Lx(1/va − 1/vb) ∼= 2τ (3.9)

for τ the temporal duration of the LLSP pulse, is

ϕb
∼= Lx

2τ

χ (3)
a

va,0
. (3.10)

For the 5LA 87Rb gas, we assume ideal EIT conditions,
which take place for small enough thickness of the atomic layer
k̃

p
j z0 ≈ k̃cz0 ≈ 1. The 87Rb D2 line has a transition wavelength

780 nm [25] and the dipole moments for such transition of the
order 4ea0, where e is the electronic charge and a0 is the Bohr
radius.

We have chosen the media parameters such that the
transition wavelength 780 nm corresponds to the SP frequency
ω = 0.144ωe. This frequency is quite close to ω0 where SP
fields exhibit low losses and large confinement. The linewidth
is on the order of MHz, and the detuning is  = 1.38 MHz.
The Rabi frequency for the control field is �c = 1 MHz. The
atomic density of level 1 is taken to be 1014 cm−3 (typical gas),
and the medium size along the x direction is Lx ≈ 0.3 mm.

If the SP pulse temporal duration is of the order τ ≈ 1µs,
the mean thermal velocity of 87Rb atoms should satisfy the
condition

υRb < 0.1λ/2π (3.11)

for the Doppler-broadened resonant line, which limits the
temperature of the 87Rb gas to

T < mRb(υRb)2/2kB ≈ 0.8 µK. (3.12)

It is possible to increase the minimal temperature by using
solid-state media interfaces [26] with spectral tailoring of
narrow resonant lines [15]. Here, the interface of diamond
(containing resonant nitrogen vacancy (NV) centers) with
NIMM looks quite promising based on recent experiments
with fabricated diamond–metal interfaces [27]. For this set of
parameters, we show in Fig. 6 the Kerr nonlinear coefficient for
field b, and the corresponding phase shift due to cross-phase
modulation between the SP pulses.

IV. LARGE CROSS-PHASE MODULATION

Near and below the frequency ω0 where SP fields exhibit
low losses, the real part of k1 is nearly zero. This leads to
field deconfinement, namely, poor confinement (large ζj ) and
large mode length, which leads naturally to weak coupling
of SP fields to atoms near the interface. Thus, both the Kerr
nonlinearity coefficient and the phase shift are small. As we
surpass this frequency region to higher frequencies where
real part k1 gets larger, field confinement is further enhanced
(small ζj ) thereby decreasing the mode volume. In this way,
SP coupling to atoms increases with increasing SP frequency:
hence the Kerr coefficient and phase shift increase accordingly.
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FIG. 6. (Color online) Third-order susceptibility χ (3)
a (dashed

line) due to the DEIT scheme (×105) as a function of probe field
frequency ω/ωe, and the corresponding phase shift ϕb (solid line)
due to SP cross-phase modulation in the DEIT scheme (in units π )
as a function of probe field frequency ω/ωe.

By adjusting the media parameters, we can achieve a giant
Kerr nonlinear coefficient and phase shift of the order π at the
required frequency, in this case, the Rb gas transition frequency
corresponding to ω = 0.144ωe. These results demonstrate
clearly that it is possible to achieve the requirements of
low losses, subwavelength confinement, large Kerr nonlinear
coefficient, and cross phase shift of order π . For coherent state
inputs, the lower bound on the mean photon number is the
desired phase shift, e.g., π photons for a π phase shift, but this
bound could be beat for nonclassical light [20,21].

We have also analyzed the solid-state Pr:YSiO system with
similar results. The weak dipole moment of this solid system is
compensated for by the large atomic density in typical solids.
The LLSP and their high degree of confinement together with
DEIT generate large phase shifts for this system. However, the

Pr:YSiO resonant wavelength of 606 nm is a little beyond the
reach of current NIMM technology.

V. CONCLUSIONS

In conclusion, combining SP confinement at a NIMM
interface with the DEIT mechanism yields the three sought-
after properties for large cross-phase modulation: low loss,
high field confinement, and large Kerr coefficients.

The goal is to reach mutual phase shifts of π at the single-
photon level, which would have profound implications for
quantum-information technology. In the meantime, creating
mutual phase shifts of order π for the case of each pulse having
hundreds of photons would be exciting for nanophotonic
switches.

With state-of-the-art nanofabrication technology, the non-
linear atomic medium of thickness z0 can be implemented
by implanting impurity atoms on the dielectric part of the
interface with a NIMM. Although EIT is well studied and
experimentally demonstrated in many laboratories around the
world, and despite the tremendous progress in nanofabrication
and NIMM technology, combining EIT and DEIT with
NIMMs is the most challenging part in this scheme. However,
NIMM technology has reached optical frequencies, so 87Rb
at the interface with a NIMM should be feasible soon, and a
solid-state implementation with Pr:YSiO should be viable as
NIMM technology reaches shorter wavelengths.
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