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Designing optical elements from isotropic materials by using transformation optics
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By taking advantage of a conformal mapping technique, we propose designs for various optical elements such
as directional antennas, flat lenses, or bends. In contrast to most of the existing design approaches, the elements can
be implemented with isotropic materials, thus strongly facilitating their fabrication. We furthermore generalize the
concept and show that under certain conditions previously suggested devices consisting of anisotropic materials
may be replaced by isotropic ones using an appropriate transformation. The designs are double-checked by
full-wave simulations. A comparison with their anisotropic counterparts reveals a similar performance.
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I. INTRODUCTION

The reinterpretation of the form invariance of Maxwell’s
equations against coordinate transformations by Pendry et al.
[1] gave birth to the promising field of transformation optics.
It mainly derives its fascination from the potential to control
the mold of light at will and to open doors for applications
which contradict our general perception of light propagation. A
striking example is illusion optics where an appropriate device
may generate the illusion such that an arbitrary object appears
to be like some other object of choice [2]. Another example,
and historically the first one, is the optical cloak, which is
designed to conceal an object from an external observer.

The design of the respective elements exploits that a
spatial transformation leads only to transformed material
properties as permittivity and permeability. Once the design
for a transformational optical device is analytically found, its
functionality can be verified using full-wave electromagnetic
simulations [3]. For their practical implementation in most
cases one relies on metamaterials being artificially nanostruc-
tured media allowing one to control the dispersive properties
of a propagating wave field [4]. However, in most cases, the
anisotropic character of permittivity ε̂ and permeability µ̂ is
disadvantageous because it is difficult to implement it by using
identical metamaterial unit cells [5]. Consequently, one often
resorts to simplified material parameters which will cause a
finite scattering [6,7].

Simultaneously with the publication of Pendry et al. [1],
Leonhardt [8] introduced the concept of optical conformal
mapping. It can be regarded as a special case of Pendry’s
concept which only requires a continuous coordinate trans-
formation. In contrast, Leonhardt’s concept takes advantage
of conformal maps that allow the design of transformation
optical devices consisting of isotropic dielectric media. On
the other hand, when compared to continuous transformations
the mathematical requirements for conformal maps are much
more severe. Furthermore, most conformal maps are limited to
two-dimensional arrangements. For these reasons most of the
designs of transformation optical devices relied on Pendry’s
concept and thus on anisotropic metamaterials characterized
by effective tensors ε̂ and µ̂. Such materials are still hard to
realize and concepts that lift this limitation are looked for.

This is mainly driven by the desire to obtain transformation
optical devices consisting of more realistic and already avail-
able materials. Therefore, an increasing share of research has

been devoted to two-dimensional conformal and numerically
generated quasi-conformal maps that provide an easier to
realize isotropic transformation medium [9]. Li and Pendry
designed a ground-plane cloak by a numerical conformal
grid generation [10]. Later on this design was realized with
nonresonant metamaterial elements in the microwave regime
[11] as well as with isotropic dielectric materials in the infrared
range [12]. Both designs exhibited only low losses.

However, for a large variety of other devices that are
based on transformation optics such isotropic implementations
are not yet known. An example is a directional antenna
that converts cylindrical waves into plane waves. Such four-
and six-beam directional antennas have been studied in
Refs. [13–15]. Another example would be a beam bend.
Transformation optical structures for beam bends have been
discussed in Refs. [16–18]. However, again all of them rely
on anisotropic media with different levels of difficulty for a
practical realization.

Here we lift this restriction and present design strategies
for such antennas relying on conformal Schwartz-Christoffel
maps that remedy this disadvantage. However, we admit that
this is not the first step toward isotropic devices. Transfor-
mation optics waveguides based on isotropic materials have
been also studied with the help of numerically generated
quasi-conformal maps [19]. Our designs do not allow such
flexibility as it can be achieved by numerical methods but do
provide easy analytical solutions for the required refractive
index distribution.

The manuscript is structured as follows. Section II provides
a concise overview on directional antennas in the context
of transformation optics. It furthermore briefly reviews the
concept of finite embedded coordinate transformations. After
this we present and discuss our design relying on the conformal
mapping technique. In Sec. III we use the results from the
previous section in order to design special flat lenses and
discuss them in comparison to their anisotropic counterparts as
documented in the literature. Most of the extensive calculations
used in Secs. II and III may be found in the Appendix.
Section IV covers the issue of the beam bend and is divided
into three subsections. In Sec. IV A we start with a short
review of a known transformation for a beam bend. After
this we elaborate a concept that states how and under which
conditions an anisotropic material may be replaced by an
isotropic one. It is shown that this concept is applicable for the
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beam bend. Then we provide full-wave simulations in order to
verify the results. Furthermore we also discuss the applicability
of the concept to other known transformations. In Sec. IV B we
propose a potential practical realization of such an isotropic
beam bend where the required pemittivity distribution is
mimicked by an effective medium of densely packed dielectric
nanocylinders variable in diameter and much smaller than the
used wavelength. Such kinds of implementation would be in
principle applicable for all the designs we have in mind and
shall serve for demonstration purposes. In Sec. IV C we present
an alternative and genuine isotropic realization of a right-angle
beam bend and compare it to the one from Sec. IV A.

II. DIRECTIONAL ANTENNAS

Directional antennas were investigated in terms of trans-
formation optics in several articles [13–15]. Jiang et al.
[13,14] used for their designs finite embedded coordinate
transformations (FECTs), a concept that has been elaborated
in the work of Rahm et al. [20]. In general such transformations
result in anisotropic effective materials ε̂ and µ̂. Furthermore,
compared with continuous coordinate transformations, FECTs
possess the drawback that reflections may occur at the interface
between the outer space and the transformation medium. A
criterion for a reflectionless FECT was heuristically found in
the initial work on FECTs by Rahm et al. [20]. It states that a
FECT is reflectionless if the metric in and the metric normal
to the interface between the transformation medium and the
outer space is continuous. Later on Yan et al. [21] presented a
thorough investigation on this subject. They found as a neces-
sary and sufficient condition that a FECT is reflectionless if the
transformed interface can be represented by a combination of a
rotation and a translation of the original interface. Furthermore
it turned out that the metric criterion heuristically found in
Ref. [20] is too stringent, because only the metric components
at the interface must be continuous. The design of a four-beam
directional antenna by Jiang et al. [13] relies on a FECT that
essentially maps a disk onto a square. From simulations they
found minor reflections, which is not surprising because a
circle cannot be mapped onto a square by a combination
of rotation and translation. Furthermore Jiang et al. [14]
proposed a design for a six-beam lens antenna. They used
a continuous as well as a discrete FECT that widens a stripe
to a trapezoidal domain. For the discrete FECT the domains
were divided into layers. Finally six such trapezoidal antennas
were arranged in a hexagon, which transformed a point source
into six directed beams. The design with the continuous FECT
requires inhomogeneous anisotropic metamaterials whereas
the discrete design requires only layers of homogeneous and
uniaxial anisotropic metamaterials. Furthermore using the
concept of simplified material parameters [3], Jiang et al. [14]
showed that in contrast to the continuous design the discrete
one can even be made reflectionless. Again one can argue
that the widening of the stripes to trapezes, which results in a
stretching of a line on the interface, cannot be represented by
a combined rotation and translation.

