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Soliton-guided phase shifter and beam splitter
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We propose, analyze, and study numerically a phase shifter for light wave packets trapped by Kerr solitons in a
nonlinear medium. We also study numerically a previously proposed soliton-guided nonpolarizing beam splitter.
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I. INTRODUCTION

This paper focuses on controlling the phase of light wave
packets captured by solitons, extending the work reported
in [1]. We propose, analyze, and study numerically a phase
shifter, and we study in some detail both phase and magnitude
characteristics of the operator determined by a soliton-guided
nonpolarizing beam splitter.

A soliton imprints a waveguide in a nonlinear medium
through its intensity-dependent change in refractive index for
both temporal and spatial optical solitons. This waveguide
can be used to capture an electromagnetic wave [2–6]. It was
shown in [1] that soliton collisions can be used to transfer
the captured wave, or probe, from one soliton to another and,
when the transfer is incomplete, split the wave as in a beam
splitter. We next review the model.

II. MODEL

As in [1] we adopt the formulation in [2,7–9]: two coupled
wave equations. The large-signal pump, P (z, t), is described
by the standard cubic nonlinear Schrödinger equation; the
probe signal, u(z, t), which is assumed to be very much smaller
than the pump, is described by a linear wave equation; and the
pump determines the potential seen by the probe:
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The variable t is time in the frame moving with the pump
(the retarded frame), z is distance in the direction of propa-
gation, β2{p,s} are the group velocity dispersions of the pump
and probe, γ{p,s} the self-phase and cross-phase modulation
indexes of the pump and probe, and we assume that the
interaction lengths and group velocities are such that walkoff
between the probe and the pump can be ignored. We also
neglect higher-order dispersion and assume a lossless medium
with an instantaneous electronic response.

The probe equation in Eq. (1) is precisely the linear
Schrödinger wave equation, and its solutions in general
represent the propagation of an electromagnetic wave. Note,
however, that z plays the role that time does in the usual
Schrödinger wave equation, and t the role of space.

Throughout this paper we use exact one- or two-soliton
ground-state solutions of the pump equation given in [10].
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The standard one-soliton solution is, in their notation,

P (z, t) = |kR|√
µp

ei[ kI t+(k2
R−k2

I )x ] sech[kR(t − 2kI x) + φ],

(2)

where x = −(β2p/2)z, φ is an arbitrary phase, µp =
−γp/β2p > 0, and the free complex parameter k = kR + ikI ,
where kR determines the energy of the soliton and kI its
velocity. Using this for the potential, letting the soliton velocity
kI = 0, and launching the soliton along the z axis, the probe
equation becomes
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The usual anzatz u(z, t) = u(t)e−iEz separates the vari-
ables, breaking the solution of Eq. (3) into the dynamical phase
factor e−iEz and a function u(t) determined by the eigenvalue
equation

β2s

2
u′′ −

[
E + γs

k2
R

µp

sech2(kRt)

]
u = 0. (4)

With the transformation ξ = tanh(kRt) [11] this reduces to the
associated Legendre equation [12,13],

d

dξ

[
(1 − ξ 2)

du

dξ

]
+

[
�(� + 1) − m2

(1 − ξ 2)

]
u = 0, (5)

where m2 = 2E/(k2
Rβ2s), and �(� + 1) = −2γs/(µpβ2s). For

the purposes of this paper, we choose the simplest ground-
state solution, m = � = 1, and, as in [1], determine β2s from
the other parameters to make this so. The eigenvalue E =
k2
Rβ2s/2, and u(t) = sech(kRt).

III. A PHASE SHIFTER

In this section it is convenient to refer to the captured probe
wave packet simply as a packet, to interpret the solitons as
temporal solitons, and to assume that the probe is sufficiently
low in intensity that the propagation equations are valid,
but sufficiently separated in wavelength and polarization to
be detected in the presence of the pump. Furthermore, we
arrange all collisions of pump solitons to occur with a relative
phase of π , ensuring that the collisions are repulsive; and we
assume that the parameters are such that on collision a packet
shepherded by one soliton is transferred completely to the
soliton that it hits [1].

The proposed phase shifter works as follows. Two solitons,
A and B, are launched at the same, nominal, velocity in the z

direction: first B, then A. Initially, soliton A carries a packet.
Soliton C, a third soliton, is then launched at a greater velocity.
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When C overtakes A, the packet is captured by C; and C carries
the packet with it until it overtakes B, at which point the packet
is transferred from C to B. The net effect, then, is that soliton
C ferries the packet from A to B. The packet accumulates extra
phase during the time it travels at an altered velocity.

