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We study the general problem of matter-laser interaction within the framework of nonrelativistic quantum
electrodynamics, with particular emphasis on strong laser field effects. Consequently, we formulate a well-defined
approximation leading in a straightforward manner toward the conventional semiclassical mode of description.
Namely, we arrive naturally to two coupled equations of motion: (i) the Schrödinger equation which governs the
quantum dynamics of an atomic system driven by classically described radiation field (composed of an incoming
laser pulse plus radiation emitted from the atom), and (ii) the classical Maxwell wave equation which describes the
emission of radiation from the mentioned atomic source. Employing the formalism of adiabatic Floquet theory,
we derive a simple criterion of validity of the just described semiclassical approach. It shows that the semiclassical
treatment is justified in most situations. On the other hand, it turns out that the semiclassical approximation breaks
down completely in certain special but realistic cases, regardless of the fact that the incoming laser pulse contains a
huge number of photons. Under such special circumstances, we anticipate new effects arising due to the quantized
nature of the radiation field, to be observable, for example, in harmonic generation spectra. Our considerations
are illustrated more explicitly using a simple model of a two-level atom strongly driven by a laser. The quantum
dynamics of this model problem is resolved within the framework of quantum electrodynamics while adopting
well-defined and physically justifiable approximations. As an outcome, analytic formulas are found serving as
a quantitative criterion of (non)applicability of the semiclassical approach and demonstrating the breakdown of
semiclassical theory under well-defined conditions. An illustrative numerical calculation is provided.
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I. INTRODUCTION

The problem of the interaction between atoms and intense
laser light possesses a basic physical importance. In spite of the
remarkable attention devoted in the literature to the subject (see
for example Refs. [1–7]), the vast majority of theoretical work
was based upon simplifications whose adequacy is not always
evident. Most often, a classical description of the radiation
field is adopted and the treatment of the problem is divided
into two steps:

- In the first step, the quantum dynamics of a laser-driven
atom is described by solving the time-dependent Schrödinger
equation for the atomic wave function. The associated semi-
classical Hamiltonian contains the conventional momentum
gauge coupling term, which accounts for an interaction
between the quantum mechanical particles and the incoming
classical electromagnetic wave.

- In the second step, the scattered and emitted light is
obtained by solving the classical wave equation of Maxwell.
Radiation occurs here due to an inhomogeneous source term
defined as the time-dependent expectation value of the electric
current operator. An expectation value is taken here over the
previous constructed wave function of the atomic system.

A more advanced approach is to solve simultaneously the
coupled system of Schrödinger plus Maxwell equations, as
being studied theoretically in Ref. [8] and computationally
in Ref. [9]. This allows us to account for eventual changes
of the wave function of the atom due to the emission of
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radiation, and more importantly, also for an influence of the
given atomic source by the radiation emitted by other atomic
sources. The latter effect might be particularly significant
when studying harmonic generation from a linear chain of
atoms or quantum dots, where the harmonics emitted by
different sources cumulate and may thus reach a considerable
intensity.

The just outlined semiclassical viewpoint obviously re-
quires a deeper justification, which can be found only by a
consistent application of the first principles of the quantum
theory. Namely, the radiation field needs necessarily to be
treated within the framework of QED and the studied system
“atom plus radiation field” must be regarded as one nonsep-
arable quantum entity. Mutual coupling between the atomic
sources and the quantized field must be properly incorporated
into the total Hamiltonian of the whole system.

It is the purpose of the present article to employ the
rigorous formalism sketched in the previous paragraph and
to investigate what kind of approximations are hidden behind
the semiclassical approach. It seems also worthy to search for
a criterion of validity of these approximations and to evaluate
explicitly the correction terms arising from the quantized na-
ture of the radiation field. Moreover, it is challenging to explore
whether and under what circumstances the semiclassical de-
scription may break down and what might be the consequences
regarding the harmonic generation spectra in such a case.

To our best knowledge, theoretical analysis of this kind has
not been adequately addressed in the literature so far, in spite
of the fact that various important contributions were made
toward better understanding of strong field phenomena using
the quantum electrodynamics formalism, see Refs. [10–17]
and citations therein.
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The article is organized as follows. Section II reviews the
notoriously well-known formalism used for the description
of matter-light interaction within the framework of nonrela-
tivistic quantum electrodynamics and defines in particular the
quantum mechanical Hamiltonian of the studied system “atom
plus radiation field.” Sections III and IV describe a canonical
transformation which offers a formally exact physical picture
of the matter-laser interaction process and which is suitable for
further theoretical analysis from the semiclassical viewpoint.
In Sec. V, we introduce a well-defined approximation leading
to the semiclassical approach mentioned previously. In Sec. VI
we derive consequently the semiclassical system of coupled
Maxwell-Schrödinger equations. Applicability and limitations
of the semiclassical approximation are critically examined
within Sec. VII. Concluding remarks are given in Sec. VIII.
In the Appendix, we consider a simple model problem
of a two-level atom driven by laser. The general theory
developed in the main text is illustrated more explicitly on this
concrete system. More importantly, this model allows us to go
beyond the semiclassical mode of description and to obtain a
significant amount of physical insights within the quantum
electrodynamics framework while adopting well-controlled
approximations. As an outcome, simple analytic formulas are
found serving as a quantitative criterion of (non)applicability
of the semiclassical approach and demonstrating explicitly
its breakdown under well-defined conditions. An illustrative
numerical example is provided.

II. BASIC THEORETICAL BACKGROUND

The physical system of our interest is described by the
conventional momentum gauge Hamiltonian (used, e.g., by
Cohen-Tannoudji [18] and Milonni [19])

H = HR +
N∑

j=1

1

2µj

(
�pj − qj

c
�A⊥

R (�rj )
)2

+ V (�rN ). (1)

Here, HR represents the standard Hamiltonian of a free
radiation field,

HR =
∑
ν℘

h̄ωνa†ν℘aνp; (2)

whereas �A⊥
R (�r) is the associated Coulomb gauge vector

potential operator, given by the usual modal expansion

�A⊥
R (�r) =

∑
ν℘

√
2πh̄c2

ωνV
[e+i�kν ·�raν℘ + e−i�kν ·�ra†ν℘]�εν℘. (3)

In the above formulas, each field mode is characterized by
its wave vector �kν = (2π/L)(νx, νy, νz) (whose values are
discretized using a cubic quantization volume V = L3) and
by its polarization vector �εν℘ (with ℘ = 1, 2). An index j in
summation (1) runs over all the charged particles forming the
matter system (atom, molecule) under our study. The meaning
of other symbols should be self evident. For the sake of
clarity, let us point out here that the modal summations (2)
and (3) are subjected to an implicit high frequency cutoff.
Correspondingly, all the bare masses µj in Eq. (1) are cutoff
dependent, as to provide a well-defined renormalized theory
in the infinite cutoff limit. Keeping in mind this remark, we

shall not comment more on matters of renormalization within
the present text.

Dynamical quantum state of the entire system “atom plus
quantized radiation field” is generally described by some state
vector |�(t)〉 whose time evolution obeys the time-dependent
Schrödinger equation

ih̄
∂

∂t
|�(t)〉 = H|�(t)〉. (4)

The choice of an adequate initial condition for |�(t)〉 will be
discussed later in the next section.

III. CANONICAL TRANSFORMATION USING
DISPLACEMENT OPERATORS

In the case when matter interacts with a laser pulse, an
analysis of the problem (4) is considerably simplified by
switching into another equivalent representation to be defined
in the following. Within the first step, we consider an unitary
displacement operator

UR(t) = D({αν℘(t)e−iων t }); (5)

introduced originally by Glauber [20] and Mollow [21].
Contrary to the works of Glauber and Mollow, we allowed here
the complex amplitudes αν℘(t) to be explicitly time dependent
in an as yet unspecified manner.

The displacement operator possesses basic property [21]

U†
R(t) �A⊥

R (�r)UR(t) = �A⊥
R (�r) + �A⊥

L (�r, t, {αν℘(t)}); (6)

where

�A⊥
L (�r, t, {αν℘(t)}) =

∑
ν℘

√
2πh̄c2

ωνV
[e−i(ωνt−�kν ·�r)αν℘(t)

+ e+i(ων t−�kν ·�r)α∗
ν℘(t)]�εν℘, (7)

is a c-number field characterized completely by the amplitudes
{αν℘(t)}. We shall interpret �A⊥

L (�r, t, {αν℘(t)}) as a classical
electromagnetic wave, which contains both an incoming laser
pulse and the light scattered or emitted as a consequence of an
interaction with the atom. Consistently with the just mentioned
interpretation, we shall require that the as yet unrestricted
time-dependent amplitudes {αν℘(t)} must possess an infinite
past limit

lim
t→−∞ αν℘(t) = αinc

ν℘ ; (8)

with the asymptotic values {αinc
ν℘} being chosen to describe an

incoming freely propagating light pulse

�A⊥
L

(�r, t, {αinc
ν℘

}) =
∑
ν℘

√
2πh̄c2

ωνV

[
e−i(ων t−�kν ·�r)αinc

ν℘

+ e+i(ων t−�kν ·�r)αinc∗
ν℘

]�εν℘, (9)

that vanishes in the atomic region for t → −∞.
Operator (5) transforms the Hamiltonian (1) into an

equivalent form

H(t) = U†
R(t)HUR(t) − ih̄U†

R(t)
∂

∂t
UR(t). (10)
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Straightforward manipulations yield a more explicit formula

H(t) = HR +
N∑

j=1

1

2µj

(
�pj − qj

c
�A⊥

R (�rj )

− qj

c
�A⊥

L (�rj , t, {αν℘(t)})
)2

+ V (�rN )

− ih̄
∑
ν℘

(α̇ν℘(t)e−iων ta†ν℘ − α̇∗
ν℘(t)e+iων taν℘); (11)

where the shorthand symbol α̇ν℘(t) = [∂αν℘(t)/∂t]. Clearly,
an appropriate equation of motion is now

ih̄
∂

∂t
|�(t)〉 = H(t)|�(t)〉; (12)

where |�(t)〉 = U†
R(t)|�(t)〉.