In the following we propose directional beam antennas
designed by conformal mapping. In contrast to the designs
discussed previously they are already realizable with an
isotropic medium, which further simplifies possible practical
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FIG. 1. (Color online) Conformal transformation of a radial and
an azimuthal grid in a unit disk in (a) onto a square in (b) and a
hexagon in (c). It can be easily deduced that the transformed radial
and azimuthal grid lines remain perpendicular to each other.

realizations. For the transformation we use Schwartz-
Christoffel transformations (SCTs). SCTs are conformal maps,
which map two-dimensional polygons onto the unit disk or the
upper complex half plane. For a brief introduction to SCTs
and references for further reading, see Appendix A. First
we start with a design for a four-beam directional antenna
relying on a SCT from a unit disk onto a square. After that we
generalize the design to N -beam directional antennas (N � 3)
and discuss the case for N = 6, that is, a six-beam directional
antenna. The calculations for both designs can be found in
Appendices B and C, respectively.

For the four-beam directional antenna we start with a survey
of the properties of the SCT from a unit disk onto a square
as derived in Appendix B. There Eq. (B1) together with
Eqs. (B2) and (B5) describes the transformation from the
unit disk with coordinates w = u + iv onto the square with
coordinates z = x + iy. Applying the transformation on a grid
of constant radial and azimuthal coordinates within a unit disk,
as shown in Fig. 1(a), yields a grid inside the square as in
Fig. 1(b). The conformal character of the transformation is
clearly visible, the grid lines of the constant radial coordinates
|w| and azimuthal coordinate arg (w) remain perpendicular
after transformation. The refractive index distribution of this
transformation is given in z coordinates by Eq. (B6) together
with Eq. (B3) and is depicted in Fig. 2(a). The transformation
becomes singular at the four corners of the square. Thus the
refractive index approaches 0 there.

In order to obtain a four-beam directional antenna with
this transformation a point source must be placed at the
origin. In the untransformed w space this would result in a
cylindrical wave. In the transformed z space the transformation
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FIG. 2. (Color online) Refractive index distribution according to
the transformations from the unit disk onto the square (a) and the
hexagon (b). The refractive index approaches 0 at the corners due to
the singular behavior of the conformal maps there.

medium transforms this cylindrical wave continuously into
four directed beams with a predominantly plane phase front.
At the interface with the outer untransformed free space where
the square is embedded, the square-shaped wave fronts can
cross without refraction due to the fact that they are parallel
with the interface. However, due to impedance mismatch with
the outer space, reflections do occur. The reflection coefficient
R can be estimated by using Fresnel’s law for normal incidence

R =
(

n′ − 1

n′ + 1

)2

, (1)

where n′ assumes all values 0 � n′ � 1.311 at the edge of the
square. Over a wide range of segments of the square, R is
less than 0.1 (0.5 <≈ n′ � 1.311). R tends toward 1 at the four
corners where n′ vanishes.

To verify the functionality of this four-beam directional an-
tenna we proceed by showing results of full-wave simulations.
For this purpose we rely on the finite element method (FEM)
using Comsol Multiphysics. Since Maxwell’s equations
are scalable and only dielectric materials will be involved,
we perform the simulation in the GHz regime. However,
an appropriate scaling translates the design to an arbitrary
spectral domain as long as materials are on hand having
the respective properties. Since a refractive index close to
zero is hard to realize we use more realistic conditions.
For this purpose we assume that the antenna is embedded
in an isotropic background medium with a refractive index
of n′ = 1.5. Therefore according to Fig. 2(a) the refractive
index distribution for the square must be scaled by a factor
of 1.5. Furthermore, we restrict the lower limit of the scaled
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FIG. 3. (Color online) Simulation of the four-beam directional
antenna. (a) The refractive index distribution n′ that is used and
obtained from the one in Fig. 2(a) by scaling with a factor of 1.5
and restricted to n′ > 0.5. This medium transforms the cylindrical
waves emerging from the line source at the origin of panel (b) to
quadratic wave fronts that finally form four collimated beams leaving
the antenna. Panel (c) shows the corresponding total energy density.

refractive index to n′ = 0.5. The refractive index distribution
obtained by this procedure is depicted in Fig. 3(a). By placing
a line source in the origin with an amplitude of 1V/m that
emits a transverse-electric (TE)-polarized field (electric field
perpendicular to the plane of interest) and choosing a free space
wavelength of λ = 0.2 m, the electric field perpendicular to
the plane, Ez, and the total energy density, Wav, are obtained as
shown in Figs. 3(b) and 3(c), respectively. As can be seen, the
cylindrical wave fronts emerging from the line source become
quadratic with increasing distance. Finally the radiation from
the antenna consists of four collimated beams. Only a very
minor amount of energy is radiated toward the four corners.

As a generalization from the four-beam antenna to the
N -beam antennas, similar SCTs can be found for regular
N -gons (see Appendix C) for N � 3. Equation (C2) together
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with Eq. (C3) transforms a unit disk (coordinates w = u + iv)
onto the regular N -gon (coordinates z = x + iy). The corre-
sponding refractive index distribution is given by Eq. (C4).
For example—and also for a comparison with the design in
Ref. [14]—we restrict ourself to the case of a regular hexagon,
that is, N = 6. The transformation and the corresponding
refractive index distribution are depicted in Figs. 1(c) and 2(b),
respectively. They show a very similar behavior as in the case
of the square. The same simulations as for the square were
carried out for the hexagon using directly the refractive index
distribution from Eq. (C4) without any scaling and limiting.
The results for the electric field perpendicular to the plane
and the total energy density are plotted in Figs. 4(a) and 4(b),
respectively.

Eventually we briefly compare the isotropic antenna with
their anisotropic counterparts from Refs. [13] and [14],
respectively. Of course the need for a merely isotropic
metamaterial poses a striking simplification for a possible
practical realization especially as compared with the design in
Ref. [13]. With respect to the problem of impedance mismatch
at the outer interface, the design proposed here does not
offer any improvements, especially not as compared with the
reflectionless design in Ref. [14]. However, the reflection in
the isotropic case is very weak and can be theoretically limited
to less than 10% over a wide range of beam waists.
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FIG. 4. (Color online) Simulation of an N -beam directional
antenna for N = 6. Using the refractive index distribution from
Fig. 2(b) the cylindrical waves that are emitted from the line source at
the origin are transformed to hexagonal wave fronts that finally form
the six beams of the antenna. Panel (b) shows the corresponding total
energy density.

