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Band-gap boundaries and fundamental solitons in complex two-dimensional nonlinear lattices
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Nonlinear Schrödinger (NLS) equation with external potentials (lattices) possessing crystal and quasicrystal
structures are studied. The fundamental solitons and band gaps are computed using a spectral fixed-point
numerical scheme. Nonlinear and linear stability properties of the fundamental solitons are investigated by direct
simulations and the linear stability properties of the fundamental solitons are confirmed by analysis the linearized
eigenvalue problem.
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I. INTRODUCTION

Solitons are localized nonlinear waves and occur in many
branches of physics. Their properties have provided funda-
mental understanding of complex nonlinear systems. In recent
years there has been considerable interest in studying solitons
in system with periodic potentials or lattices, in particular,
those that can be generated in nonlinear optical materials [1–5].
In periodic lattices, solitons can typically form when their
propagation constant (or eigenvalue) is within certain region,
so-called gaps, a concept that is borrowed from the Floquet-
Bloch theory for linear propagation. However, the external
potential of complex systems can be much more general and
physically richer than a periodic lattice. For example, atomic
crystals can have various irregularities, such as defects and
edge dislocations and also quasicrystal structures, which have
long-range orientational order but no translational symmetry
[6–8]. In general, when the lattice periodicity is slightly
perturbed, the band-gap structure and soliton properties also
become slightly perturbed, and solitons are expected to exist in
much the same as in the perfectly periodic case [9,10]. On the
other hand, little known about the spectrum with quasiperiodic
potential (cf. Ref. [11]).

In this study, we investigate the fundamental solitons in
lattices that have periodic and quasicrystal structures. The
model is the following focusing nonlinear (2+1)D nonlinear
Schrödinger (NLS) equation with an external potential

iuz + �u + |u|2u − V (x, y)u = 0. (1)

In optics, u(x,y,z) corresponds to the complex-valued, slowly
varying amplitude of the electric field in the xy plane
propagating in the z direction, �u ≡ uxx + uyy corresponds
to diffraction, the cubic term in u originates from the nonlinear
(Kerr) change of the refractive index and V (x,y) is an external
optical potential that can be written as the intensity of a sum
of N phase-modulated plane waves (see Ref. [12]), i.e.,

V (x,y) = V0

N2

∣∣∣∣∣
N−1∑
n=0

ei(kxx+kyy)

∣∣∣∣∣
2

, (2)

where V0 > 0 is constant and corresponds to the peak depth of
the potential, i.e., V0 = maxx,yV (x,y). In this study, we seek a
soliton solution of Eq. (1) in the form u(x,y,z) = f (x,y)e−iµz,
where f (x,y) is a real valued function and µ is the propagation
constant (eigenvalue). Substituting this form of solution into
Eq. (1), the following nonlinear eigenequation is obtained

�f + [µ + |f |2 − V (x,y)]f = 0. (3)

We use a fixed-point spectral computational method (spec-
tral renormalization method) to solve Eq. (3) as explained
below. After applying the Fourier transformation to Eq. (3),
we add and subtract a term rf̂ , where r > 0. This procedure
leads us to the following equation

f̂ (ν) = R̂[f̂ ] ≡ (r + µ)f̂ + F{[|f |2 − V (x,y)]f }
r + |ν|2 . (4)

Here F denotes the Fourier transformation, ν = (νx, νy)
are Fourier variables and r is used to avoid singularity
in the denominator. We introduce a new field variable
f (x,y) = λw(x,y), where λ �= 0 is a constant to be determined.
The iteration method takes the form ŵm+1 = λ−1

m R̂[λmŵm],
m = 0, 1, 2, . . . , where λm satisfies the associated algebraic
condition∫∫ +∞

−∞
|ŵm(ν)|2dν = λ−1

m

∫∫ +∞

−∞
R̂[λmŵm]ŵ∗

m(ν)dν. (5)

It has been found that this method often prevents the
numerical scheme from diverging. Thus, the soliton is obtained
from a convergent iterative scheme. The initial starting
point w0(x,y) is typically chosen to be a Gaussian centered
around one of the lattice’s critical points. The iteration
continues until |wm+1 − wm| < 10−10 and the relative error
δ = |λm+1/λm − 1| reaches 10−10. Convergence is usually
obtained quickly when the mode is strongly localized in the
band gap called semi-infinite band gap. Further, it is observed
that the mode becomes more extended as µ gets closer to the
band gap edge and convergence of such a mode slows down
during the iterations.