Importantly, in an infinite past limit of t → −∞, the
transformed Hamiltonian (11) coincides exactly with its
untransformed and time-independent counterpart (1). This fact
enables us to define now in a rigorous fashion an initial state
|�(tinit)〉 of the system. We wish to associate |�(tinit)〉 (for
tinit → −∞) with the ground atomic state, which is embedded
in the quantum vacuum (and is thus entangled with the
quantized field modes in a nontrivial way) while awaiting
an approach of the incoming c-number light pulse (7). The
choice of such an initial state is natural and unique: We identify
|�(tinit)〉 with the ground state of the Hamiltonian (1). If so, the
time-dependent Schrödinger equation (12) possesses a unique
solution |�(t)〉 whose properties are analyzed within the rest
of this article.

IV. CANONICAL TRANSFORMATION USING A
TIME-DEPENDENT ATOMIC BASIS SET

Proceeding further in our derivation, we consider another
unitary operator

UA(t) =
∑

n

|ϕn(t)〉A
〈
ϕ0

n(t)
∣∣. (13)

Here, vectors |ϕ0
n(t)〉A = e−(i/h̄)E0

n (t−t0)|ϕ0
n〉A represent the sta-

tionary states of a field free atom, that is,⎛⎝ N∑
j=1

�p2
j

2µj

+ V (�rN )

⎞⎠∣∣ϕ0
n

〉
A

= E0
n

∣∣ϕ0
n

〉
A
. (14)

An index n is used above to formally label both discrete
and continuous parts of the atomic energy spectrum. Vectors
|ϕn(t)〉A stand for the dynamical states of an atom dressed by
the c-number field (7). It holds

ih̄
∂

∂t

∣∣ϕn(t)
〉
A

= Hsc(t)|ϕn(t)〉A, |ϕn(t0)〉A
= ∣∣ϕ0

n

〉
A
, t0 → −∞; (15)

where Hsc(t) is the semiclassical “atom-light” Hamiltonian,

Hsc(t) =
N∑

j=1

1

2µj

(
�pj − qj

c
�A⊥

L (�rj , t, {αν℘(t)})
)2

+ V (�rN ).

(16)

Operator (13) facilitates an unitary transformation of the
Hamiltonian (11) into an equivalent form

H̃(t) = U†
A(t)H(t)UA(t) − ih̄U†

A(t)
∂

∂t
UA(t). (17)

After some manipulations we arrive toward a more explicit
expression

H̃(t) = −
∑
nn′

N∑
j=1

qj

c

∣∣ϕ0
n(t)
〉
A
〈ϕn(t)| �A⊥

R (�rj ) · �vsc
j (t)

× |ϕn′ (t)〉A
〈
ϕ0

n′ (t)
∣∣− ih̄

∑
ν℘

[
α̇ν℘(t)e−iων ta†ν℘

− α̇∗
ν℘(t)e+iων taν℘

]+∑
n

∣∣ϕ0
n(t)
〉
A

(
E0

n + HR

)
A

〈
ϕ0

n(t)
∣∣

+
∑
nn′

N∑
j=1

q2
j

2c2µj

∣∣ϕ0
n(t)
〉
A
〈ϕn(t)|

×[ �A⊥
R (�rj )]2|ϕn′ (t)〉A

〈
ϕ0

n′ (t)
∣∣; (18)

where

�vsc
j (t) = 1

µj

[
�pj − qj

c
�A⊥

L (�rj , t, {αν℘(t)})
]
. (19)

An appropriate equation of motion is now

ih̄
∂

∂t
|�̃(t)〉 = H̃(t)|�̃(t)〉; (20)

where |�̃(t)〉 = U†
A(t)|�(t)〉. An initial condition for |�̃(t)〉 is

again identified with the ground state of the Hamiltonian (1),
as in the preceding section.

V. SEMICLASSICAL APPROXIMATION

All the manipulations carried out so far have been fully
exact, such that |�̃(t)〉 describes the exact light-induced quan-
tum dynamics of the entangled system “atom plus quantized
radiation field.” The main purpose of the present article is to
relate the previously discussed rigorous QED formalism with
the semiclassical “quantized atom-classical light” treatment,
as being motivated in the Introduction. Importantly, it turns
out that the semiclassical approach is obtained from the exact
formulations (18) through (20) by imposing two well-defined
approximations:

(a) We erase all the off-diagonal (n 	= n′) matrix elements

A〈ϕn(t)| �A⊥
R (�rj ) · �vsc

j (t)|ϕn′(t)〉A,A 〈ϕn(t)|
× ( �A⊥

R (�rj ))2|ϕn′ (t)〉A, (21)

appearing in the formula (18). Index n becomes then a
good quantum number.

(b) In addition, we neglect in Eq. (18) also the diagonal
(n = n′) matrix elements

A〈ϕn(t)|( �A⊥
R (�rj ))2|ϕn(t)〉A. (22)

The implementation of the approximations (a) and (b) leads
to a simplified Hamiltonian

H(t) =
∑

n

∣∣ϕ0
n(t)
〉
A

(
E0

n + HR + hnn
R (t)

)
A

〈
ϕ0

n(t)
∣∣; (23)
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where the field operator

hnn
R (t) = −

N∑
j=1

qj

c
A〈ϕn(t)| �A⊥

R (�rj ) · �vsc
j (t)|ϕn(t)〉A

− ih̄
∑
ν℘

(α̇ν℘(t)e−iων ta†ν℘ − α̇∗
ν℘(t)e+iων taν℘).

(24)

Within the previously introduced approximation, the
“atom-light” interaction process is described by an initial value
problem

ih̄
∂

∂t
|�(t)〉 = H(t)|�(t)〉, |�(t0)〉

= ∣∣ϕ0
n

〉
A
|{0}〉R, t0 → −∞. (25)

Symbol |{0}〉R stands here of course for the quantum vacuum
(i.e., for the ground state of the free radiation field). Since n

is a good quantum number, we are allowed to choose some
concrete value n of index n and to identify the desired solution
|�(t)〉 with a direct product state

|�(t)〉 = e−(i/h̄)E0
n

(t−t0)
∣∣ϕ0

n

〉
A
|χn(t)〉R. (26)

The field component |χn(t)〉R is obtained by solving an
effective Schrödinger equation for the degrees of freedom of
the radiation

ih̄
∂

∂t
|χn(t)〉R = [HR + hnn

R (t)
]|χn(t)〉R, |χn(t0)〉R

= |{0}〉R, t0 → −∞. (27)

It is reasonable to require that the field state |χn(t)〉R
remains unpopulated by photons for all values of t . If so,
an information about the light present in the system is carried
solely by the c-number term (7) and not by the approximative
quantum state (26). Requirement |χn(t)〉R ≈ |{0}〉R is fulfilled
if, and only if, the Hamiltonian term hnn

R (t) ≡ 0. Cancellation
of hnn

R (t) is accomplished via a convenient choice of the as yet
unspecified field amplitudes {αν℘(t)}. Namely, we set

α̇ν℘(t) = +ie+iων t

√
2π

h̄ωνV

N∑
j=1

A〈ϕn(t)|

× e−i�kν ·�rj
[
qj �vsc

j (t) · �εν℘

]|ϕn(t)〉A; (28)

while taking into account an initial condition (8). Solution (26)
of an initial value problem (25) is then written down explicitly
as follows

|�(t)〉 = e−(i/h̄)E0
n

(t−t0)e−(i/h̄)EZPE (t−t0)
∣∣ϕ0

n

〉
A
|{0}〉R. (29)

For the sake of clarity, we note in passing that initial value
problems (8) and (28) fixes unambiguously also the amplitudes
{αν℘(t)} entering into the exact nonapproximative Hamiltonian
(18) of the previous section.

Let us extract now from the previously constructed approx-
imative state vector |�(t)〉 some more concrete information
about physical observables. Suppose that QA is an arbitrary
Schrödinger picture operator acting on the atomic degrees
of freedom and keeping the radiation field unaffected. The

position and momentum of an electron may serve as concrete
examples. An expectation value of QA over the quantum state
|�(t)〉 is then evaluated as

〈QA〉(t) = A〈ϕn(t)|QA|ϕn(t)〉A. (30)

In other words, all the measurable characteristics of the atomic
system are encoded in the associated dynamical state |ϕn(t)〉A,
whose time evolution is governed by the c-number field (7)
via the Schrödinger equation (15).

Further, let QR be an arbitrary Schrödinger picture operator
acting on the degrees of freedom of the radiation field and
keeping the atomic variables unaffected. Electric and magnetic
field strengths or the vector potential may serve as concrete
examples. An expectation value of QR over the quantum state
|�(t)〉 is then found to be

〈QR〉(t) = R〈{αν℘(t)e−iων t }|QR|{αν℘(t)e−iων t }〉R; (31)

where the amplitudes of a coherent field state
|{αν℘(t)e−iων t }〉R = D({αν℘(t)e−iων t })|{0}〉R obey the
differential Eq. (28). Of special importance is an expectation
value

〈 �A⊥
R (�r)〉(t) = �A⊥

L (�r, t, {αν℘(t)}); (32)

which is identified immediately with the c-number light (7).
Expression (32) provides an expected physical evidence of
the “atom-light” interaction process. In the limit of t → −∞,
only the incoming light pulse �A⊥

L (�r, t, {αinc
ν℘}) is present in the

system. As soon as this light pulse reaches the atom, some
radiation starts to be scattered and emitted and hence the
originally constant field amplitudes {αν℘} vary accordingly
in time, as determined by Eq. (28).