III. FLAT LENSES

The FECT for a flat lens design from Kwon and Werner [18]
transforms a segment of a disk with a plane convex shape to a
rectangle. The plane boundary is not modified and is the lower
boundary of the rectangle. The convex part of the boundary is
mapped onto the upper boundary of the rectangle. Besides the
width and the height of the rectangle there is a parameter g

that controls the distance of the focus from the lower boundary
of the rectangle. One major drawback of this design is again
a quite complicated material distribution for the anisotropic ε̂

and µ̂.
Using the concept of simplified material properties as in

Ref. [4], one can reduce the problem to nonmagnetic materials.
Therefore for transverse magnetic polarization, ε′

xx , ε′
xy , and

ε′
yy are multiplied by µ′

zz and renamed to ε̄′
ij , while µ̄′

zz is
set to 1. Maxwell’s equations, and therefore the path of the
light wave in the lens too, remain unchanged when using the
simplified material parameters ε̄′

ij and µ̄′
ij . But the intrinsic

impedance matching at the lower interface of the lens with the
outer space (where the transformation is continuous) is lost.
Simulations (not shown here) using a line source at origin for
illumination and the simplified material parameters ε̄′

ij and µ̄′
ij

show that remarkable reflections occur at the lower boundary
of the rectangle, compared with the case of using ε′

ij and µ′
ij . At

the upper boundary of the rectangle there can be principally
reflections. This is due to the fact that the transformation is
discontinuous there and the criterion for a reflectionless design
as given in Ref. [21] is not fulfilled.

Using results of the previous section one can also design a
special flat lens exhibiting a major advantage but also a few
disadvantages compared with the design described previously.
For a four-beam antenna the unit disk was conformally mapped
onto a square. Due to the symmetry, the upper half of the
unit disk is mapped onto the upper half of the square, that
is, a rectangle with a ratio of width to height of 2 : 1. As
can be seen from Fig. 3(b), a beam with small divergence
impinging on the upper boundary of the square is focused to
the origin and would be transformed back to a beam within
the lower rectangular part of the square. Hence, if for example
only the upper half of the square is used, the plane wave
fronts of the beam would be focused onto the origin and from
there cylindrical wave fronts would be emitted into the free
space in the lower half-plane. The advantage of this design
is again an isotropic refractive index distribution (that can be
further simplified by the aforementioned scaling and limiting
procedure to n′ > n′

min > 0) compared with the anisotropic
one in Ref. [18]. On the other hand several drawbacks emerge
from this design compared to the one in Ref. [18]. The most
severe one is that the focus is not situated in free space. Instead
the focus lies directly on the lower boundary of the flat lens
to the outer free space (this corresponds to the case of a focus
distance g = 0 in the design of Ref. [18]). Another drawback
is that reflections may also occur at the lower boundary of the
rectangle due to impedance mismatch to the outer free space
(n′ �= 1 at the boundary). This is a similar problem as already
discussed in the case of using simplified anisotropic material
properties.

FEM simulations have been carried out to probe this flat lens
design. In Fig. 5(a) the flat lens is illuminated by a Gaussian
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FIG. 5. (Color online) Illumination of the isotropic flat lens from
the top by a TE-polarized Gaussian beam with an almost plane phase
front. The beam is focused into the origin lying on the lower boundary
of the flat lens. From there cylindrical waves emerge and propagate
in the lower half-plane. Panels (a) and (b) show the electric field and
the corresponding total energy density, respectively.

beam with an almost plane phase front. Remarkably the beam
is focused at the lower boundary of the flat lens and from
there cylindrical waves propagate into the lower half plane.
Furthermore in Fig. 5(b) the corresponding total energy density
and Poynting vectors are plotted. The focusing and defocusing
effect are obvious.

While the focusing of a plane wave as in Fig. 5 works
properly, the reverse case unveils several drawbacks. In Fig. 6
a line source is placed at the boundary, that is, the focus of the
flat lens. For an anisotropic flat lens in Ref. [18] with a focus
distance g = 0 almost the complete energy that is emitted
from the line source into the upper half-space is directed into
a beam with a plane phase front, leaving the flat lens through
the upper boundary. But using this isotropic flat lens, energy
is also transported through the side edges of the rectangle as
can be seen from Fig. 6. This is due to the fact that the half
circle is mapped onto the upper edge as well as on the two
side edges of the rectangle, while in the case of Ref. [18]
the half circle is mapped only onto the upper edge of the
rectangle. Furthermore from Fig. 6(b) it can be seen that the
aforementioned reflections at the lower boundary occur and
most of the energy is re-emitted into the lower half-plane. This
reduces significantly the efficiency.

Besides the zero focus distance another drawback of this
design is that it requires a fixed width to height ratio of
2 : 1. This restriction can be theoretically lifted by computing
conformal maps from a rectangle with an arbitrary aspect ratio
onto the unit disk (due to symmetry the upper part of such
a rectangle is again the image of one half of a unit disk).
Such a conformal Schwartz-Christoffel map is already known
in the literature (see, e.g., Ref. [22], p. 280, and especially
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FIG. 6. (Color online) Transformation of a line source placed in
the focus of the isotropic flat lens at the bottom edge. The cylindrical
waves emitted into the upper half are transformed into plane waves
leaving the flat lens via its upper edge but also through its two
side edges. The anisotropic flat lens design from Ref. [18] does not
suffer from this drawback. Panels (a) and (b) show the electric field
perpendicular to the plane and the total energy density, respectively.

exer. 5 on p. 297) and is briefly derived in Appendix D. The
transformation again involves elliptic functions. One issue that
could emerge is that even for aspect ratios, RA, not in excess
[for the definition of RA and its mathematical expression
see Appendix D and Eq. (D2)], for example, RA = 9 or
RA = 10, the modulus k of the elliptic functions are very
close to 1 (deviations in the order of 10−12 are found, e.g.,
for RA = 9 or RA = 10). A similar behavior occurs for small
aspect ratios, where the modulus k becomes very close to 0.
Hence possibly numerical problems with the evaluation of
the elliptical functions should be taken into account when
computing the map and its refractive index distribution at very
high aspect ratios.