1050-2947/2010/81(3)/033834(8) 033834-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.033834
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In this work, we computed the fundamental solitons on
the periodic and quasicrystal lattices by using the spectral
renormalization method explained above. We investigated the
first band-gap structures for with external potentials [N =
2–7 in Eq. (2)]. The nonlinear and linear stability of the
fundamental solitons are studied by direct computations of
Eq. (1) using quasicrystal and periodic potentials, where the
initial conditions are taken to be the fundamental solitons with
1% random complex noise. Linear stability is also studied via
the linear eigenvalue problem. The results are consistent with
those obtained by direct simulation.

II. BAND-GAP STRUCTURES AND LINEAR SPECTRUM

If the nonlinear term |u|2 u is ignored in Eq. (1) and the
potential is assumed to be periodic, i.e., V (�x) = V (�x + �L),
then looking for solutions in the form u(x,y,z) = f (x,y)e−iµz

leads us to the following eigenequation

�f + [µ − V (�x)]f = 0. (6)

According to the Floquet-Bloch theory, Eq. (6) has a
solution given as

f (�x) = ei�k·�xp(�x), (7)

where p(�x) = p(�x + �L) is a bounded function with the same
periodicity as the potential V (�x).

If the potential is separable, i.e.,

V (X,Y ) = V0(cos2 X + cos2 Y ), (7a)

then the dimensionality of the problem is reduced and Eq. (1)
can be split into two Mathieu’s equations whose band-gap
structure are well known. Musslimani and Yang [13] compared
the band-gap structures of the linear periodic problem by
using Floquet-Bloch theory and perturbation theory at small
V0 values. They found that for the first band gap, the band-gap
boundaries obtained from Mathieu’s equation and leading-
order approximations from perturbation theory

µ ≈ V0 − 1/16V0
2 (7b)

are in good agreement.
In Fig. 1, we demonstrate a comparison of the first band

gap boundary of the linear periodic problem obtained by
Musslimani and Yang [13] and the boundary obtained for the
nonlinear problem by using spectral renormalization outlined
in Sec. I. The first band gap is the edge of the parameter
regime of the potential depth V0 and eigenvalue µ in which
the numerical method converges to a localized mode. In the
band-gap region, while keeping the same potential depth V0,
beyond a certain threshold value of the eigenvalue µ, the
numerical method yields to an extended state which is called
the Bloch wave region.

As can be seen in the figure, the band-gap boundaries of
both cases are close to each other.

III. PERIODIC AND QUASICRYSTAL POTENTIALS

In this section, we investigate 2D solitons on periodic and
quasicrystal lattices. In certain materials, these type of lattices
appear naturally and they can be generated artificially by the
use of laser beams in optical experiments.
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FIG. 1. (Color online) A comparison of the first band-gap
boundary of Mathieu’s equation obtained from Eq. (6) and the spectral
renormalization method for the NLS Eq. (1).

In this study, the formulation of such a potential is given as
follows:

VN (x,y) = V0

N2

∣∣∣∣∣
N−1∑
n=0

ei(kxx+kyy)

∣∣∣∣∣
2

, (8)

where (kx, ky) = [K cos(2πn/N ),K sin(2πn/N )], where we
choose K = 2π .

The potentials for N = 2, 3, 4, 6 yield periodic lattices that
correspond to standard 2D crystal structures, whereas N =
5, 7 correspond to quasicrystals. In particular, the quasicrystal
with N = 5 is often called the Penrose tiling. In Fig. 2, contour
images of the lattices N = 2–7, all with V0 = 2, K = 2π ,
are displayed. Recently, Freedman et al. observed solitons in
Penrose and other quasicrystal lattices generated by the optical
induction method [14].

N=2 N=3 N=4

N=5 N=6 N=7

FIG. 2. (Color online) Contour images of the lattices, all with
V0 = 2, K = 2π .
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FIG. 3. (Color online) (a) Band-gap boundaries for NLS equation
with the external potentials, N = 2–10.

The following initial condition in the spectral renormaliza-
tion method

u(x,y) = e−[(x+x0)2+(y+y0)2]

yields localized modes (solitons) on each lattice for N = 2–7.
We remark that the origin is the global maximum of the lattice
for all values of N .