VI. THE MAXWELL WAVE EQUATION

The dynamical evolution of the c-number field (32) is
determined by relations (7) and (28). Let us examine now
this dynamical time evolution more explicitly. The total time
derivative of the quantity (7) equals to

∂

∂t
�A⊥

L (�r, t, {αν℘(t)})

=
∑
ν℘

√
2πh̄c2

ωνV
[e−i(ωνt−�kν ·�r)α̇ν℘(t) + e+i(ων t−�kν ·�r)α̇∗

ν℘(t)]

× �εν℘ − i
∑
ν℘

ων

√
2πh̄c2

ωνV
[e−i(ων t−�kν ·�r)αν℘(t)

− e+i(ων t−�kν ·�r)α∗
ν℘(t)]�εν℘. (33)

A substitution of the formula (28) leads to a more explicit
expression

−1

c

∂

∂t
�A⊥

L (�r, t, {αν℘(t)})

= �E⊥
L (�r, t, {αν℘(t)}) + 4π

V

N∑
j=1

∑
ν℘

ω−1
ν A〈ϕn(t)|

× sin[�kν · (�r − �rj )]
(
qj �vsc

j (t) · �εν℘

)�εν℘ |ϕn(t)〉A; (34)
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where �E⊥
L (�r, t, {αν℘(t)}) is of course the transversal electric

field derived from the Coulomb gauge vector potential (7).
The second line of Eq. (34) consists of odd functions of
variable �kν and therefore vanishes exactly after carrying out
the summation over index ν. The contributions associated with
the given value (+�kν) cancel their counterparts corresponding
to (−�kν). Hence, we have simply

−1

c

∂

∂t
�A⊥

L (�r, t, {αν℘(t)}) = �E⊥
L (�r, t, {αν℘(t)}); (35)

in consonance with the correspondence principle between the
classical and quantum electrodynamics. In passing we note
that also the associated magnetic field results from the standard
formula

�∇�r × �A⊥
L (�r, t, {αν℘(t)}) = �B⊥

L (�r, t, {αν℘(t)}); (36)

as follows immediately by direct calculation.
From now on, our attention will be focused on find-

ing an overall equation of motion for the vector field
�A⊥

L (�r, t, {αν℘(t)}). An adjective overall emphasizes here our
decision to concentrate on the space-time evolution of the
whole field, without any explicit reference to its amplitudes
{αν℘(t)}. The mentioned way of investigation is, again, moti-
vated by an anticipated correspondence with the formalism of
classical electrodynamics.

An action of the Laplacian on the vector potential field is
evaluated as

��r �A⊥
L (�r, t, {αν℘(t)})

= − 1

c2

∑
ν℘

ω2
ν

√
2πh̄c2

ωνV
[e−i(ωνt−�kν ·�r)αν℘(t)

+ e+i(ων t−�kν ·�r)α∗
ν℘(t)]�εν℘. (37)

In addition, we differentiate Eq. (35) with respect to time, to
obtain the formula

−1

c

∂2

∂t2
�A⊥

L (�r, t, {αν℘(t)})

= ∂

∂t
�E⊥

L (�r, t, {αν℘(t)})

= 1

c

∑
ν℘

ω2
ν

√
2πh̄c2

ωνV
[e−i(ων t−�kν ·�r)αν℘(t)

+ e+i(ων t−�kν ·�r)α∗
ν℘(t)]�εν℘ + i

c

∑
ν℘

ων

√
2πh̄c2

ωνV

× [e−i(ων t−�kν ·�r)α̇ν℘(t) − e+i(ων t−�kν ·�r)α̇∗
ν℘(t)]�εν℘. (38)

The combination of the expressions (37) and (38) yields
consequently the well-known classical wave equation

��r �A⊥
L (�r, t, {αν℘(t)}) − 1

c2

∂2

∂t2
�A⊥

L (�r, t, {αν℘(t)})

= −4π

c
�J⊥(�r, t); (39)

with an inhomogeneous term

�J⊥(�r, t) = −i
∑
ν℘

√
h̄ων

8πV
[e−i(ων t−�kν ·�r)α̇ν℘(t)

− e+i(ων t−�kν ·�r)α̇∗
ν℘(t)]�εν℘. (40)

What remains to be done is to ascribe some physical
meaning to the right-hand side of Eq. (39). For this purpose, we
transform the contribution (40) by the insertion of the explicit
functional form (28) of the derivative α̇ν℘(t). It shows that

�J⊥(�r, t) = 1

V

N∑
j=1

∑
ν℘

A〈ϕn(t)| cos[�kν · (�r − �rj )]

×(qj �vsc
j (t) · �εν℘

)�εν℘ |ϕn(t)〉a; (41)

or more conveniently,

�J⊥(�r, t)

= 1

2V

N∑
j=1

∑
ν℘

A〈ϕn(t)| cos[�kν · (�r − �rj )]
(
qj �vsc

j (t) · �εν℘

)

× �εν℘ |ϕn(t)〉A + 1

2V

N∑
j=1

∑
ν℘

A〈ϕn(t)|

× (
qj �vsc

j (t) · �εν℘

)
cos[�kν · (�r − �rj )]�εν℘ |ϕn(t). (42)

The passage to the symmetrized version (42) of equation (41) is
based upon the transversal property �kν · �εν℘ = 0 and relation
(19). Another possibility is to formally symmetrize the real
quantity �J⊥(�r, t) as [ �J⊥(�r, t) + �J⊥∗(�r, t)]/2.

Relations �kν · �εν℘ = 0 imply that the quantity (42) is purely
transversal,

�∇�r · �J⊥(�r, t) = 0. (43)

Hence, each particular solution �A⊥
L (�r, t, {αν℘(t)}) of the wave

equation (39) is also purely transversal, in full agreement with
the definition formula (7). However, we are free to add an
arbitrary strictly longitudinal component �J ‖(�r, t) to �J⊥(�r, t),
keeping implicitly in mind that we shall project it out when
dealing with Eq. (39). Such a kind of manipulation is justified
via the Helmholtz theorem [19,22]. Following this argument,
we introduce a purely longitudinal term

�J ‖(�r, t) = 1

2V

N∑
j=1

∑
ν℘

A〈ϕn(t)| cos[�kν · (�r − �rj )]

× (
qj �vsc

j (t) · �κν

)�κν |ϕn(t)〉A + 1

2V

N∑
j=1

∑
ν℘

A〈ϕn(t)|

× (
qj �vsc

j (t) · �κν

)
cos[�kν · (�r − �rj )]�κν |ϕn(t)〉A;

(44)

where �κν = �kν/kν . The longitudinal property

�∇�r × �J ‖(�r, t) = �0, (45)

of the vector function (44) results trivially. To complete the
task, we compose a sum

�J (�r, t) = �J⊥(�r, t) + �J ‖(�r, t); (46)
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and concentrate on the wave equation

��r �A⊥
L (�r, t, {αν℘(t)}) − 1

c2

∂2

∂t2
�A⊥

L (�r, t, {αν℘(t)})

= −4π

c
�J (�r, t); (47)

rather than on the original problem (39). In spite of
the fact that the quantity �J (�r, t) possesses a nonzero

longitudinal part, we still attach the transversal su-
perscript ⊥ to the vector potential, since the lon-
gitudinal part of the solution is ignored as being
unphysical.

We continue by the simplification of the expression
for �J (�r, t). Putting together the two components (41) and
(44) and employing tensor notation, we arrive at the
formula

�J (�r, t) = 1

2V

N∑
j=1

∑
ν

A〈ϕn(t)| cos[�kν · (�r − �rj )]
[(�εν1�εT

ν1 + �εν2�εT
ν2 + �κν �κT

ν

) · (
qj �vsc

j (t)
)] |ϕn(t)〉A

+ 1

2V

N∑
j=1

∑
ν

A〈ϕn(t)| [(�εν1�εT
ν1 + �εν2�εT

ν2 + �κν �κT
ν

) · (
qj �vsc

j (t)
)]

cos[�kν · (�r − �rj )]|ϕn(t)〉A

= 1

2

N∑
j=1

A〈ϕn(t)|
{

1

V

∑
ν

cos[�kν · (�r − �rj )]

}
(
qj �vsc

j (t)
)|ϕn(t)〉A

+ 1

2

N∑
j=1

A〈ϕn(t)|(qj �vsc
j (t)

)
{

1

V

∑
ν

cos[�kν · (�r − �rj )]

}
|ϕn(t)〉A. (48)

Our last step consists in the replacement of the summation over
the discrete modal index ν by an integration over a continuous
vector variable �k. Equation (48) is transformed into

�J (�r, t) = 1

2

N∑
j=1

A〈ϕn(t)|
{

1

(2π )3

∫
R3

cos[�k · (�r − �rj )]d3k

}

× (
qj �vsc

j (t)
)|ϕn(t)〉A + 1

2

N∑
j=1

A〈ϕn(t)|(qj �vsc
j (t)

)

×
{

1

(2π )3

∫
R3

cos[�k · (�r − �rj )]d3k

}
|ϕn(t)〉A; (49)

so that finally

�J (�r, t) = 1

2

N∑
j=1

A〈ϕn(t)|[δ3(�r − �rj )qj �vsc
j (t)

+ qj �vsc
j (t)δ3(�r − �rj )

]|ϕn(t)〉A. (50)

Symbol δ3(�r − �r ′) stands here for the Dirac δ function.
The physical interpretation of quantity �J (�r, t) [i.e., the

meaning of its transversal component �J⊥(�r, t)] can be
now easily understood. Expression (50) is recognized as
an expectation value of the semiclassical electric current
operator

�Jsc(�r, t) = 1

2

N∑
j=1

[
δ3(�r − �rj )qj �vsc

j (t) + qj �vsc
j (t)δ3(�r − �rj )

]
,

(51)

over the given atomic state |ϕn(t)〉A.
Summarizing the contents of the present section, we may

conclude that our previous considerations established a

rigorous theoretical ground for the semiclassical treatment
of “atom-laser” interaction, based upon solving the coupled
system of Schrödinger plus Maxwell equations (15) and (47).
We demonstrated that the mentioned semiclassical approach
is equivalent to neglecting the terms (21) and (22) of the exact
Hamiltonian (18).

It is important to emphasize in this context that the
Schrödinger equation (15) for the dynamical state |ϕn(t)〉A
must be solved simultaneously with the just discussed wave
equation (47) for the field (7), since the two problems are
coupled. We recall for clarity that the c-number field (7) enters
into the semiclassical Hamiltonian (16) of the Schrödinger
equation (15), while the Maxwell equation (47) is parametrized
by an expectation value (50) over the propagated atomic state
vector |ϕn(t)〉A.