The map from the unit disk with coordinates w onto a
rectangle with coordinates z is given by Eq. (D3). Figure
7(a) shows the transformed grid lines of half the unit disk of
Fig. 1(a). The corresponding refractive index distribution n′ of
this transformation is given in z coordinates by Eq. (D5) and
is shown in Fig. 7(b) for the same rectangle as in Fig. 7(a).
Both graphs are similar to those for the transformation of the
square as in Figs. 1(b) and 2(a). As expected the 90◦ symmetry
is reduced to a 180◦ symmetry.

IV. BENDS

Another example of an optical device for which an isotropic
version can be found is beam bends. In Sec. IV A at first we
review a known transformation of a beam bend from Ref. [18].
After this we elaborate a concept that allows one to replace the
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FIG. 7. (Color online) Transformation from the unit disk onto
a rectangle. The grid of one half of the unit disk in Fig. 1(a) is
transformed by Eq. (D3) to the grid in the half rectangle in panel
(a). The corresponding refractive index distribution from Eq. (D5) is
shown in panel (b) and shows a form very similar to that of the one
for the square in Fig. 2(a).

anisotropic material parameters of this bend by an isotropic
medium. After having discussed this isotropic version and the
applicability of the concept to other known transformations
we proceed in Sec. IV B with a concrete design for this
isotropic beam bend based on the effective medium theory for
densely packed dielectric nanocylinders. This is exemplarily
done as a possible implementation of all the structures we have
investigated in this article. Finally, in the Sec. IV C we show
an alternative approach to realize an isotropic perpendicular
bend. In contrast to the one in Sec. IV A this approach does
not rely on the transformation optics concept. We complete
the section with a comparison of this beam bender especially
to the one from Sec. IV A.

A. Bends made of isotropic media

Kwon et al. [18] presented a finite embedded coordinate
transformation of a bend that transforms a rectangular grid
within a square domain of width w [Fig. 8(a)] into a
curved grid [Fig. 8(b)]. For such a perpendicular bend the
respective rotation angle amounts to β = π/2. Following the
transformation rules from Ref. [18],

ρ ′ = y, ϕ′ = π

2w
(w − x) , z′ = z, (2)

the Jacobian matrix can be computed in primed Cartesian
coordinates as

J =
⎛
⎝ Ĵ 0

0
0 0 1

⎞
⎠ , Ĵ =

⎛
⎝ αy ′ x ′

ρ ′

−αx ′ y ′
ρ ′

⎞
⎠ , (3)

where ρ ′2 = x ′2 + y ′2 and α = β/w. To obtain a bend with
an isotropic medium later on in this section we use a useful
property of this transformation. The transformation is not
conformal in the x-y plane at all (the Cauchy-Riemann
differential equations are not fulfilled or equivalently it holds
Ĵ T / det Ĵ �= Ĵ −1). This can be also seen from the fact that
the vertical lines of constant x in Fig. 8(a) are transformed to
radial lines of constant ϕ′ in Fig. 8(b), which are not parallel

x

y

x′

y′

(a) (b)

FIG. 8. (Color online) Transformation of the bend from Ref. [18]
and used in Sec. IV A for an angle of β = π/2. The Cartesian x-y grid
within the quadratic subdomain in panel (a) is transformed in such a
way that grid lines of constant y transform into lines of constant radial
coordinate ρ ′ in panel (b) and similarly lines of constant x transform
into lines of constant azimuthal coordinate ϕ′.

anymore. On the other hand for the horizontal lines of constant
y in Fig. 8(a), one can see that the transformation shares one
characteristic with a conformal map. The lines of constant ρ ′
remain parallel after transformation and are still perpendicular
to the transformed lines of constant x, that is, lines of constant
ϕ′. In the following we refer to these lines of constant y or ρ ′
as the “pseudo-conformal directions” in the bend.

Prior to proceeding with the bend, we present a route of
how and under which conditions for the transformation an
isotropic medium can be derived from a given anisotropic
transformation medium and used as an appropriate alternative.
We discuss this procedure with respect to conformal maps
and the transformation that possesses a pseudo-conformal
direction.

Schurig et al. [23] derived a Hamilton formalism for ray
tracing in transformation media. The dispersion relation in the
anisotropic transformation medium they found is given by

H = 1

det η̂
[k′T η̂k′ − det η̂]2 = 0, (4)

with

η̂ = ε̂′ = µ̂′ = JJ T

detJ , (5)

where it was assumed that the untransformed space is vacuum,
that is, ε̂ = µ̂ = 13. Furthermore k0k′ denotes the wave vector
in the transformation media where k0 = 2π/λ0 with λ0 as the
free space wavelength.

One can show that this formalism is analogously applicable
for an inhomogeneous and dispersive but still isotropic distri-
bution of ε = ε(r, ω) and µ = µ(r, ω) in the untransformed
space. Therefore, one only has to replace η̂ in Eq. (4) by

√
εµ ·

η̂. With n(r, ω) = √
εµ as the isotropic, but inhomogeneous

refractive index in the untransformed space, one gets

1

det (n · η̂)
[k′T (n · η̂) k′ − det (n · η̂)]2 = 0. (6)

Equation (6) can be simplified to

n2

detJ [(J Tk′)2 − n2]2 = 0. (7)
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Assuming that J is nonsingular and setting k′ = n′ · k̄′,
where k̄′ is a dimensionless unit vector, the refractive index
distribution n′ as a function of the transformed coordinates r′
and k̄′ can be written as

n′(r′, k̄′) = ‖J T k̄′‖−1 · n(r′). (8)

Due to the fact that the wave vector (−ω/c, k) is a four-
vector it transforms under coordinate transformations (in space
and time) just by applying the 4 × 4 Jacobian matrix. For
purely spatial coordinate transformations, the (spatial part of
the) wave vector in the untransformed frame k0k transforms
to k0k′ in the transformed frame via k′ = J k. Therefore, k̄′ is
linked with k via the expression

k̄′ = J k
‖J k‖ . (9)

The quantity n′ in Eq. (8) can be considered as the refractive
index that light experiences at a point r′ in the direction of k̄′
inside the anisotropic transformation medium of ε̂′ and µ̂′.

Hence for a desired spatial distribution of propagation
directions k̄′ in the transformation medium, one can compute
for every point the refractive index n′.

But it is important to state that in general one would
not obtain the same light ray trajectories along the desired
k̄′ distribution if one would simply replace the anisotropic
material by ε̂′ and µ̂′ with the isotropic one of n′.