To compare the first band-gap formation of each lattice,
we set the potential depth V0 to a fixed value (starting from
15 to 50). For each value of V0, by increasing the µ values,
we check both the convergence and the localization of the
mode. When the mode becomes more extended, usually the
convergence is slower and after a certain value of µ, typically
both the convergence cannot be reached and the localization of
the mode is lost. In this way we locate the boundary of the first
band gap of the related lattice. The first band-gap boundaries
for related crystals and quasicrystals are depicted in Fig. 3.
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FIG. 4. (Color online) (Top) On-axis mode profiles for N =
4, 5, 7 (a) and (b) soliton centered at a potential minimum profile
along the x and y axes. [(c) and (d)] Soliton centered at a potential
maximum profile along the x and y axes.
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FIG. 5. (Color online) The mode profile for periodic (N = 4) and
Penrose (N = 5) potentials.

As can be seen from the figure, as the number of
points N decreases, the first band gap of the corresponding
lattice enlarges. Another interesting phenomena occurs in the
investigation of the slopes of those band-gap boundaries. It
can be seen that, as number of points increases, the slope of
the related band gap boundary of the lattice increases. In the
limit N → ∞, the corresponding lattice is called Bessel lattice
V∞ = (J0(kr))2. Kartashov, Vysloukh, and Torner investigate
the basic properties and linear stability of optical solitons on
radial-symmetric Bessel lattice in cubic nonlinear media [15].

As seen from Fig. 3(a) as N increases, the gap edge
decreases and

µmax[VN ] → +0, N → ∞. (9)

To compare the mode profiles of crystals and quasicrystals,
we plotted the on axis mode profile for N = 4, 5 and N = 7.
As suggested in Fig. 4 as N increases the amplitudes of the
fundamental solitons decrease.

When we increased the depth of potential from 12.5 to
100, interestingly the fundamental mode of the Penrose lattice
approaches the fundamental mode of the periodic lattice (see
Fig. 5).

For the Penrose potential we found fundamental solitons
centered near the origin, which is the global maximum of
the lattice potential (see Fig. 6). The fundamental solitons on
the lattice maxima have a dimple, whereas the fundamental

FIG. 6. (Color online) Soliton centered at the global maximum
of Penrose lattice; (a) soliton intensity in a 3D view showing the
dimple; (b) cross section along y axis of a Penrose soliton (solid line)
superimposed on the underlying lattice (dashed line).

033834-3
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FIG. 7. (Color online) Soliton centered at the local minimum of
Penrose lattice; (a) soliton intensity in 3D (no dimple); (b) cross
section along y axis of a Penrose soliton (solid line) superimposed
on the underlying lattice (dashed line).

solitons on the lattice minima do not have this dimple (see
Fig. 7).

IV. NONLINEAR AND LINEAR STABILITY

A. Nonlinear stability

Now we address the critical question of nonlinear stability
of the fundamental solitons. The power play an important
role in determining the stability properties of the fundamental
solitons. We define the power as

P =
∫ ∞

−∞

∫ ∞

−∞
|u(x,y)|2dxdy. (10)

An important analytic result on soliton stability was
originally obtained by Vakhitov and Kolokolov [16]. They
proved, by use of the linearized perturbation equation, that a
necessary condition for linear stability was dP/dµ < 0.

Key analytic results on soliton stability were obtained in
Refs. [17,18]. They proved that the necessary conditions for
orbital (nonlinear) stability are the slope condition, dP/dµ <

0, and spectral condition, L+ does not have more than one
negative eigenvalue.

A necessary condition for collapse in the 2D cubic NLS
equation is that the power of the beam exceeds the critical
power Pc ≈ 11.7 [19]. The fundamental solitons of NLS
equation can become unstable in two ways: focusing instability
or drift instability [20].

(a) If the slope condition is not satisfied, this leads to a
focusing instability.

(b) The spectral condition is associated with the eigenvalue
problem (see Ref. [20]). If the spectral condition is violated it
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FIG. 8. (Color online) The power versus µ for (a) periodic
potential (N = 4) with V0 = 12.5; (b) Penrose potential (N = 5)
with V0 = 12.5 for solitons located on the lattice maxima.
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FIG. 9. (Color online) Evolution of soliton situated at the periodic
potential with V0 = 12.5 and µ = −3. (a) Peak amplitude A(z) =
maxx,y |ũ(x,y,z)| of the solution of Eq. (1) as a function of the
propagation distance. The initial condition is taken as the fundamental
soliton with a 0.01 noise in the amplitude and phase; (b) center-of-
mass evolution in x and y coordinates; (c) cross section along the
diagonal axis of a fundamental soliton at the maximum superimposed
on the periodic potential at z = 0; (d) cross section along the diagonal
axis of the fundamental soliton superimposed on the periodic potential
after the propagation (z = 10).