We simulated the pump by stitching together segments of
the exact two-soliton solution from [10]. This is preferable
to propagating initial conditions numerically (as is done for
the probe) because the solutions are exact, and the relative
phase angles at collisions can be precisely controlled. The
skirts of the hyperbolic secant-shaped soliton envelopes fall off
exponentially and the numerical effect of this approximation
is negligible.

FIG. 1. (Color online) Top: The pump signal used in the example
phase shifter, stitched together from exact two-soliton solutions. It
starts at z = 0, t = 0, accelerates, and then returns to its original
velocity. The soliton parameters in the notation of [10] are k1 = 1.5,
k2 = −1.5 for the horizontal ones, k2 = −1.5 + 0.8i for the faster
one, γp = 0.02, β2p = −0.4 (so µp = 0.05), and the amplitudes of
the solitons are all 4. The relative phase at collision is arranged to be π

radians. Bottom: The probe signal in the phase shifter, corresponding
to the pump in the figure at the top. The parameters for the probe
propagation are γs = 0.0139, β2s = −0.278, and the overall phase
shift achieved is π (see Fig. 2).

FIG. 2. (Color online) The phase of the probe as a function of the
distance variable z. The dynamical phase has been removed.

We first give the results for an example of a phase shifter
with parameters designed for the important case when the
packet phase is shifted by π radians. Figure 1 (top) shows the
pump signal and the bottom of Fig. 1 shows the corresponding
probe signal. The probe follows the waveguide induced by
the pump well after two collisions, with small losses at the
points of acceleration and deceleration and some very slight
wobbling in velocity after the second collision.

The phase angle of the probe was measured numerically
as a function of z by scanning vertically in t and using the
phase at the point of peak amplitude. Figure 2 shows the the
result, with the dynamical phase removed by multiplication by
eiEz and angle reduced mod 2π to the range [0, 2π ]. To verify
the net phase inversion by π radians after the second capture,
we propagated an independent reference signal ahead of the
probe so that the probe just meets the reference signal after its
second capture. The destructive interference, shown in Fig. 3,

FIG. 3. (Color online) The destructive interference between a
reference signal (launched at the top) and the probe shown in Fig. 1,
verifying the phase shift of π radians.
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is clear. Note that this numerical experiment simply confirms
the phase change and does not reflect a physically realizable
cancellation.

The phase shift we might expect in the proposed system can
be estimated as follows. Viewing the cross-phase modulation
term in Eq. (1), |P |2|, as a potential in the standard Schrödinger
wave equation (with h̄ = 1), the effect of tailoring the pump
signal is to accelerate the potential from zero to a velocity
c, keep it there for a given (usual) time τ , and then slow
it back down to its original velocity. When the potential
moves at constant speed c, an additional phase Mc2τ/2 is
added to the solution of the wave equation, where M is
the usual mass [14]. We call this a translational phase, to
distinguish it from the usual dynamical phase. In terms of
our parameters, taking account of the scaling and interchange
of time and space, the mass M = −1/β2s , the velocity
c = −kIβ2p, and τ = 	z = 	t/c, the duration of the phase
shifter operation measured along the z axis, the direction of
propagation.

The presence of this translational phase component can
be verified numerically from the phase shown in Fig. 2 in
the region when the probe is moving at its greater velocity.
As we see shortly, this provides only an estimate of the total
accumulated translational phase induced by the phase shifter,
however, because the probe does not accelerate and decelerate
suddenly but changes its velocity somewhat gradually as it
follows the curved induced soliton waveguide.

The accumulated translational phase of the phase shifter
if the probe actually moved with exactly the extra velocity c

just for the time between the theoretical impact points of the
guiding solitons would be

	φ = Mc2τ

2
= Mc

2
	t = kIβ2p

2β2s

	t, (6)

which provides us with an estimate of the total effective phase
shift of the proposed phase shifter.

We are going to vary the cross-phase modulation index
γs to achieve a full range of phase shifts. Recall that β2s is
determined from γs and the soliton parameters β2p and γ2p to
achieve the desired ground state for the probe wave, m =
� = 1. Figure 4 shows the phase shift measured from the
numerical propagation of the probe equation. We see that a
full range of 2π is achievable by varying the cross-phase
modulation index γs from 0.01 to 0.03. Also shown is the
estimate in Eq. (6), which is fairly close (1.7%) for γs ≈ 0.01
but much less accurate when γs approaches 0.03.