Two-dimensional conformal maps are an exception. One
can show that in this case Eq. (7) reduces to the known
result as in Ref. [8] [Eq. (A2)]. For a two-dimensional
conformal map z(w) with z = x + iy and w = u + iv it holds
that Ĵ T Ĵ = det Ĵ 12 = |dz/dw|212 because of the Cauchy-
Riemann differential equations (ux = vy and uy = −vx). For
propagation in the untransformed two-dimensional plane with
an in-plane wave vector k = k‖ (kz = 0), Eq. (8) can be written
as

n′ =
∥∥∥∥∥J T J k‖∥∥J k‖

∥∥
∥∥∥∥∥

−1

· n =
√

kT
‖ J TJ k‖∥∥J TJ k‖

∥∥ · n

(10)

=
√

kT
‖ k‖∥∥k‖
∥∥ · n√|detJ | =

∣∣∣∣ dz

dw

∣∣∣∣
−1

· n,

which is in accordance with Eq. (A2). Hence for a conformal
map it is possible to use the easier isotropic refractive index
distribution n′ instead of the anisotropic ε̂′ and µ̂′ without
changing the ray path in the transformation medium.

However, in particular for the bend this replacement is only
possible along the pseudo-conformal direction [k = (1, 0, 0)T

in the untransformed space]. With the bend’s Jacobian in
Eq. (3) and a light propagation direction of k = (kx, ky, 0)T in

the untransformed free space (‖k‖ =
√

k2
x + k2

y = 1), n′ can
formally be calculated by Eqs. (8) and (9) as

n′ =
√

α2ρ ′2k2
x + k2

y

α2ρ ′2kx + ky

. (11)

For the pseudo-conformal direction of k = (1, 0, 0)T it
simplifies to

n′ = (αρ ′)−1. (12)
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FIG. 9. (Color online) (a) Refractive index distribution for the
isotropic perpendicular bend of width w = 0.3 m from Eq. (12) in
Sec. IV A. For better visual perception, the shown refractive index is
limited to n′ = 10. (b) Propagation of a TE-polarized Gaussian beam
at a free space wavelength of λ0 = 0.05 m that impinges from the left
on the bend.

To double-check the performance of the isotropic bend
we again perform full-wave simulations. In Fig. 9(b) a TE-
polarized Gaussian beam with a free space wavelength of
λ0 = 0.05 m impinges on the bend from the left-hand side
with a width of w = 0.3 m. Most of the electric Ez field
in Fig. 9(b) is smoothly perpendicularly bent in a clockwise
direction and leaves the bend through the lower interface
into free space. Nevertheless one issue that arises when
using the isotropic n′ instead of the anisotropic material as
in Ref. [18] is the impedance mismatch at the interface to
the free space. Using the anisotropic medium no reflections
occur at the left interface L′ = {(x ′, y ′)|x ′ = 0, y ′ ∈ [0, w]}
because there the transformation is continuous and hence the
transformation medium is intrinsically impedance matched
to the free space. By contrast, at the bottom interface
B ′ = {(x ′, y ′)|x ′ ∈ [0, w], y ′ = 0} where the transformation is
discontinuous with the outer free space, no reflections occur,
too. This can be explained by the aforementioned criterion
from Ref. [21], because the transformation of the right-hand
interface R = {(x, y)|x = w, y ∈ [0, w]} in the original space
to B ′ in the transformed space can be regarded as a combination
of a clockwise rotation of 90◦ degrees and a translation of −w

along the x direction.
It is important to note that the functionality of the isotropic

beam bender is limited to normal incidence. First, this is due
to the fact that n′ was calculated under this assumption, and
second, only for normal incidence does refraction vanish at
L′ and B ′. This also means that the bend can only be used
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for beams with a sufficiently small divergence (ky � kx ≈ 1
for the incident beam in our geometry). For the anisotropic
bend these limitations do not apply; that is, it works also for
obliquely incident and divergent beams.

For a possible practical realization the refractive index
distribution as in Eq. (12) is still inappropriate due to its
singular behavior for small radii ρ which causes the index
to approach zero. This problem can be lifted by introducing
upper and optionally also lower limits for n′ (the lower limit
may not be necessary since n′ approaches 2/π = 0.637 at
ρ ′ = w). Furthermore w must be adjusted in such a way that
the ring segment that is not affected by the limiting procedure
fits to the waist of the impinging beam. Figure 10(a) shows the
refractive index distribution for a bend with w = 0.8 m and the
restriction 2 � n′ � 4. In Fig. 10(b) this bend is illuminated
by a TE-polarized Gaussian beam with a suitable beam waist
of 0.16 m and a free space wavelength of 0.05 m. Figure 10(c)
shows the corresponding total energy density. It is obvious that
for a given beam waist the necessary refractive index range
can be adjusted by changing the bend radius, that is, w. The
larger w is the smaller the refractive index range is. Reducing
the index range and using a refractive index in the outer
space that lies in this index region can also be utilized to reduce
reflections at the interface to the outer space to acceptable
values.

Before we proceed with the next section the applicability of
the concept, presented previously for nonconformal maps, is
discussed. However, to make it clear from the very beginning,
besides the beam bender we did not succeed in finding
any other nontrivial transformations among the many ones
suggested in the literature, where pseudo-conformal directions
do exist and are also relevant for the functionality of the
transformation optical device. A trivial example is squeezing
a rectangle to half of its width, that is, x ′ = x/2. According
to Eqs. (8) and (9) this would require n′ = 2n for light
propagating into the x direction.

For two-dimensional cylindrical cloaks with transforma-
tions of the kind ρ ′ = ρ ′(ρ) and θ ′ = θ the coordinate lines
along ρ and θ remain orthogonal after transformation; that is,
they are pseudo-conformal directions. But this does not help.
To cloak an object that is illuminated by a plane wave (or a
beam with low divergence) propagating along the x direction,
the pseudo-conformal direction must be the x direction too, in
order to use the corresponding isotropic media. But one can
easily show that the coordinate lines along the transformed
x ′ and y ′ directions will never be orthogonal as for the
untransformed x-y grid for any function ρ ′(ρ). Making use of
the chain rule, one obtains the following for the scalar product
of the unit vectors along the x ′ and y ′ coordinate lines:

ex ′ · ey ′ ∼ ∂r
∂x ′ · ∂r

∂y ′

=
(

eρ

∂ρ

∂ρ ′
x ′

ρ ′ − eθ

ρ

ρ ′
y ′

ρ ′

)
·
(

eρ

∂ρ

∂ρ ′
y ′

ρ ′ + eθ

ρ

ρ ′
x ′

ρ ′

)

= x ′y ′

ρ ′2

[ (
∂ρ

∂ρ ′

)2

−
(

ρ

ρ ′

)2 ]
!= 0.