VII. APPLICABILITY AND LIMITATIONS OF THE
SEMICLASSICAL APPROXIMATION

The physical correctness of the semiclassical approach
stands and falls on the (in)adequacy of the previously made
semiclassical approximations (a) and (b) represented by
Eqs. (21) and (22). It is more than evident that a critical analysis
of these approximative steps must be performed. Such an
analysis will be developed in full detail elsewhere [23]. In the
present section, we shall restrict ourselves to a brief inspection
of a simplified but instructive model problem. (An additional
and very explicit discussion of a much more concrete model
system is elaborated in the Appendix.) From now on we shall
suppose that:

(i) The potential function V (�rN ) of the Hamiltonian (16)
does not allow the “atom” to ionize. That is, V (�rN ) corresponds
to the infinite potential wells of a trap where the charged
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particles are confined to move (like, e.g., electrons in a simple
model of a quantum dot).

(ii) The incoming laser light (9) behaves as a monochro-
matic adiabatically switched continuous wave (CW) pulse
with some prescribed wave vector �kL and the corresponding
circular frequency ωL = (2π/T ) = c|kL|. Formulated math-
ematically, we shall take the c-number light term (9) of the
form

�A⊥
L

(�r, t, {αinc
ν℘

}) = η(t) �A0
L cos(ωLt − �kL · �r). (52)

Here, η(t) is a very slowly varying envelope of the pulse
vanishing at infinite past and future, whereas �A0

L stands
for a constant vector satisfying the transversality condition
�A0

L · �kL = 0. Under the above circumstances (i) and (ii), the
overall (incoming plus emitted) c-number field (7) resulting
from the solution of the coupled problems (15) and (47)
will behave as a superposition of adiabatically switched CW
pulses whose frequencies are integer multiples of ωL. That is,

�A⊥
L (�r, t, {αν℘(t)})

= �A⊥
L

(�r, t, {αinc
ν℘

})+
∞∑

a=1

�A(a)
L (�r, t, η(t)); (53)

where the ath order emission term is almost time periodic with
the circular frequency aωL, the time periodicity is slightly
violated here due to the slowly varying envelope function
η(t). In other words,

�A(a)
L (�r, t, η(t)) = �A(a)

L (�r, t + T/a, η(t)). (54)

Relations (53) and (54) are direct consequences of symmetry
of the coupled Eqs. (15) and (47) with respect to time
translations, combined with the near symmetry of an initial
condition (52) with respect to specific time translations of the
form t → t + T . This near symmetry can be made arbitrarily
exact by varying the envelope function η(t) slowly enough.

An almost exact time periodicity of the c-number field (53)
enables us to exploit the adiabatic Floquet theory [24] and to
extract in this way a substantial amount of additional infor-
mation concerning the solutions {|ϕn(t)〉A} of the Schrödinger
equation (15). More explicitly, one finds that the dynamical
atomic states |ϕn(t)〉A are expressible by the formula

|ϕn(t)〉A = e
−(i/h̄)

∫ t
t0
EQE

n (η(τ ))dτ |ψn(t, η(t))〉A. (55)

Here, the so-called Floquet state |ψn(t, η)〉A and the so-
called quasienergy EQE

n (η) depend parametrically upon the
instantaneous value of the envelope function η(t) and are
obtained by solving the generalized eigenvalue problem⎡⎣ N∑

j=1

1

2µj

(
�pj − qj

c
�A⊥

L (�rj , t, {αν℘(t)})
)2

+ V (�rN ) − ih̄
∂

∂t

⎤⎦
× |ψn(t, η)〉A = EQE

n (η)|ψn(t, η)〉A; (56)

with variable t playing the role of an additional coordinate
running through an interval of one optical cycle. Consistently
with such a viewpoint one imposes a periodic boundary
condition

|ψn(t + T , η)〉A = |ψn(t, η)〉A. (57)

In Eq. (56), the c-number field term corresponds to expression
(53) evaluated at a fixed value of the envelope parameter η.
We recall in this context that the envelope function remains
almost constant on the time scale of one optical cycle. Different
eigensolutions of the Floquet problem (56) are labeled by
subscript n in such a way that EQE

n (η = 0) and |ψn(t, η = 0)〉A
become indistinguishable from their zero-field counterparts
E0

n and |ϕ0
n(t)〉A introduced before in Sec. IV. For η 	= 0,

each Floquet state |ψn(t, η)〉A is expressible by the basis set
expansion

|ψn(t, η)〉A =
m′=+∞∑
m′=−∞

∑
n′

Cn
m′n′ (η)

∣∣ϕ0
n′
〉
A
e+im′ωLt ; (58)

in consonance with the time periodicity requirement (57).
The expression (55) for the dressed atomic states {|ϕn(t)〉A}

enables us to discuss an applicability of the semiclassical
approximation by examining the relative importance of the
as yet neglected off-diagonal contributions (21) to the exact
Hamiltonian (18). The discussion of an extra diagonal term
(22) is postponed to Ref. [23]. It is very instructive to
inspect first the situation before the arrival of the laser pulse,
that is, the infinite past limit limt→−∞ H̃(t) = H where H
corresponds to Eq. (1) and the quantum state of the system
is identified with the ground state of H. An eigenproblem
of H is encountered in numerous basic applications dealing
with a small but measurable effect of the quantum vacuum on
atomic or molecular species. Mentioned applications include
e.g. the calculation of the the nonrelativistic Lamb shift, the
evaluation of the spontaneous emission rates, or the studies
of the Casimir forces (van der Waals interactions) between
atoms, see Ref. [19] for more details. In all of the previous
examples, as well as in the present case of our interest,
the atomic wave function remains relatively well separable
from the field degrees of freedom even after the effect of
vacuum fluctuations is taken into account. This shows that
the semiclassical approximation (29) is well justified for
t → −∞. Nevertheless, the mere validity of the semiclassical
approach does not imply that the off-diagonal matrix elements
(21) are here smaller in magnitude than their diagonal counter-
parts. The true justification for neglecting these off-diagonal
terms consists in the fact that each element (21) carries an
oscillating phase factor e

+(i/h̄)(E0
n−E0

n′ )(t−t0). Provided that the
energy separations |E0

n − E0
n′ | between the involved atomic

energy levels are large enough, the phase oscillations of

e
+(i/h̄)(E0

n−E0
n′ )(t−t0) are so rapid that the associated Hamiltonian

terms (21) become dynamically irrelevant and thus negligible
to a good approximation. Making an intermediate summary,
one may state that an ansatz |ϕ0

n〉A|{0}〉R represents a good
approximation to a stationary state of the full Hamiltonian
H whenever all the relevant energy gaps |E0

n − E0
n | are large

enough compared to the energy contents of the quantum
vacuum fluctuations.

Importantly, an analysis of the exact Hamiltonian (18) at
finite times (when the laser has arrived and interacts with
the atom) turns out to be entirely analogical to the consid-
erations of the previous paragraph. Again, the off-diagonal
Hamiltonian terms (21) are not smaller in magnitude than
their diagonal counterparts, but they carry an oscillating phase
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factor

e
+(i/h̄)

∫ t
t0

{EQE
n (η(τ ))−EQE

n′ (η(τ ))}dτ ; (59)

as follows directly from the adiabatic Floquet formula (55)
for the dressed atomic states {|ϕn(t)〉A}. Provided that the
quasienergy separations |EQE

n (η(t)) − EQE
n (η(t))| are large

enough throughout the entire time interval of the interaction
between the c-number field (7) and the atom, the Floquet phase
oscillations (59) are so rapid that the associated Hamiltonian
terms (21) become dynamically irrelevant and thus negligible
to a good approximation. Under such circumstances, the semi-
classical ansatz (29) appears to be well theoretically justified.
One may thus state that the semiclassical treatment represents a
good approximation to the exact quantum dynamics governed
by the full Hamiltonian (18) as long as all the relevant
quasienergy gaps |EQE

n (η(t)) − EQE
n (η(t))| are large enough

compared to the energy contents of the quantum vacuum
fluctuations.

On the other hand, it is well known from numerical calcula-
tions (even for open systems allowing field induced ionization,
see Refs. [25–27]) that the frequency and intensity of the
incoming laser field can be tuned in such a way as to make cer-
tain quasienergies accidentally near degenerate. When some
quasienergy gap |EQE

n (η(t)) − EQE
n (η(t))| is not sufficiently

large or even zero, the phase factor (59) does not oscillate
rapidly enough and there turns out to be no reason to neglect
the associated off-diagonal Hamiltonian terms (21). Hence, a
single channel direct product ansatz of the form (29) no longer
constitutes an adequate approximation for the exact dynamical
quantum state of a strongly entangled system “atom plus
quantized radiation field.” Under these conditions one should
expect a complete breakdown of the semiclassical theory.

In the case when the semiclassical approach is justified, one
possible strategy for correcting systematically the solution (29)
can be based upon the perturbation method, to be implemented
in a similar way as in conventional studies of quantum vacuum
effects on atoms in the absence of laser light. An application
of the perturbation technique enables us also to derive a
rigorous quantitative criterion (to be published elsewhere
in Ref. [23]), which shows how to recognize whether or
not the quasienergy separations |EQE

n (η(t)) − EQE
n (η(t))| are

sufficiently large enough to justify the semiclassical treatment.
In the case when the semiclassical approximation breaks down
completely as being anticipated within the previous paragraph,
some variant of nonperturbative quantum electrodynamics
treatment must be adopted to properly describe the problem.
The development of such a nonperturbative mode of descrip-
tion is currently in progress.

Importantly, the qualitative considerations of the present
section can be supported by an explicit QED treatment of
a simple model of a two-level atom driven by a laser. The
solution of this problem is elaborated in detail within the
Appendix. The derivation presented there is based upon
mathematically well-defined and physically well-justifiable
approximations and leads finally to a simple formula (A44),
which serves as a quantitative indicator of (in)adequacy
of the semiclassical approach. This formula demonstrates
explicitly that the quasienergy separations |EQE

n (η(t)) −
EQE

n (η(t))| referred to previously represent indeed the crucial

criterion according to which the validity of the semiclassical
theory should be judged.