If the probe is subsequently decelerated so that its state
is restored to its original trajectory, the total accumulated
translational phase is not zero but twice the phase of the phase
shifter above, since accumulated phase is proportional to c2.
This has been confirmed numerically. The cycle is somewhat
suggestive of Berry’s phase [15] but is not at all the same: the
changes to the Hamiltonian are not adiabatic and, furthermore,
are described by one parameter.

IV. A BEAM SPLITTER

For certain choices of parameters the transfer of the probe
wave when the guiding solitons collide is only partial, and a
beam splitter results, as was illustrated in [1]. We adopt for our

FIG. 4. (Color online) The range of achievable angles for the
phase shifter. Shown is a full range of 2π for the cross-modulation
index γs = 0.01–0.03. Also shown is the estimate in Eq. (6).

model the following standard two-parameter unitary transfer
matrix U (θ, φ) for a beam splitter [16]:(

cos θ −eiφ sin θ

e−iφ sin θ cos θ

)
. (7)

Notice that this matrix is determined by the first row alone,
and that U (θ + π, φ) = −U (θ, φ), so that when we are trying

FIG. 5. (Color online) The locus of parameters of the beam
splitter as γs is varied from 0.017 to 0.145, for various values of
the soliton velocity kI . (For clarity the curve for the case kI = 1.98
is shown only for γs � 0.041.)
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FIG. 6. (Color online) Top: An example of a near 50:50 beam
splitter with φ ≈ π . The ideal 50:50 beam splitter has cos θ = 0.7071
and φ = π ; the parameters in this example are cos θ = 0.7140
and φ = 1.023π , corresponding to γs = 0.055 and soliton velocity
kI = 1.25. The inputs are equal and in phase, and the signal Y1

shows constructive interference. Bottom: The corresponding example
with φ ≈ 0. The ideal 50:50 beam splitter has cos θ = 0.7071 and
φ = 0; the parameters in this example are cos θ = 0.6970 and
φ = −0.01157π , corresponding to γs = 0.133 and soliton velocity
kI = 1.98. The signal Y1 now shows destructive interference.

to realize such a given unitary matrix we can assume without
loss of generality that cos θ > 0 and ask that φ take on a

range of values that spans 2π . We next describe how the two
parameters θ and φ for a wide variety of beam splitters can
be chosen for the ground-state probe wave packets considered
here [m = � = 1 in Eq. (5)].

Call the input packets to the beam splitter in Eq. (7) X1

and X2, the outputs Y1 and Y2, and, by an abuse of notation,
use the same symbols for the corresponding complex field
amplitudes. The packets X1 and Y1 are shepherded by the
reference soliton (horizontal in the figure), and the packets
X2 and Y2 are shepherded by the soliton that overtakes
the reference soliton (lower left to upper right). We can
measure θ and φ simply by measuring the complex Y1 for
the two input vectors [X1 X2] = [1 0] and [0 1]. Figure 5
shows the results of these measurements for a wide range of
relative soliton velocities (from 0.4 to 1.98) and cross-phase
modulation index γs (from 0.017 to 0.145). Notice that at
the right-hand axis, where cos θ approaches 1, sin θ passes
through zero and, as a result, φ jumps by π radians. It is
remarkable that the collision of the pump solitons continues
to provide an effective beam splitter for the captured probe
signals throughout this wide range of parameters, and even
beyond.

The large region covered by the points in Fig. 5 suggests
that the design of almost any beam splitter is possible. Figure 6
shows the results when two equal-intensity, matched-phase
probes are used as inputs for two contrasting beam splitter
designs, both near 50:50. The first approximates the case φ =
π , and the second φ = 0. The constructive and destructive
interference at the outputs is clear.

V. DISCUSSION

The schemes described in this paper for phase shifting
and beam splitting wave packets are generally applicable to
any medium where solitons can capture wave packets and
where soliton collisions result in full or partial transfer. The
problems of detecting the probe in the presence of the pump,
and tailoring physical parameters to realize the virtual devices,
are left for the future and are clearly heavily dependent on
technological developments. In the case of optical fiber
implementation, we note the remarkable developments in
fabrication described in [17].
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