The condition requiring that the obtained differential
equation ∂ρ/∂ρ ′ = ρ/ρ ′ for ρ ′(ρ) shall hold together with
the boundary condition, that ρ ′(ρ) must be continuous at least
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FIG. 10. (Color online) Simplified model of the isotropic bend
from Fig. 9. The large refractive index for small radii can be avoided
by increasing the bend radius. This can be achieved by increasing
w, considerably exceeding the waist of the incoming beam, as well
as by ensuring that the beam propagates in a ring segment with a
sufficiently large radius. This has been done in Fig. (a) for the bend
with w = 0.8 m. The ring segment between the radii of 0.318 and
0.637 m provides a refractive index in the range n′ ∈ [2,4]. Finally,
panels (b) and (c) show the electric field and the total energy density
of a TE-polarized Gaussian beam with a beam waist of 0.16 m and
a free space wavelength of 0.05 m, respectively, impinging from the
left at the center of the ring segment (y ′ = 0.477 m).

across the outer boundary of the cloak, gives merely the trivial
solution ρ ′ = ρ, that is, the identity transformation. Hence for
such types of cloaks no equivalent isotropic alternative can be
used.

Another problem that arises is that even if one has found
a usable pseudo-conformal direction, the intrinsic impedance
matching at the interface between transformed and untrans-
formed space is not automatically fulfilled if the anisotropic
quantities ε̂′ and µ̂′ are replaced by the isotropic n′ one. In the
bend light enters and leaves it normal to the interfaces, which
“only” results in reflections at the interfaces and diminishes
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the performance. But in general, theses interface problems
can be more severe. For oblique incidence, refraction and
total reflection can occur at the interface preventing the use
of the isotropic device. These problems do not occur if the
transformation is continuously differentiable at the interface,
because then n′ will be continuous there.

B. Implementation of the bend by using dielectric nanocylinders

To outline a possible bend implementation and to evaluate
its performance beyond a description that is based on an
effective refractive index we have rigorously simulated such
bends where the index distribution is realized by spatially
distributed dielectric cylinders of varying size [24].

In particular, we started from the index distribution of a
bend as given by Eq. (12), assumed a width of w = 0.27 m,
and discretized the index profile on a grid where each grid point
had a size of a tenth of the wavelength. The design wavelength
was again 0.05 m. At each grid point we located a dielectric
cylinder whose radius was adjusted to evoke the required
effective index. We mention that the size of the cylinder was
sufficiently small for the effective medium model to hold.
Since the dielectric cylinder is nonresonant in the spectral
domain of interest, the effective permittivity can be assigned, in
principle, by computing the spatial average of the permittivity
in the unit cell. Nevertheless, rigorous simulations were used
to verify this assumption [25,26]. For the dielectric material
of the cylinder we assumed a semiconductor with ε = 13.
The cylinders were surrounded by air. The refractive index
distribution was strictly limited to values obtainable within
this material system, for example, no index lower than unity
or larger than ≈3.6 was possible.

The ensemble of cylinders was illuminated by a Gaussian
beam (beam width corresponds to the wavelength) whose waist
was placed at the entrance facet of the bend. With the above
design constraints the bend consisted of 1553 cylinders and
the entrance facet had a width of 26 cylinders. For the rigorous
simulations a multiple scattering formalism was used [27]. The
evolving amplitude distribution for this device can be seen in
Fig. 11(a). Nearly all light is bent within the structure. The only
loss mechanisms are back reflections at the interface since the
impedance is not matched to the outer domain and some light
that leaks out of the device since the width of the bend is too
small and the wave nature of light does not allow for a perfect
confinement.

To access in more detail the properties, the bent, the
reflected, and the maximum amount of bent light for negligible
reflection are shown in Fig. 11(b) as a function of the bend
width. This width was continuously increased and quantified
by the number of cylinders that form the entrance facet. Two
things can be seen. First, Fabry-Perot oscillations of the light
inside the bend cause a sinusoidal modulation of the amount
of bent and reflected light. The geometry with 26 cylinders
was chosen since it corresponds to a maximum in the bent
energy at negligible reflection. Therefore, despite being not
impedance matched, reflection may be strongly suppressed.
Second, the larger the bend width and the smoother the
index profile, the larger the maximum possible bent efficiency
which asymptotically converges toward 100%. The smoother
the index gradient and the larger the bend when compared
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FIG. 11. (Color online) (a) Amplitude distribution upon illumi-
nating a bend consisting of periodically arranged dielectric cylinders
of spatially varying radius to cause an effective index according to
that shown in Eq. (12) with a width of w = 0.27 m. The cylinders are
made of a semiconductor with ε = 13 and are embedded in air. The
index distribution is limited to those values that can be obtained with
this material basis. The structure is illuminated by a Gaussian beam
of a width of 0.05 m and which propagates in the negative y direction.
For the specific example 26 cylinders form the entrance facet of the
bend. The cylinders are indicated by green circles, though they are
hardly discernible since their density is large. (b) Share of bent light
[blue (black) solid line], reflected light [red (dark gray) dotted], and
the maximum attainable bend efficiency [green (light gray) dashed
line], shown in percent, as a function of the bend size. The size is
quantified by the number of cylinders that form the entrance facet.
Lines are only a guide to the eye since the size cannot be adjusted
continuously.

to the wavelength, the smaller is the leakage of the light
out of the structure and the more light can be efficiently
transmitted.

This potentially practical realization of a bend has exem-
plarily proven that the translation of a device that was designed
by transformation optics and where only an isotropic index was
required can be obtained with such a simple nanostructured
system.

C. An alternative isotropic perpendicular bend

An alternative approach for a two-dimensional beam splitter
was derived in terms of an appropriate refractive index
distribution already more than 15 years ago [28]. This beam
splitter is a disk with a radius R. A collimated beam that
symmetrically impinges on the disk’s center is symmetrically
split such that either outgoing beam leaves the splitter at
an angle of qπ/2 (0 � q � 4) with respect to the incident
beam. Variable beam division can be achieved by displacing
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the incident beam transversely with respect to the radial axis
pointing to the origin.

Here we use this beam splitter as a bend, which is possible
if the beam thickness is less than the disk radius R and the
beam is sufficiently transversely displaced that it will not hit
the origin anymore. Considering a coordinate system with
radial coordinate ρ and the dimensionless variable r = ρ/R,
the radially symmetrical refractive index distribution n(r) of
this beam splitter is determined by

r2(1 +
√

1 − (rn)2)q−2 = (rn)q, (13)

where q controls the bending angle. This equation for the
refractive index distribution was derived in Ref. [28] (see
Eq. III.6.12 on p. 599) without using transformation optics
methods, which were unknown at that time. For a cylindrically
symmetric refractive index distribution n(r) the ray equations
can be written as a separable first-order differential equation
in r and the azimuthal coordinate. Integration of the r-
dependent side leads to an Abelian integral that must be solved
(for a more comprehensive description see Chap. 4.7 and
Appendix III.6 in Ref. [28]). In order to proceed, after some
calculations Eq. (13) for n(r) can be rewritten in the form

rν

(
1 − 2

r
n

ν
2 −1 + nν

)
= 0, (14)

where ν = 4/(2 − q). For q = 0, or equivalently q = 4, that
is, for a 2π retro reflector, it can be shown that the solution
for the refractive index law n(r) in Eq. (14) is that of an Eaton
lens [28].