Summarizing the most important finding of the present
section, we may conclude that we predicted a complete break-
down of the conventional “quantized atom-classical light”
treatment of the matter-light interaction problem under special
but well-defined and achievable conditions. The breakdown of
the semiclassical theory is attributed to accidental (near) de-
generacies in the energy spectrum of the atomic system dressed
by the laser. Failure of the semiclassical treatment arises here
due to an unhindered transfer of quantum population between
the (near) degenerate atomic channels and suggests a possible
encounter with new, as yet unobserved, physical phenomena
observable in harmonic generation spectra. It is clear at least
that the harmonic generation spectrum calculated using the
semiclassical approach will not agree in this case with the
QED result obtained using the exact dynamical solution of
the full Schrödinger equation (20).

In passing we note that an experimental measurement and
control of the relevant quasienergy gaps might be achieved
using the technique of Floquet spectroscopy (see Refs. [28,
29]). More explicitly, by carrying out Floquet spectroscopy
measurements on atoms strongly driven by intense light one
may adjust the frequency and intensity of the driving intense
laser in such a way as to produce the desired quasienergy
(near) degeneracy. Consequently, the corresponding harmonic
generation spectrum is anticipated to differ strongly from
the prediction of semiclassical (SC) theory (see also the last
paragraph of Sec. A.5 for further comments).

VIII. CONCLUDING REMARKS

The main purpose of the present work is to examine
the validity of the semiclassical treatment of “atom-laser”
interaction, that is, to derive the corresponding semiclassical
system of coupled Maxwell-Schrödinger equations from the
first principles of quantum electrodynamics along with the
critical examination of the validity of such an approach.
We believe that this program was successfully accomplished.
More explicitly, we arrived at two basic results:

(1) We show that the semiclassical set of coupled Maxwell-
Schrödinger equations results from the developed formalism as
a well-defined approximation, obtained by neglecting certain
terms of the exact Hamiltonian.

(2) Assuming a special arrangement when the model
atomic system is spatially confined and the incoming laser
light corresponds to an adiabatically switched monochromatic
CW pulse, we find a simple criterion of the validity of
the semiclassical approach. We also demonstrate, on the
basis of the derived criterion, that the semiclassical treatment
does break down completely in some special but achievable
situations. This becomes apparent most explicitly from the
formula (A44) derived in the Appendix for a simple two-level
model. The possibility of observing new physical phenomena
emerges whenever the breakdown of the semiclassical theory
takes place.

ACKNOWLEDGMENTS

This work was funded by an Advanced Grant from the
European Research Council (ERC), through close

033833-8
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APPENDIX: GOING BEYOND THE SC APPROACH FOR A
SIMPLE TWO LEVEL ATOMIC SYSTEM

The purpose of this Appendix is to analyze more explicitly
the limitations of the SC approximation, using a simple model
problem of a two-level atom. While a two-level atomic system
represents per se a legitimate and frequently considered model
problem from a theoretical standpoint, one can also find realis-
tic physical systems for which the two-level approximation is
adequate. For example, the lowest two eigenstates of a double
well potential (which has a high enough barrier between its
two minima) are energetically very close to each other but stay
separated from all the other states by a much larger energy
gap. Two-level atoms strongly driven by an intense laser field
were used by several authors to study harmonic generation and
other phenomena, see, e.g., Refs. [30,31].

1. Basic definitions

We shall consider a two-level atomic system coupled to a
quantum electromagnetic field. The total Hamiltonian takes
the form

H = HA + HR + HSR(t). (A1)

Here,

HA = |1〉AE1
AA〈1| + |2〉AE2

AA〈2|, (A2)

represents the Hamiltonian of a free two-level atom, whereas
HR =∑ν h̄ωνa†νaν stands for the Hamiltonian of a free
electromagnetic field. For the sake of conceptual simplicity
we shall assume here that the field modes can be labeled
just by a one-dimensional wave vector kν , although such an
assumption is not essential for our forthcoming derivations.
The corresponding electric and magnetic field operators are
defined on one-dimensional position space by the formulas

E(x) = i
∑

ν

√
h̄ων

4L
e+ikνxaν + c.c., (A3)

B(x) = i
∑

ν

ckν

√
h̄

4ωνL
e+ikνxaν + c.c., (A4)

and determine the field Hamiltonian as HR = ∫ +L/2
−L/2 [E2(x) +

B2(x)]dx, with an implicit omission of the zero point energy
term. Symbol L is, of course, understood as the box quanti-
zation length giving the modal periodic boundary conditions.
Coupling between the two-level atom and the quantum field
is within the present model defined via the length gauge
prescription

HSR(t) =
∫ +L/2

−L/2
d(x, t)E(x) dx. (A5)

The atomic dipole function d(x, t) used here is for later
convenience assumed to vary adiabatically in time, such that
the atom and quantum field become uncoupled in the infinite
past limit. More explicitly, we shall take

d(x, t) = f (t)
√

ζ/πe−ζx2
w, w = |1〉AA〈2| + |2〉A A〈1|;

(A6)

with f (t) being an auxiliary adiabatic switching function
which vanishes as t → −∞ and reaches a constant nonzero
value fa before the arrival of the laser pulse. As a concrete
example one may take f (t) = fae

−ε|t | where ε → +0. The
meaning of the parameter ζ is as follows. In the limit of large ζ

one will recover from Eq. (A5) the usual dipole approximation
formula. Nevertheless, we prefer to choose ζ in Eq. (A6) in
such a way that the spatial extension of d(x, t) is finite. This
introduces an effective cutoff of very high modal frequencies
ων and allows us therefore to avoid delving into the matters
of renormalization in our subsequent elaborations. Closely
related is an observation that a finite value of ζ implies a
smooth regular source term in the Maxwell wave equation, to
be seen later.

2. Canonical transformations and the SC approach

Let us apply now the general theoretical formalism devel-
oped in the main part of the article. First, the displacement
operator D({αν(t)e−iων t }) and the free field time evolution
operator transform the total Hamiltonian (A1) into

H(t) = HA +
∫ +L/2

−L/2
d(x, t)EL(x, t)dx +

∫ +L/2

−L/2
d(x, t)

× E(x, t) dx − ih̄
∑

ν

(α̇ν(t)a†ν − α̇∗
ν (t)aν). (A7)

Here

EL(x, t) = i
∑

ν

√
h̄ων

4L
e−i(ων t−kνx)αν(t) + c.c., (A8)

is a c-number field characterized by its as yet unspecified
amplitudes {αν(t)e−iων t } and E(x, t) stands, of course, for an
interaction picture counterpart of Eq. (A3). Second, we define
the Hamiltonian of the SC approach,

Hsc
A (t) = HA +

∫ +L/2

−L/2
d(x, t)EL(x, t)dx; (A9)

and solve the associated problem of a laser-driven two-level
atom

ih̄
d

dt
|ϕn(t)〉A = Hsc

A (t)|ϕn(t)〉A, |ϕn(tinit)〉A = |n〉A. (A10)

Consequently, we eliminate the Hsc
A (t) contribution from

Eq. (A7) by a canonical transformation (see Sec. IV of the
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main text), to get

H̃(t) =
∫ +L/2

−L/2
dI(x, t)E(x, t) dx

− ih̄
∑

ν

(α̇ν(t)a†ν − α̇∗
ν (t)aν). (A11)

The relevant dipole term is now defined through its matrix
elements

A〈n|dI(x, t)|n′〉A = f (t)
√

ζ/πe−ζx2
wnn′ (t),

(A12)
wnn′ (t) = A〈ϕn(t)|w|ϕn′(t)〉A.

Note that besides an obvious property w12(t) = w∗
21(t) we have

also w11(t) = −w22(t) for the case of a two-level atom. Finally,
the as yet unspecified complex amplitudes αν(t) are chosen to
evolve in time according to

ih̄α̇ν(t) = −L−1/2i
√

h̄ων/4D−
ν e+iων tf (t)w11(t),

lim
t→−∞ αν(t) = αinc

ν ; (A13)

where

D±
ν =

∫ +L/2

−L/2

√
ζ/πe−ζx2

e±ikνxdx = e−k2/(4ζ ). (A14)

If so, manipulations completely analogical to those of Sec. VI
of the main text show that the c-number field (A8) satisfies the
Maxwell wave equation of the SC approach, namely,

∂2

∂x2
EL(x, t) − 1

c2

∂2

∂t2
EL(x, t)

= −f (t)w11(t)

2

∂2

∂x2

(√
ζ/πe−ζx2)

. (A15)

Moreover, the transformed Hamiltonian (A11) can be now cast
into a simple matrix form

H̃(t) =
(

0 h12(t)
h21(t) h22(t)

)
; (A16)

with the matrix elements

hn1n2 (t) = L−1/2
∑

ν

(
h(+)ν

n1n2
(t)a†ν + h(−)ν

n1n2
(t)aν

)
, (A17)

being explicitly determined through the coefficients

h
(±)ν
12 (t) = ∓1i

√
h̄ων/4D∓

ν e±iων tf (t)w12(t) = h
(∓)ν∗
21 (t),

(A18)

h
(±)ν
22 (t) = ±2i

√
h̄ων/4D∓

ν e±iων tf (t)w11(t) = h
(∓)ν∗
22 (t).

(A19)

The previously used row and column labels n1,2 refer, of
course, to the previously constructed atomic basis functions
|ϕn1,2 (t)〉A.