leads to a drift instability, i.e., the fundamental soliton moves
from the potential maximum toward a nearby lattice minimum.
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FIG. 10. (Color online) Evolution of soliton situated at the
Penrose potential with V0 = 12.5 and µ = −3. (a) Peak amplitude
A(z) = maxx,y |ũ(x,y,z)| of the solution of Eq. (1) as a function
of the propagation distance. The initial condition is taken as the
fundamental soliton with a 0.01 noise in the amplitude and phase;
(b) center-of-mass evolution in x and y coordinates; (c) cross section
along the diagonal axis of a fundamental soliton at the maximum
superimposed on the periodic potential at z = 0; (d) cross section
along the diagonal axis of the fundamental soliton superimposed on
the periodic potential after the propagation (z = 10).
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FIG. 11. (Color online) The power versus µ for (a) periodic
potential with V0 = 12.5; (b) Penrose potential with V0 = 12.5;
(c) Penrose potential with V0 = 50.

Let us define the center of mass of a perturbed soliton as

C = 1

P

∫ ∞

−∞

∫ ∞

−∞
(x + iy)|u|2dxdy (11)

where the center of mass in x and y coordinates are defined as

〈x〉 := real(C ), 〈y〉 := imag(C ). (12)

To study the nonlinear stability, we directly compute Eq. (1)
over a long distance (finite difference method was used on
derivatives uxx and uyy and fourth-order Runge-Kutta method
to advance in z) for both periodic and Penrose potentials. The
inital conditions were taken to be a fundamental soliton with
1% random noise in the amplitude and phase. In this work, the
nonlinear stability of the fundamental solitons located on the
lattice maxima and minima are investigated in separate cases.
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FIG. 12. (Color online) Evolution of soliton situated at the
periodic potential with V0 = 12.5 and µ = −3. (a) Peak amplitude
A(z) = maxx,y |ũ(x,y,z)| of the solution of Eq. (1) as a function
of the propagation distance. The initial condition is taken as the
fundamental soliton with a 0.01 noise in the amplitude and phase;
(b) center-of-mass evolution in x and y coordinates; (c) cross section
along the diagonal axis of a fundamental soliton at the minimum
superimposed on the periodic potential at z = 0; (d) cross section
along the diagonal axis of the fundamental soliton superimposed on
the periodic potential after the propagation (z = 10).
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FIG. 13. (Color online) Evolution of soliton situated at the
Penrose potential with V0 = 12.5 and µ = −3. (a) Peak amplitude
A(z) = maxx,y |ũ(x,y,z)| of the solution of Eq. (1) as a function
of the propagation distance. The initial condition is taken as the
fundamental soliton with a 0.01 noise in the amplitude and phase;
(b) center-of-mass evolution in x and y coordinates; (c) cross section
along the diagonal axis of a fundamental soliton at the minimum
superimposed on the periodic potential at z = 0; (d) cross section
along the diagonal axis of the fundamental soliton superimposed on
Penrose potential after the propagation (z = 10).

B. Solitons on the lattice maxima

Once the solitons centered at the maxima are computed
for a range of values of µ (−4 � µ � 2), power versus µ

graphs are plotted for both periodic and Penrose potentials.
As seen from Fig. 8, the slope condition is satisfied for both
periodic and Penrose potentials but the power exceeds the
critical collapse value (Pc = 11.72) and collapse appears to be
eventually attained.

In both Figs. 9 and 10, evolution of the fundamental
solitons at the lattice maxima are plotted for the potential depth
V0 = 12.5 and µ = −3. As can be seen from Fig. 9, the peak
amplitude of the fundamental soliton A(z) = maxx,y |ũ(x,y,z)|
increases with the propagation distance z but the center of mass
in the x and y axis Eq. (11) nearly stays at the same place.
The fundamental soliton with periodic background is unstable
nearly with focusing instability.

In Fig. 10, evolution of the fundamental soliton on the
Penrose lattice maximum is plotted. The peak amplitude of the
fundamental soliton stays the same for a while, then increases
with propagation distance z. As opposed to Fig. 9, the center of
mass moves from the global maximum of the lattice toward a
nearby lattice minimum during the evolution. The fundamental
soliton exhibits a drift instability.

