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This article presents a unified kinetic formulation of partially coherent nonlinear optical waves propagating
in a noninstantaneous response Kerr medium. We derive a kinetic equation that combines the weak Langmuir
turbulence kinetic equation and a Vlasov-like equation within a general framework: It describes the evolution
of the spectrum of a random field that exhibits a quasistationary statistics in the presence of a noninstantaneous
nonlinear response. The kinetic equation sheds new light on the dynamics of partially coherent nonlinear waves
and allows for a qualitative interpretation of the interplay between the noninstantaneous nonlinearity and the
nonstationary statistics of the incoherent field. It is shown that the incoherent modulational instability of a
random nonlinear wave can be suppressed by the noninstantaneous nonlinear response. Moreover, incoherent
modulational instability can prevent the generation of spectral incoherent solitons.
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I. INTRODUCTION

The nonlinear propagation of coherent optical fields has
been explored in the framework of nonlinear optics [1,2],
while the linear propagation of incoherent fields has been
studied in the framework of statistical optics [3]. However,
these two fundamental fields of optics have been mostly
developed independently, so that a complete and satisfactory
understanding of statistical nonlinear optics is still lacking.

The dynamics of partially coherent nonlinear optical beams
has received a renewed interest since the first experimental
demonstration of incoherent optical solitons in both nonin-
stantaneous [4,5] and instantaneous [6] response nonlinear
media. The remarkable simplicity of experiments performed in
photorefractive media has allowed for a fruitful investigation of
the dynamics of incoherent nonlinear waves [2], as witnessed
by several important achievements, such as the modulational
instability (MI) of incoherent optical waves [7,8]. A notable
progress has been also accomplished by exploiting the analogy
with nonlinear plasma phenomena, such as the Landau
damping [9] or the bump-on-tail instability [10]. Actually, it is
in the context of plasma physics that random phase solitons and
incoherent MI were identified in the framework of pioneering
studies of Vlasov-like kinetic equations [11–14].

Several theoretical approaches have been developed to
provide a description of incoherent optical solitons [2]. The
most established methods are the mutual coherence function
approach [15], the self-consistent multimode theory [16],
the coherent density method [17], and the Wigner transform
approach [9]. It has been shown that these four methods
are in fact equivalent [18] and the choice of the most
suitable representation rather depends on the nature of the
physical problem to be investigated. As a matter of fact, these
theoretical approaches find their origins in Vlasov-like kinetic
equations, whose self-consistent mathematical structure is the
key property underlying the existence of incoherent soliton
solutions [9,11].

More recently, an incoherent optical soliton of a fundamen-
tally different nature has been identified in an optical fiber
system by exploiting the noninstantaneous character of the

nonlinear Raman effect [19,20]. This incoherent structure has
been called a spectral incoherent soliton because the optical
field does not exhibit a confinement in the spatiotemporal
domain, but rather exclusively in the frequency domain. More
specifically, the optical field exhibits a stationary statistics
(i.e., the field exhibits random fluctuations that are statistically
stationary in time), and the soliton behavior only manifests in
the spectral domain. The analysis has revealed that the kinetic
equation that describes spectral incoherent solitons has a rather
simple structure, which was considered in plasma physics
to study weak Langmuir turbulence or stimulated Compton
scattering [21–24].

Our aim in this article is to provide a unified kinetic
formulation of optical wave propagation in a one-dimensional
nonlinear medium whose noninstantaneous response cannot
be neglected. We derive a kinetic equation that combines the
weak Langmuir turbulence kinetic equation and a Vlasov-like
equation within a general framework; that is, it describes the
propagation of an optical field that exhibits a quasistationary
statistics in the presence of a noninstantaneous nonlinear
response. The analysis is based on a separation of scales
technique which is valid when the characteristic time of
the random fluctuations of the field is much smaller than the
characteristic time of variations of the averaged power of the
field. The kinetic equation that we obtain sheds new light on
the understanding of the dynamics of partially coherent nonlin-
ear waves. It allows us to interpret qualitatively some remark-
able results obtained by solving numerically the generalized
nonlinear Schrödinger (NLS) equation. We show in particular
that the incoherent MI described by the Vlasov-like term can be
suppressed by the spectral red-shift induced by the Langmuir-
like term. Reciprocally, the process of incoherent MI can
prevent the generation of spectral incoherent Langmuir-like
solitons. We show in this way that the dynamics induced by
the delayed nonlinear response and the nonstationary statistics
cannot be studied separately in general and that their interplay
can lead to unexpected dynamical behaviors of incoherent
nonlinear waves.