3. Going beyond the SC approach

Within the theoretical framework introduced in A1 and
A2, exact quantum dynamics of the studied model system
(two-level atom coupled to quantum electromagnetic field) is
described by a coupled channel problem

ih̄
d

dt

(
|�̃1(t)〉R
|�̃2(t)〉R

)
=
(

0 h12(t)
h21(t) h22(t)

)(|�̃1(t)〉R
|�̃2(t)〉R

)
. (A20)

Since the adiabatic switching function f (t) is supposed to
vanish in the infinite past, the evolution (A20) becomes trivial
for t → −∞. An initial condition of our interest corresponds
to the atom prepared in its ground state in the infinite past.
That is, (

|�̃1(tinit)〉R
|�̃2(tinit)〉R

)
=
(

|{0}〉R
|∅〉R

)
, tinit → −∞; (A21)

where |∅〉R denotes a zero vector. Even for finite values of t ,
the SC approximation of the sought dynamical quantum state
vector takes a simple form(

|�̃1(t)〉R
|�̃2(t)〉R

)
=
(

|{0}〉R
|∅〉R

)
. (A22)

The purpose of this Appendix is to critically examine an (in)
accuracy of the SC approximation. Clearly, the most satisfac-
tory way to facilitate such an investigation will be to solve
directly the initial value problems (A20) and (A21), and to
compare the outcome with the approximative solution (A22).
However, the only known route to obtain an explicit solution of
Eqs. (A20) and (A21) is via carrying out a large-scale numeri-
cal calculation. Fortunately, in spite of this fact, it turns out that
for the present simple model an important amount of physical
insight can be gained using analytic methods and well-justified
approximations, as elaborated in detail in the following.

Without any limitations of generality let us express the first
component |�̃1(t)〉R as

|�̃1(t)〉R = C(t)|ψ1(t)〉R. (A23)

Here, the vector |ψ1(t)〉R is required to satisfy the conditions

R〈ψ1(tinit)|ψ1(tinit)〉R = 1, R〈ψ1(t)|(d/dt)|ψ1(t)〉R = 0;

(A24)

meaning that its unit norm and its overall phase are held fixed
in time. If so, then |C(t)|2 is interpreted as the population of
the first channel. The second component |�̃2(t)〉R is left as it
stands. It is a simple matter to write down the equations of
motion for C(t), |ψ1(t)〉R , and |�̃2(t)〉R . One has

ih̄
d

dt
C(t) = R〈ψ1(t)|h12(t)|�̃2(t)〉R, (A25)

ih̄C(t)
d

dt
|ψ1(t)〉R = h12(t)|�̃2(t)〉R − R〈ψ1(t)|

× h12(t)|�̃2(t)〉R|ψ1(t)〉R, (A26)

ih̄
d

dt
|�̃2(t)〉R = h22(t)|�̃2(t)〉R + C(t)h21(t)|ψ1(t)〉R.

(A27)

Note that Eq. (A26) conserves automatically the properties in
Eq. (A24).

Assume now that we do not solve Eq. (A26) coupled
to Eqs. (A25) and (A27), but instead we prescribe |ψ1(t)〉R
externally in some way, while keeping in mind that the
requirements (A24) must be maintained. Suppose then that
one propagates C(t) and |�̃2(t)〉R according to the coupled
differential Eqs. (A25) and (A27), which contain the just men-
tioned external choice of |ψ1(t)〉R . Importantly, it turns out that
even under such circumstances the norm of the corresponding
dynamical state vector remains unity at all times, meaning that
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the population of the first channel is still |C(t)|2. Indeed, let
us take the self-overlap S(t) = C∗(t)C(t)R〈ψ1(t)|ψ1(t)〉R +
R〈�̃2(t)|�̃2(t)〉R and calculate its time derivative. It holds

Ṡ(t)

= Ċ∗(t)C(t)R〈ψ1(t)|ψ1(t)〉R + C∗(t)Ċ(t)R〈ψ1(t)|ψ1(t)〉R
+C∗(t)C(t)R〈ψ̇1(t)|ψ1(t)〉R + C∗(t)C(t)R〈ψ1(t)|ψ̇1(t)〉R
+ R〈 ˙̃�2(t)|�̃2(t)〉R + R〈�̃2(t)| ˙̃�2(t)〉R. (A28)

The second line of Eq. (28) vanishes due to property (A24),
whereas the remaining terms cancel each other after a substitu-
tion is made from Eqs. (A25) and (A27) for the involved time
derivatives. Note in passing that the issue of initial conditions
is completely immaterial here.

From now on we shall adopt the following strategy. We shall
identify |ψ1(t)〉R with the vacuum state |{0}〉R [this choice
satisfies automatically the conditions (A24)] and search for
C(t) and |�̃2(t)〉R under such a restriction. In other words,
we shall approximate the exact solution of the initial value
problems (A20) and (A21) by an ansatz(

|�̃1(t)〉R
|�̃2(t)〉R

)
=
(

C(t)|{0}〉R
|�̃2(t)〉R

)
. (A29)

Here, the time evolution of C(t) and |�̃2(t)〉R is governed by
coupled Eqs. (A25) and (A27), with the initial conditions

C(tinit) = 1, |�̃2(tinit)〉R = |∅〉R. (A30)

As already discussed, the approximative solution (A29) re-
mains unit normalized in the course of time. It is not hard
to trace out our motivation behind an ansatz (A29). As long
as the much more crude SC approximation (A22) is valid,
our solution of the problems (A25), (A27), and (A30) must
provide C(t) ≈ 1 and |�̃2(t)〉R ≈ |∅〉R . The breakdown of
the SC approximation takes place whenever this ceases to
be true. Hence, an ansatz (A29) enables us to strictly falsify
the SC approach in a nonperturbative manner. Note that we
do not claim that our aforementioned ansatz (A29) always
represents a good approximation to the exact solution in
the case when the SC approach proves to be inadequate.
We do claim, however, that an observation of C(t) 	≈ 1 and
|�̃2(t)〉R 	≈ |∅〉R implies the breakdown of the SC approxima-
tion. In passing we note that, as long as the SC approach
is approximately valid, an identification |ψ1(t)〉R = |{0}〉R
represents the leading order of the exact solution |ψ1(t)〉R .
Using this leading-order approximation in an ansatz (A29)
one should be able to approximate well the leading order of
the exact solution |�̃2(t)〉R . The c-number factor C(t) must be,
in any approximative treatment, necessarily time propagated
as well to account for the overall norm conservation and for the
dynamical phase. These considerations show that our ansatz
(A29) is rather well physically motivated.

After an ansatz (A29) is combined with the time evolution
Eqs. (A25) and (A27) one gets

ih̄
d

dt
C(t) = R〈{0}|h(−)

12 (t)|�̃2(t)〉R, (A31)

ih̄
d

dt
|�̃2(t)〉R = h22(t)|�̃2(t)〉R + C(t)h(+)

21 (t)|{0}〉R, (A32)

where h(−)
12 (t) = L−1/2∑

ν h
(−)ν
12 (t)aν = h(+)†

21 (t). Let us con-
sider now separately Eq. (A32). It turns out that an explicit
closed-form solution to this equation can be worked out.
Namely, the h22(t) term can be eliminated using the displace-
ment operator method (in a similar fashion as being done in
Sec. III and in A.2) and the remaining differential equation
can be easily integrated. After straightforward manipulations,
one arrives at the result

|�̃2(t)〉R = − i

h̄

∫ t

tinit

dτ e+(i/h̄)(F (τ )−F (t))C(τ )

× e−i
∑

ν′′ Im(βν′′ (t)β∗
ν′′ (τ ))L−1/2

∑
ν

h
(+)ν
21 (τ )

× (a†ν − β∗
ν (t) + β∗

ν (τ ))|{βν′(t) − βν′ (τ )}〉R,

(A33)

where the coherent-state amplitudes βν(t) = L−1/2bν(t) =
−2(αν(t) − αinc

ν ), the function F (t) = 1
2

∫ t

tinit
h̃22(τ )dτ , and

h̃22(t) = L−1/2∑
ν(h(+)ν

22 (t)β∗
ν (t) + h

(−)ν
22 (t)βν(t)). Formula

(A33) gives |�̃2(t)〉R in terms of the still unknown c-number
function {C(τ ), tinit � τ < t}. By substituting Eq. (A33) into
Eq. (31) one obtains, after some simple rearrangements,
a self-contained time evolution equation for C(t). It
holds

ih̄
d

dt
C(t) =

∫ t

tinit

K(t, τ )C(τ )dτ, (A34)

where the corresponding integration kernel can be written as
follows

K(t, τ ) = �(t, τ )H(t, τ ). (A35)

The two constituents of K(t, τ ) are given by explicit formulas

�(t, τ )

= i

h̄
e+(i/h̄)(F (τ )−F (t))

× exp

{
−1

2
L−1

∑
ν

(|bν(t)|2 + |bν(τ )|2 − 2b∗
ν (t)bν(τ ))

}
= �∗(τ, t), (A36)

H(t, τ ) =
(
L−1∑

ν1
h

(−)ν1
12 (t)

(
bν1 (t) − bν1 (τ )

))
×
(
L−1∑

ν2
h

(+)ν2
21 (τ )

(
b∗

ν2
(t) − b∗

ν2
(τ )

))
−L−1∑

ν h
(−)ν
12 (t)h(+)ν

21 (τ ) = H∗(τ, t), (A37)

and possess a well-defined continuum mode limit.
Importantly, an integro-differential Eq. (A34) for a single

c-number function C(t) lends itself much better to numerical
investigations than the original coupled-channel problem
(A20), which deals with an infinite number of degrees of
freedom of the quantum field. In other words, our ansatz
(A29) enables one to go beyond the SC approach in an
approximative yet physically well-motivated fashion, while
offering a tremendous computational advantage.

4. An explicit criterion of validity of the SC approach

In the present text we shall not pursue the numerical
solution of Eq. (A34). Instead, we prefer to simplify the
problem even further to be able to obtain physical insights
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in an analytic yet well-defined approximative manner. Our
first simplification is based upon a very realistic assumption
that the coupling between an atom and the radiation field
(as determined by the strength parameter fa , see A.1) is
weak in magnitude. This of course does not prevent the
strong driving of an atom by an intense enough laser field.
Provided that the value of fa is small, then also the c-number
radiation emitted from the atom is very weak in magnitude, as
follows from the Maxwell wave equation (A15). Now, observe
that the exponential factors in �(t, τ ) are proportional to the
amount of emitted radiation since bν(t) are proportional to fa .
Hence, for the hereafter considered case of weak emission,
the exponentials involved in �(t, τ ) can be ignored, to give
an approximation �(t, τ ) = (i/h̄). Moreover, the first line of
Eq. (A37) is proportional to b2

ν(t)f 2
a , contrary to the second

line, which is proportional only to f 2
a . This means that the

first line of Eq. (A37) can be again neglected as a well-defined
approximation. Having implemented these simplifications, the
kernel (A35) boils down into

K(t, τ ) = − i

h̄
L−1

∑
ν

h
(−)ν
12 (t)h(+)ν

21 (τ )

= (−i)

8π
f (t)f (τ )w12(t)w∗

12(τ )I (τ − t), (A38)

where

I (t) =
∫ +∞

−∞
ωk|D+

k |2e+iωkt dk. (A39)

Note that the above-made simplification has completely erased
the effect of h22(t) on C(t). This is not so surprising since the
major players changing the population of the first channel are
expected to be the off-diagonal matrix elements h12(t) and
h21(t).