From now on we focus on the bend. The easiest case—and
maybe the only one with an analytical solution for n(r)—
is the one of a perpendicular bend, that is, q = 1 (ν = 4)
or equivalently q = 3 (ν = −4). Either value of ν simplifies
Eq. (14) to

1 − 2
n

r
+ n4 = 0. (15)

Equation (15) provides four solutions for n(r), but only one
of them is physically relevant. With the help of a computer-
algebra system like Wolfram Mathematica a solution for
n(r) can be easily derived and can be expressed as

n (r) = µ (r)
3
√

2

(
1 +

√
1

r · µ (r)3 − 1

)
,

µ (r) = 1
4
√

3 · 6
√

2

√
1

 (r)
+  (r), (16)

 (r) =
√

3
3
√

4
r−2/3

(
1 +

√
1 − 16

27
r4

)1/3

.

This refractive index is plotted in Fig. 12(a). It diverges
to +∞ if r approaches 0 and converges toward 1 for r = 1,
that is, ρ = R, so that there is a continuous transition at the
interface to the outer domain.

To verify the functionality of this kind of bend, full-wave
simulations have been carried out. In Fig. 12(b) a TE-polarized
Gaussian beam of the form Ez = exp[−(y − y0)2/w2

0]V/m
(y0 = 0.5 m, w0 = 0.25 m) with a free space wavelength of
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FIG. 12. (Color online) (a) Radial refractive index profile n(r) for
the perpendicular bend according to Eq. (16). While the refractive
index diverges for small radii ρ = rR, it exhibits a continuous
transition to the outer space at the interface, that is, for r = 1.
(b) Propagation of a TE-polarized Gaussian beam through a bend
with a radius of R = 1 m confirming its functionality.

λ0 = 0.1 m impinges at a bend with a radius of R = 1 m and
experiences a π/2 turn to the left side.

To conclude on this kind of bend in the following we com-
pare some key parameters with the other bend types. Compared
to its anisotropic versions [16–18] it is advantageous with
respect to its simpler realization in an isotropic medium. Like
the anisotropic devices it is perfectly impedance matched at
both ends.

Compared with the other isotropic bends as presented in
Sec. IV A, it exhibits a similar though more complicated re-
fractive index distribution. But compared with the numerically
computed isotropic bend of Ref. [19] it lacks from a singular
behavior of n(r) for small radii, similar to the bend from
Sec. IV A. A striking advantage against both other isotropic
counterparts is impedance matching.

A general drawback of this bend is its low flexibility with
regard to bending angles other than π/2. Analytical solutions
for n(r) from Eq. (14) for bending angles qπ/2 with q �= 1, 3
are not expected to exist. None of the anisotropic bends or the
other isotropic bends suffer from this restriction.

V. CONCLUSIONS

To sum up, we significantly reduced the requirements for
the transformation medium of directional antennas and flat
lenses. Our designs, relying on conformal Schwarz-Christoffel
transformations, work already with isotropic dielectric media.
Furthermore, if certain conditions regarding the transformation
hold, we put forward a concept to replace the anisotropic
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material, usually required in transformation optics designs,
by an isotropic refractive index distribution where a similar
optical behavior can be obtained. We showed that this concept
is applicable for a known transformation of a bend and that
it provides a simple analytical expression for the refractive
index distribution.

In the present work we focused on an analytical approach
in the designs. However, for a greater flexibility in the design
process of transformation optical devices the use of numerical
conformal grid generators like CONFPACK [29], Zipper [30],
or those used in the papers of Li and Pendry [10] and
Landy and Padilla [19] are inevitable. With regard to future
practical implementations of transformation optical devices
it may be anticipated that the use of conformal mapping
techniques is a much more promising approach despite their
more sophisticated calculation.
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APPENDIX A: SCHWARZ-CHRISTOFFEL
TRANSFORMATIONS

In this section we provide a concise introduction to
conformal Schwarz-Christoffel transformations (SCTs), for a
more detailed introduction see, for example, Ref. [22] or other
textbooks on conformal mapping. SCTs allow one to map
two-dimensional polygons onto the upper complex half-plane
or the unit disk (which is conformally equivalent to the
half-plane). For a polygon with N vertices the SCT can be
written as

z (w) = A

∫ N∏
k=1

(w − wk)−(1−αk/π) dw + B. (A1)

Here w denotes the coordinates in the upper complex half-
plane or in the unit disk and z denotes those in the polygon. The
αk denotes the polygon’s interior angles and the wk = w(zk)
are the images of the polygon’s vertices zk . In the case of
mapping to the upper complex half-plane the wk lie on the
real axis whereas for the unit disk they lie on the unit circle
|w| = 1. A and B are (complex) constants that represent two
degrees of freedom for an overall rotation (A) and translation
(B) of the map. It can be shown that it is always possible to
drop one of the N factors (i.e., one vertex) in the integrand’s
product series without changing the SCT.

The transformed refractive index distribution n′ for a SCT
is given like for conformal maps by [8]

n′ =
∣∣∣∣dw

dz

∣∣∣∣ n, (A2)

where n is the refractive index distribution in the untrans-
formed space.

In the following three appendices we give the results for the
SCTs and their associated refractive index distributions that are
used in Secs. II and III. To perform symbolic integrations of

the SCT integrals, as in Eq. (A1), the computer-algebra system
Wolfram Mathematica was used.

APPENDIX B: SCT FROM A SQUARE ONTO THE UPPER
COMPLEX HALF-PLANE AND THE UNIT DISK

In this section a SCT from a square (coordinates z) onto the
upper half-plane (coordinates q) is derived via Eq. (A1). By
another conformal map the upper half-plane is subsequently
mapped onto the unit disk (coordinates w). As mentioned
in Appendix A only three of the four vertices of a square
must be considered. Setting the angles αk = π

2 , k = 1, 2, 3,
and choosing the points q1 = −1, q2 = 0, q3 = 1 on the real
axis of the upper half-plane, the SCT from a square onto the
upper complex half-plane can be written with Eq. (A1) as

z (q) = A

∫
(q2 − 1)−

1
2 q− 1

2 dq + B,

which leads after integration to

z (q) = A · 2i · F

(
i sinh−1

(
1√

q − 1

)∣∣∣∣ 2
)

+ B. (B1)