C. Solitons on the lattice minima

We now investigate solitons centered at the lattice min-
ima (x0, y0) = (0.5, 0) for periodic potential and (x0, y0) =
(2.0918, 2.0918) for Penrose potential (N = 5). In Fig. 11,
the power versus µ are depicted for periodic and Penrose
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FIG. 14. (Color online) Evolution of soliton situated at the
Penrose potential with V0 = 12.5 and µ = −1. (a) Peak amplitude
A(z) = maxx,y |ũ(x,y,z)| of the solution of Eq. (1) as a function
of the propagation distance. The initial condition is taken as the
fundamental soliton with a 0.01 noise in the amplitude and phase;
(b) center-of-mass evolution in x and y coordinates; (c) cross section
along the diagonal axis of a fundamental soliton at the minimum
superimposed on the periodic potential at z = 0; (d) cross section
along the diagonal axis of the fundamental soliton superimposed on
Penrose potential after the propagation (z = 10).

potential for various potential depths. Figure 11 shows that for
the potential depth V0 = 12.5, the slope condition is satisfied
for both periodic and Penrose potentials below µ = −2 but
µ = −1 is a saddle point and above µ = −1 the slope
condition is violated. When the potential depth is increased
up to V0 = 50 the slope condition is satisfied.

In both Figs. 12 and 13, evolution of the fundamental
solitons at the lattice minima are plotted for the potential
depth V0 = 12.5 and µ = −3. As can be seen from Figs. 12
and 13, peak amplitudes of the fundamental solitons A(z) =
maxx,y |ũ(x,y,z)| oscillate with the propagation distance z and
the center of mass in the x and y axis nearly stay at the same
place. This suggests that the fundamental solitons for both
lattices are nonlinearly stable in this parameter regime.

Being a saddle point, the slope condition is violated at µ =
−1, V0 = 12.5 for the Penrose potential. For small propagation
distance the amplitude increases sharply (unstable) but then the
peak amplitude oscillates and the center of mass stays nearly
at the same place (see Fig. 14).

Figure 11 also shows that if the potential depth is increased
up to V0 = 50 the power versus µ graph has no saddle
points and the slope condition is satisfied for −4 � µ � 2.
The fundamental soliton appears to be nonlinearly stable (see
Fig. 15) in this parameter regime.

D. Linear stability

Now we address the critical question of linear stabil-
ity of these fundamental solitons under kerr nonlinearity.
For this, we linearized the Eq. (1) around the fundamen-
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FIG. 15. (Color online) Evolution of soliton situated at the
Penrose potential with V0 = 50 and µ = −1; (a) peak amplitude
A(z) = maxx,y |ũ(x,y,z)| of the solution of Eq. (1) as a function
of the propagation distance. The initial condition is taken as the
fundamental soliton with a 0.01 noise in the amplitude and phase;
(b) center-of-mass evolution in x and y coordinates; (c) cross section
along the diagonal axis of a fundamental soliton at the minimum
superimposed on the periodic potential at z = 0; (d) cross section
along the diagonal axis of the fundamental soliton superimposed on
Penrose potential after the propagation (z = 10).

tal soliton. By denoting u = exp(−iµz)[u0(x,y) + ũ(x,y,z)],
where u0(x,y) is the fundamental soliton and ũ 
 1 is
the infinitesimal perturbation, the linearized equation for
ũ is

i
∂ũ

∂z
+ ∂2ũ

∂x2
+ ∂2ũ

∂y2
+ (µ − V (x,y) + 2|u0|2)ũ + u2

0ũ
∗ = 0.

(13)

Starting from a white-noise initial condition, we simulated
this linearized equation over a long distance (using finite
differences on ũxx and ũyy and the fourth-order Runge-Kutta
method to advance in z) for periodic and Penrose potentials.
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FIG. 16. (Color online) Dynamics of solutions of Eq. (13) with
the periodic and Penrose potentials (N = 5). (a) Peak amplitude
A(z) = maxx,y |ũ(x,y,z)| of the solution as the function of z for periodic
potential with V0 = 12.5 and µ = −1; (b) A(z) = maxx,y |ũ(x,y,z)|
of the solution as the function of z for Penrose potential with
V0 = 12.5 and µ = −1; (c) A(z) = maxx,y |ũ(x,y,z)| of the solution
as the function of z for Penrose potential with V0 = 50 and µ = −1.
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FIG. 17. (Color online) (a) Eigenvalues in the stability spectrum
of the fundamental soliton centered at the lattice maximum for
periodic potential with V0 = 12.5 and µ = −1; (b) eigenvalues in
the stability spectrum of the fundamental soliton centered at the
lattice maximum for Penrose potential (N = 5) with V0 = 12.5 and
µ = −1.