So far we did not impose any restrictions regarding the
shape of the incoming c-number light pulse. Hereafter we shall
consider the situation when the atom interacts with a CW-like
laser pulse whose central frequency is ωL. If so, the factor
w12(t) can be conveniently expressed using the formalism
of the adiabatic Floquet theory [24], which was discussed in
Sec. VII of the main text. Namely,

w12(t) = e
+(i/h̄)

∫ t
tinit

(
EQE

1 (η(t ′))−EQE
2 (η(t ′))

)
dt ′

×
m=+∞∑
m=−∞

wm
12(η(t))e+imωLt . (A40)

Here, as we recall, η(t) characterizes the adiabatically varying
laser envelope and EQE

1,2 (η(t)) are the Floquet quasienergies
pertaining, respectively, to the two atomic dressed states.
To avoid confusion during our forthcoming argumentations,
one additional insight is worth noting in this context: Under
well-defined conditions, the adiabatic Floquet formulas (55),
(58), and (A40) are applicable without change even for the
case when the quasienergies EQE

1,2 (η(t)) come close to each

other, or even pass through a degeneracy point, EQE
1 (ηdeg) =

EQE
2 (ηdeg), at some time instant during the action of the

light pulse. Let us explain this claim more explicitly. The

adiabatic theorem for Floquet states [24] ensures that one
can get to an arbitrarily close proximity ηdeg − �η of ηdeg by
varying the laser envelope η(t) slowly enough. On the other
hand, the corresponding Floquet wave functions |ψ1,2(t, η)〉A
depend continuously upon η even in the vicinity of ηdeg and
remain always mutually orthonormal. As long as both wave
functions |ψ1,2(t, η)〉A remain almost constant throughout
the small interval η ∈ (ηdeg − �η, ηdeg + �η), a sudden yet
small change from ηdeg − �η to ηdeg (or even to ηdeg + �η)
will not induce any nonadiabatic transitions. Hence, an
applicability of the formulas (55), (58), and (A40) is not
compromised for the just-described arrangement of the light
pulse.

Expressions (A38) through (A40) represent certainly an
additional substantial simplification of the studied problem.
Nevertheless, the associated time evolution Eq. (A34) still
does not seem to admit a simple analytic solution. We resort
therefore to another (and last) approximative step, based upon
the following observation. Even when atoms are exposed to
very intense laser fields capable of manipulating significantly
with the quasienergies, it often happens that the wave functions
of the associated Floquet states are not much different from
their field-free counterparts. In such a case (which occurs also
for our numerical example, to be seen later in A.6), the zeroth
Fourier component w0

12(η(t)) in Eq. (A40) will be much larger
(and close to unity) than all the other m 	= 0 components
wm

12(η(t)). Under these circumstances one may simplify the
kernel (A38) into

K(t, τ )= (−i)

8π
f (t)f (τ )e+(i/h̄)

∫ t
τ

(
EQE

1 (η(t ′))−EQE
2 (η(t ′))

)
dt ′

I (τ − t).

(A41)

Now we are able to solve the problem (A34) analytically. It
turns out that the sought solution takes an explicit form

C(t) = C(t)e+i
∫ t
tinit

ω̃(t ′)dt ′
, (A42)

where the as yet unspecified quantities C(t) and ω̃(t) are
allowed to depend only adiabatically upon time.

The substitution of Eqs. (41) and (A42) into Eq. (A34)
reveals the internal consistency of the approach and leads
toward the condition

ω̃(t) = f 2(t)

8π

∫ +∞

−∞

ωk|D+
k |2

h̄
(
ω

QE
21 (η(t)) + ωk + ω̃(t)

)dk, (A43)

with h̄ω
QE
21 (η(t)) = EQE

2 (η(t)) − EQE
1 (η(t)). Quantity h̄ω̃(t) is

interpreted physically as an experimentally unobservable (yet
theoretically calculable) shift of the SC quasienergy EQE

1 (η(t)),
arising due to the quantized nature of the radiation field. A
moment of reflection reveals that the shift h̄ω̃(t) is small
compared to the atomic energy scale when fa is small
enough, and simultaneously, when the modal frequency cutoff
(controlled by parameter ζ ) is held finite. Before proceeding
further, let us point out that, for any finite values of fa and
h̄ω

QE
21 (η(t)), an infinitely large energy shift h̄ω̃(t) will be

encountered in the limit ζ → +∞ of an infinite modal cutoff.
In such a case one will need to remove infinities by applying an
appropriate renormalization technique, but we shall not delve
into these matters here.
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Having determined ω̃(t), the fastest route toward the popu-
lation |C(t)|2 = |C(t)|2 of the first channel is via the nor-
malization condition |C(t)|2 + R〈�̃2(t)|�̃2(t)〉R = 1. The self-
overlap R〈�̃2(t)|�̃2(t)〉R can be evaluated using Eq. (A33)
while incorporating the same simplifications as those em-
ployed in the present section A.4. One finds that

|C(t)|2 =
{

1 + f 2(t)

8πh̄

∫ +∞

−∞

ωk|D+
k |2

(
ω

QE
21 (η(t)) + ω̃(t) + ωk

)2 dk

}−1

.

(A44)

This is the most important outcome of the Appendix, demon-
strating how the population |C(t)|2 of the first channel
is affected by QED effects and how it depends upon the
quasienergy gap h̄ω

QE
21 (η(t)). We recall in this context that

|C(t)|2 = 1 within the SC approximation.
For the sake of clarity we note explicitly at this point that

our derivation leading to Eq. (A44) is, of course, applicable
also in the case when no laser light appears in the system, that
is, in the case of a two-level atom embedded in the quantum
vacuum. For such a situation, the additional simplifying
assumptions made previously in the present section A.4 (weak
emission, |w12(t)| = 1) are not approximations but merely
trivial statements. One arrives to the same result as Eq. (A44),
with h̄ω

QE
21 (η(t)) being replaced by the bare energy difference

(E2
A − E1

A).
Let us discuss now the physical contents of the just-derived

formula (A44). It is evident that the population |C(t)|2 remains
close to unity consistently with the SC prediction as long as the
QED corrected quasienergy gap h̄ω

QE
21 (η(t)) + h̄ω̃(t) is large

compared to f 2
a (the modal frequency cutoff is implicitly kept

finite here, see the discussion in the previous paragraphs).
A radically different picture emerges, however, when the gap
h̄ω

QE
21 (η(t)) + h̄ω̃(t) is made small enough (but not necessarily

zero) compared to f 2
a , either by choosing correspondingly the

parameters (E2
A − E1

A) and fa of the two-level atomic system
in the absence of laser light, or more importantly, by a suitable
tailoring of the frequency and intensity of the incoming CW
laser light. The breakdown of the SC approximation is implied
here by the fact that the term

f 2(t)

8πh̄

∫ +∞

−∞

ωk|D+
k |2

(
ω

QE
21 (η(t)) + ω̃(t) + ωk

)2 dk, (A45)

appearing in Eq. (A44) becomes divergent in the limit when
the gap h̄ω

QE
21 (η(t)) + h̄ω̃(t) is made to vanish (while keeping a

small nonzero value of fa and a constant finite modal frequency
cutoff). This behavior then forces the population (A44) to
approach zero, in a sharp deviation from the SC prediction.
Whenever the population |C(t)|2 differs significantly from
unity, the dynamical quantum state vector of the whole system
“atom and quantum field” cannot be accurately expressed
as a direct product of a well-defined atomic state and a
well-defined field state, contrary to the conceptual basis behind
the SC description. Instead, the atomic and the field degrees of
freedom become very strongly entangled due to QED effects.

The physical intuition suggests that the breakdown of
the SC approach should be expected as soon as the gap
h̄ω

QE
21 (η(t)) + h̄ω̃(t) is made smaller than the spontaneous

emission linewidth of the upper atomic level. We shall,
however, not further examine this plausible hypothesis within
the present article.

For the sake of completeness and clarity, we note in passing
that the previously referred to singular situation

h̄ω
QE
21 (η(t)) + h̄ω̃(t) = 0, (A46)

is perfectly consistent with Eq. (A43). Indeed, to satisfy
Eq. (A46) one needs only to choose ω

QE
21 (η(t)) = (−f 2(t)/

(8πh̄))
∫ +∞
−∞ |D+

k |2dk = ((−f 2
a )/(8πh̄))

√
2πζ . The corre-

sponding frequency shift comes out to be then ω̃(t) =
−ω

QE
21 (η(t)) exactly as was stated by Eq. (A46). Note, however,

that the required value of ω
QE
21 (η(t)) is negative and refers thus

to the light intensity for which the quasienergies have already
passed through an intersection point. The discussion made
after Eq. (A40) shows that the just-mentioned fact does not
represent a serious obstacle for our argumentation.

5. An impact of QED effects on the emission of radiation

To complete our theoretical analysis, let us explore how
the previously discussed breakdown of the SC approximation
affects the emission of radiation from the atom. Formulated
mathematically, we are interested in calculating the quantum
mechanical expectation value of the electric field operator
E(x, t) over the dynamical state vector (A29). That is,

EQED(x, t) = R〈�̃2(t)|E(x, t)|�̃2(t)〉R. (A47)

This quantity represents the sought QED correction of the
SC result EL(x, t). In principle one may evaluate EQED(x, t)
directly by substituting the formula (A33). We shall, however,
not undertake such a direct yet tediously looking route. Instead,
we proceed in a much more elegant and insightful fashion.