Here F (ϕ|m) denotes the incomplete elliptic integral of
the first kind with the elliptic modulus m. With the constraints
z(−1) = −1 − i and z(1) = 1 + i the square is fixed to an edge
length of 2 and in an upright position. Thus the coefficients A

and B are obtained as

A = − 2 + 2i

2K(−1) + i
√

2K
(

1
2

) , B = −1 + i, (B2)

where K(m) denotes the complete elliptic integral of the first
kind. The inverse transformation of Eq. (B1) is given by

q (z) = 1 − 1

sn

(
2i

√
2π3/2[z+(1−i)]

�(− 1
4 )2

∣∣∣∣ 2

)2 , (B3)

where sn(ϕ|m) denotes the Jacobi elliptic function (it holds
sn[F (ϕ|m) |m] = sin ϕ) and � the Gamma function. Thus the
transformed refractive index distribution can be written as a
function of z as

n′ (z) =
∣∣∣∣ dz

dq

∣∣∣∣
−1

n (q) =
∣∣∣∣∣ [q (z)2 − 1]

1
2 q (z)

1
2

A

∣∣∣∣∣ . (B4)

Here and in the following we assume a constant refractive
index distribution n(q) = 1 in the q or w space. The map from
the square onto the unit disk can be obtained comparatively
easily. Due to the fact that the upper half-plane and the unit
disk (coordinates w) are connected by the invertible conformal
map,

q (w) = i
1 + w

1 − w
, (B5)

a combination of Eqs. (B1) and (B5) gives the desired
transformation between the square and the unit disk. The
refractive index distribution of this combined transformation
is obtained by using the chain rule and can be written in the
square’s z coordinates as

n′ (z) =
∣∣∣∣ dz

dq

dq

dw

∣∣∣∣
−1

=
∣∣∣∣∣2[q (z)2 − 1]

1
2 q (z)

1
2

A [i + q (z)]2

∣∣∣∣∣ . (B6)

033837-11



SCHMIELE, VARMA, ROCKSTUHL, AND LEDERER PHYSICAL REVIEW A 81, 033837 (2010)

Thereby the coordinates w in the expression for dq/dw have
been replaced by the coordinates q = q(z) using the inverse
of Eq. (B5).

APPENDIX C: SCT FROM A REGULAR N-GON ONTO
THE UNIT DISK

It can be shown (see, for example, exer. 4 on p. 196 in
Ref. [22]) that the transformation

z (w) = A

∫
(1 − wN )−2/Ndw + B (C1)

maps a regular N -gon (coordinates z) onto the unit disk
(coordinates w). Integration gives

z (w) = A · w ·2 F1

(
1

N
,

2

N
; 1 + 1

N
; wN

)
+ B, (C2)

where pFq

(
a1, . . . , ap; b1, . . . , bq ; ϕ

)
denotes the general

hypergeometric function. With the constraints z(0) = 0 and
z(1) = d the center of the N -gon is fixed to the origin and
one vertex lies on the real axis at a distance d from the origin.
Hence, A and B are obtained as

A = 4
1
N d

√
π

�
(

1
2 − 1

N

)
�

(
1 + 1

N

) , B = 0, (C3)

and the transformed refractive index distribution is given by
Eqs. (A2) and (C1) as

n′ (w) =
∣∣∣∣ (1 − wN )−2/N

A

∣∣∣∣ . (C4)

Here, it is more difficult to evaluate n′ in z coordinates as in
Appendix B because an invertible transformation of Eq. (C2)
for all N is not at hand. For a square, that is, a regular 4-gon,
the route as proposed in the previous subsection can be used,
but for a regular hexagon the invertible map of Eq. (C2) must
be numerically computed.

APPENDIX D: SCT FROM A RECTANGLE ONTO
THE UNIT DISK

It can be shown (the result can be found in Ref. [22]) that
the SCT

z (w) =
∫ w

0

[(
1 − κ

1 + κ
− w2

) (
1 + κ

1 − κ
− w2

)]−1/2

dw

(D1)

maps a rectangle in the z plane onto the unit disk in the w plane.
There, κ is defined by κ = √

1 − k−2 as the complementary
modulus, where the modulus k itself controls the aspect ratio
of the rectangle. The SCT transforms the points w(1,2),(3,4) =
±2

√
(1 ∓1 κ)/(1 ±1 κ) on the edge of the unit disk onto

the four vertices z(1,2),(3,4) = ±2(K ±1 iK ′) of the rectangle,
where K = K(k) and K ′ = K(

√
1 − k2) (the function K

again denotes the complete elliptic integral of the first kind).
Furthermore ±2 distinguishes between the two index groups
(1, 2) and (3, 4), whereas ±1 distinguishes between the indices
within one of these groups, for example, between 1 and 2 in
the first group. Note that the points w(1,2),(3,4) are the four
roots in the denominator of the integrand in Eq. (D1). The
corresponding points z(1,2),(3,4) can be obtained by evaluating
later on the solution of Eq. (D1), Eq. (D3), at w = w(1,2),(3,4).
The aspect ratio RA between the rectangle’s height and width
is given as a function of k by

RA(k) = 2K ′ (k)

2K (k)
= K(

√
1 − k2)

K(k)
. (D2)

The integral in Eq. (D1) can be written with the coordinate
transformation ω =

√
1 − [(1 − w2)/(1 + w2)]2 as an elliptic

integral of the first kind as

z (w) =
∫ ω=

√
1−

(
1−w2

1+w2

)2

0

dω√
1 − k2ω2

√
1 − ω2

.

Hence the SCT, and also after a short calculation its inverse,
is given by

z (w) = sn−1

⎛
⎝

√
1 −

(
1 − w2

1 + w2

)2
∣∣∣∣∣∣ k

⎞
⎠ , (D3)

w (z) =
√

1 − cn (z| k)

1 + cn (z| k)
, (D4)

where Eq. (D3) for the inverse transformation w(z) is in
accordance with the result given in exer. 5 on p. 297 in
Ref. [22]. The transformed refractive index distribution is
given in z coordinates by the modulus of the derivative of
Eq. (D3) with respect to z as

n′ (z) =
∣∣∣∣dw

dz

∣∣∣∣ =
∣∣∣∣ dn (z| k)

1 + cn (z| k)

∣∣∣∣ . (D5)

Here cn and dn denote two other Jacobi elliptic functions,
which are related to sn (see, e.g., Ref. [31]).

[1] J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780
(2006).

[2] Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang,
and C. T. Chan, Phys. Rev. Lett. 102, 253902 (2009).

[3] S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and
J. Pendry, Phys. Rev. E 74, 036621 (2006).

[4] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer,
J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977
(2006).

[5] D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science 305,
788 (2004).

[6] M. Yan, Z. Ruan, and M. Qiu, Phys. Rev. Lett. 99, 233901
(2007).
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