If the solution grows exponentially then the fundamental
soliton is considered to be linearly unstable. Otherwise, it
is linearly stable. Following the procedure explained above,
we observe only for some parameters linear stability of the
fundamental mode (obtained by using the fixed-point iteration
method).

In order to compare our results that obtained from the
direct numerical simulations we also investigate the stability
spectrum of the fundamental soliton. To study the spectrum of
these fundamental solitons we assume that

ũ(x,y,z) = (v(x,y) + iw(x,y))eσz (14)

Substituting this solution into Eq. (13) we obtain the
following eigenvalue problem as(

0 L−
−L+ 0

) (
v

w

)
= σ

(
v

w

)
,

where L− and L+ are defined as

L− = −� − (
µ − V + u2

0

)
, L+ = −� − (

µ − V + 3u2
0

)
.

Eigenvalues with positive real parts are unstable eigen-
values. The other eigenvalues are stable (purely imaginary
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FIG. 18. (Color online) (a) Eigenvalues in the stability spectrum
of the fundamental soliton centered at the lattice minimum for
periodic potential with V0 = 12.5 and µ = −1; (b) eigenvalues in the
stability spectrum of the fundamental soliton centered at the lattice
minimum for Penrose potential (N = 5) with V0 = 12.5 and µ = −1;
(c) eigenvalues in the stability spectrum of the fundamental soliton
centered at the lattice minimum for Penrose potential (N = 5) with
V0 = 50 and µ = −1.
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FIG. 19. (Color online) Dynamics of solutions of Eq. (13) with
the periodic and Penrose potentials (N = 5). (a) Peak amplitude
A(z) = maxx,y |ũ(x,y,z)| of the solution as the function of z for
periodic potential with V0 = 12.5 and µ = −1; (b) peak amplitude
A(z) = maxx,y |ũ(x,y,z)| of the solution as the function of z for
Penrose potential with V0 = 12.5 and µ = −1; (c) peak amplitude
A(z) = maxx,y |ũ(x,y,z)| of the solution as the function of z for Penrose
potential with V0 = 50 and µ = −1.

eigenvalues are often called internal modes). We first inves-
tigate the linear stability of the fundamental soliton centered
at the lattice maximum (x0, y0) = (0, 0). We perform direct
numerical simulations of Eq. (13) where the initial condition is
1% random noise within amplitude and phase. Figure 16 shows
the maximum amplitude of the fundamental solitons for both
periodic and Penrose potential versus the propagation distance
z. As seen from these figures the maximum amplitudes of
the fundamental solitons increase rapidly with increasing
propagation constant. We also checked the linear eigenvalue
problem for these fundamental solitons. We found that there
are unstable (Reσ > 0) eigenvalues (see Fig. 17). Thus, these
fundamental solitons centered at the lattice maximum are
linearly unstable.

We also investigate the linear stability of the fundamental
soliton centered at lattice minima. In Fig. 16(a) the maximum
amplitude of the fundamental soliton for periodic potential
increase with the propagation distance z and there are
eigenvalues with positive real part [see Fig. 18(a)]. Thus is
seen to the fundamental soliton centered at the lattice mimina
for periodic potential is linearly unstable. Also the fundamental
mode associated with the Penrose potential for V0 = 12.5 is not
linearly stable. When we increased the depth of the potential
as V0 = 50 the fundamental mode with the Penrose potential
is seen to be linearly stable. We verified these results with
numerical simulations of the NLS equation and eigenvalue
problem (see Figs. 18 and 19).

V. CONCLUSION

We have numerically demonstrated the existence of the
fundamental solitons associated with both periodic and Pen-
rose potentials. Using different types of quasicrystal structures
(N = 2–7), the first band-gap formation for the NLS equation
was determined. We investigated the nonlinear and linear
stability properties of the fundamental solitons inside the
first band gap for the periodic and Penrose potentials. Direct
nonlinear numerical simulations of NLS equation show that
when we put the initial conditions at the local maxima of the
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lattices the fundamental solitons tends to collapse but solitons
centered at the local minima oscillate with small amplitudes.
Also we investigated the linear stability of the fundamental
solitons and compared the results with eigenvalue problem. We
verified the results with direct simulations for the linearized
equation and the eigenvalue problem.
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