Namely, we shall exploit the fact that the total electric field
ETOT(x, t) = EL(x, t) + EQED(x, t) corresponds to the quan-
tum mechanical expectation value of the Heisenberg picture
electric field operator EH

R (x, t). Straightforward manipulations
starting from the formulas (A1) through (A6) reveal that
the dynamical time evolution of EH

R (x, t) is governed by an
operator equation of motion

∂2

∂x2
EH

R (x, t) − 1

c2

∂2

∂t2
EH

R (x, t)

= −f (t)wH (t)

2

∂2

∂x2

(√
ζ/πe−ζx2)

. (A48)

Symbol wH (t) stands here, of course, for the Heisenberg
picture counterpart of an operator w, which was introduced
previously in Eq. (A6). Within the framework of the model
problem considered in the present Appendix, the result
in Eq. (A48) constitutes an exact nonapproximative QED
counterpart of the SC Maxwell wave Eq. (A15). By taking the
quantum expectation value over both sides of Eq. (A48) one
finds that the sought total electric field ETOT(x, t) = 〈EH

R (x, t)〉
obeys the Maxwell wave equation

∂2

∂x2
ETOT(x, t) − 1

c2

∂2

∂t2
ETOT(x, t)

= −f (t)〈wH (t)〉
2

∂2

∂x2

(√
ζ/πe−ζx2)

. (A49)
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MILAN ŠINDELKA PHYSICAL REVIEW A 81, 033833 (2010)

This equation involves only c-numbers and should be con-
fronted again versus its SC approximation (A15).

Importantly, the only difference between the wave equa-
tions (A15) and (A49) consists in the fact that 〈wH (t)〉 	=
w11(t). It is an easy matter to explicitly translate 〈wH (t)〉 into
the Schrödinger picture formalism developed above in A.1
through A.4. One has

〈wH (t)〉 = |C(t)|2w11(t) + w22(t)R〈�̃2(t)|�̃2(t)〉R
+C∗(t)w12(t)R〈{0}|�̃2(t)〉R
+C(t)w21(t)R〈�̃2(t)|{0}〉R. (A50)

Using formula (A33) one can verify immediately that the over-
lap matrix element R〈{0}|�̃2(t)〉R is proportional to bν(t)fa .
Correspondingly, at least in the weak emission regime, which
we chose to follow at the beginning of A.4, the second line
contribution to Eq. (A50) turns out to be negligible compared
to the first line. Thus, to a good approximation, we may rewrite
Eq. (A50) just into

〈wH (t)〉 = |C(t)|2w11(t) + (1 − |C(t)|2)w22(t), (A51)

with the normalization condition R〈�̃2(t)|�̃2(t)〉R = 1 −
|C(t)|2 being incorporated along the way. In addition, for our
two-level atomic system we have w22(t) = −w11(t), as already
pointed out in A.2 after Eq. (A12). One arrives therefore toward
a very simple final outcome

〈wH (t)〉 = (2|C(t)|2 − 1)w11(t). (A52)

Returning back to a confrontation between the two wave
equations (A15) and (A49), we may conclude now that the
radiation emitted from the atomic source is scaled by factor

Q(t) = (2|C(t)|2 − 1), (A53)

relatively to the prediction of the SC theory. This is the second
most important result of the present Appendix.

The just-derived QED scaling factor (A53) reduces, of
course, to 1 within the SC approximation of |C(t)|2 = 1.
However, in the preceding section A.4 we demonstrated
that |C(t)|2 may actually differ very significantly from 1 for
certain well-defined and attainable conditions. Under these
conditions, the scaling factor Q(t) differs very significantly
from its SC approximation, showing a pronounced impact of
QED effects on the experimentally measurable emitted field.
Note, for example, that the emission is totally suppressed for
the case of |C(t)|2 = 1/2.

One may anticipate that the situation will be even more
interesting for the case of a multilevel atom, where the time
dependencies of the dipole functions are not constrained
via the property w22(t) = −w11(t). It seems likely that an
analog of Eq. (A51) applies also in this more general system,
with the corresponding dipole (or the electric current) being
expressed as a weighted superposition over differently looking
SC contributions. If so, the emitted radiation ETOT(x, t) is also
given as such a weighted superposition. Accordingly, QED
effects are expected to have a pronounced impact on ETOT(x, t)
whenever a near degeneracy in quasienergies occurs.

6. An illustrative numerical example

Finally, let us illustrate the theoretical results of this
Appendix by a simple numerical calculation. As already

pointed out before, a two-level system can be realized in
practice by the two lowest-energy eigenstates of a quantum
particle moving in a double well potential. The height
of an intermediate potential well controls here the energy
splitting h̄ωA

21 = (E2
A − E1

A), whereas the shape of a spatial
extension of the two potential minima determine the magni-
tude fa of the dipole coupling between the two mentioned
states.

Our particular choice of all the system parameters must
be made consistently with the theoretical assumptions made
previously. That is, we need to use a CW-like light pulse
leading to an intersection of Floquet quasienergies for
some laser field intensity. Moreover, we have to respect
the approximations introduced within section A.4 (weak
emission, |w12(t)| ≈ 1). As a matter of fact, the crucial
condition for these requirements to be satisfied turns out to be
ωL � ωA

21. Hereafter we shall adopt the following numerical
parameters

ωA
21 = (2πc/λA), λA = 20 000 nm,

i.e., ωA
21 = 0.002278 a.u., (A54)

fa = 1.0 a.u., ζ = 10−5 a.u., (A55)

ωL = (2πc/λL), λL = 800 nm,

I � 2.5 · 1014 W/cm2. (A56)

Symbol I stands here, of course, for the intensity of the
CW laser field, which is related to the electric field am-
plitude E0 by the well-known formula I [W/cm2] = 3.509 ·
1016 (E0[a.u.])2.

Figure 1 shows how the calculated quasienergies EQE
1,2 (η)

vary when the laser envelope is adiabatically switched on,
the quasienergy intersection is detected for Ideg ≈ 1.645 ·
1014 W/cm2.

In Fig. 2 we display the Fourier components of the induced
dipole w11(t), calculated for the maximum field intensity
I = 2.5 · 1014 W/cm2. We recall in this context that w11(t)
enters as a source into the Maxwell wave equation (A15)
and its frequency spectrum determines thereby the harmonics
emitted from the atom according to the SC approach. One
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FIG. 1. (Color online) Dependence of the Floquet quasienergies
EQE

1,2 (η) of a two-level atom upon the intensity I of the CW laser
wave. Laser light forces the dressed atomic energies to approach
each other and to intersect. Numerical parameters characterizing the
studied problem are given by Eqs. (A54) through (A56).
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FIG. 2. (Color online) Fourier components wm
11 of the induced

dipole function w11(t) entering into the Maxwell wave equation
(A15). Note that w−m

11 = w+m
11 .

can see that the magnitude of w11(t) is of the order O(10−2),
consistently with our previously introduced weak emission
assumption.

Next, in Fig. 3 we plot the Fourier components wm
12 defined

by the formula (A40). The used field intensity corresponds
again to the maximum value I = 2.5 · 1014 W/cm2. It is
evident that our approximation of |w12(t)| ≈ 1, made in A.4,
is very well justified.

Having discussed the SC results, let us present now an
outcome of our QED numerical calculation. Figure 4 is
obtained by direct application of the QED formula (A44) and
demonstrates explicitly how the population |C|2 of the first
atomic channel depends upon the dressed quasienergy differ-
ence �EQE = h̄(ωQE

21 (η) + ω̃). Degeneracy condition (A46)
for the QED corrected quasienergy gap �EQE is fulfilled when
one takes ω

QE
21 (η) = −0.000315 a.u., that is, for the laser field

intensity Icrit ≈ 1.72 · 1014 W/cm2. An inspection of Fig. 4
leads to the following important conclusions. For those laser
field intensities I < Icrit, which give significantly nonzero
values of �EQE, one finds that |C|2 > 0.99, validating thus
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I = 2.5 x 1014 W/cm2

FIG. 3. (Color online) Fourier components wm
12 of the quantity

w12(t) as defined by formula (A40). One can see that |w12(t)| equals
to unity to a good approximation.
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FIG. 4. (Color online) Population |C|2 of the first atomic channel
plotted as a function of the quasienergy difference �EQE. An abrupt
decrease of |C|2 is evident as the quasienergy gap �EQE approaches
zero, indicating the breakdown of SC theory. An impact of this
breakdown on the radiation emitted from the atom is documented
by Eqs. (A49) and (A52).

an application of the SC theory. On the other hand, however,
a very abrupt decrease of |C|2 is observed in Fig. 4 as �EQE

approaches zero. In such a situation, the SC approximation
of |C|2 = 1 becomes grossly inadequate, consistently with our
theoretical claims made in A.4. Moreover, the QED scaling
factor (A53) derived in A.5 becomes substantially different
from unity and hence the emission of radiation from the atom is
strongly influenced by QED effects, as predicted by the relevant
Eqs. (A49) and (A52). It is worth noting in this context that
an explicit appearance of the QED source term (A52) can be
recovered immediately through a combination of Figs. 2 and 4.

7. Summary

Summarizing the contents of this Appendix, we examined
an (in)adequacy of the SC approach using a simple model
of a two-level atom coupled to quantum radiation field. Our
derivation is based upon mathematically well-defined and
physically well-justifiable approximations and leads finally to
simple formulas (A44) and (A52), which serve as indicators
of nonseparability between the atomic and the field degrees
of freedom. The SC approach, based implicitly upon the
direct product separation between the atomic and the field
variables, is falsified by formula (A44) whenever an accidental
(near)degeneracy occurs between the two atomic energy levels
dressed by the c-number laser light and by the QED effects.
The breakdown of the SC theory impacts also significantly
on the radiation emitted from the atom, see Eqs. (A49) and
(A52) and the accompanying discussion. The analytical and
numerical findings of this Appendix agree completely with the
qualitative claims made in the main text.

In passing we note that the usual argumentation regarding
the “large number of photons in the laser beam” is never
encountered during the theoretical analysis made previously.
Indeed, (in)validity of the SC approach seems to be completely
unrelated to the number of photons, when the problem is
examined from the theoretical perspective adopted in the
present article.
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