We remark that the weak turbulence Vlasov-Langmuir-like
kinetic equation is formally reversible, a feature which is
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consistent with the fact that it conserves the nonequilibrium
entropy. Accordingly, this kinetic equation does not describe
the process of irreversible evolution toward thermodynamic
equilibrium. As a matter of fact, the process of optical wave
thermalization [20,25–27] is usually described in the theo-
retical framework of the wave turbulence theory [28], whose
kinetic equation was originally derived by Hasselmann [29].
This theory implicitly assumes that the random field exhibits
a stationary or homogeneous statistics. It turns out that the
causality condition inherent to the delayed nonlinear response
and, on the other hand, the nonstationary statistics of the field
both prevent the process of optical wave thermalization from
taking place.

Let us note that this work can also find applications in the
context of supercontinuum (SC) generation in photonic crystal
fibers [30], a process which is known to be characterized by
a dramatic spectral broadening of the optical field during its
propagation. The interpretation of the mechanisms underlying
SC generation, although generally well understood, constitutes
a difficult problem due to the multitude of nonlinear effects
involved. We note in this respect that a kinetic description
of SC generation has recently been formulated [26], and,
in particular, Langmuir-like spectral incoherent solitons have
been experimentally identified in the SC generation process
[20].

II. MODEL EQUATION

Let us consider the NLS equation governing the evolution
of an optical field ψ(z, t) that propagates in a Kerr medium
characterized by a nonlinear response function χ (t):

i∂zψ = −β∂ttψ + γψ

∫ +∞

−∞
χ (θ ) |ψ |2(z, t − θ ) dθ. (1)

As usual in optics, the distance z of propagation in the
nonlinear medium plays the role of an evolution variable for
the NLS Eq. (1), while t measures the time in a reference frame
moving at the group velocity of the field [1,2]. The parameter
γ denotes the nonlinear Kerr coefficient and β = 1

2∂2k/∂ω2 is
the dispersion parameter, k being the wave vector modulus [2].
The linear dispersion relation of the field reads k(ω) = βω2.

For the sake of generality, we consider in the following a
response function that can be decomposed into the sum of an
instantaneous and a delayed contribution,

χ (t) = (1 − fR)δ(t) + fRR(t). (2)

The coefficient fR ∈ [0, 1] expresses the ratio between the
two contributions. The function R(t) is normalized in such a
way that

∫
R(t)dt = 1 (so that we have

∫
χ (t)dt = 1 whatever

fR is) and the causality condition imposes R(t) = 0 for t < 0.
According to the linear response theory, the causality condition
imposes restrictions on the Fourier transform of the response
function

R̃(ω) =
∫

R(t) exp(−iωt)dt.

Because of the causality of R(t), the function R̃(ω) is analytic
in the lower half-plane Im(ω) < 0, so that the real and imag-
inary parts of R̃(ω) = R̃r(ω) + iR̃i(ω) turn out to be related
by the Kramers-Krönig relations, R̃r(ω) = − 1

π
P

∫
R̃i(ω′)
ω′−ω

dω′

and R̃i(ω) = 1
π
P

∫
R̃r(ω′)
ω′−ω

dω′, where P denotes the principal
Cauchy value [1,31]. We recall that R̃r(ω) is an even function,
while R̃i(ω) is an odd function. The decomposition (2) finds
a direct application in optical fiber systems, which are known
to exhibit both an instantaneous electronic contribution and
a noninstantaneous molecular Raman contribution [2]. Note
however that the model (1) only describes the forward Raman
scattering effect, but neglects the Raman backscattering. This
assumption is justified in the so-called “pulsed regime,” in
which the considered optical pulses are typically shorter than
a nanosecond [2]. In this regime the short duration of the
pulse prevents a significant amplification of the backscattered
wave. In other terms, the backward Raman effect does not
have sufficient time to enter the stimulated regime and its
influence is therefore negligible. Furthermore, we remark that
the model (1) has a form analogous to the so-called “Zakharov
equations” used to describe Langmuir waves in the context of
plasma physics [32]. In the limit of a narrow resonance, one
recovers the stimulated Brillouin scattering effect, in which
the electric field is coupled to an ion-sound wave equation.
This collective and nonlocal wave-like response cannot be
described by the “local” response function R(t) considered in
Eq. (1). Conversely, in the opposite limit of a broad resonance,
one has the so-called “induced scattering on ions,” in which
Langmuir waves play a role analogous to Raman molecular
vibrations in the context of nonlinear optics. We also note that
the NLS Eq. (1) for fR > 0 only conserves the total power of
the field

N =
∫

|ψ |2 dt. (3)

The evolution of the random field is characterized by
the nonlinear length Lnl = 1/(γ 〈|ψ |2〉) and by the linear
dispersion length Ld = t2

c /β, where tc is the coherence time
of the field and 〈|ψ |2〉 is the typical averaged power. In
the following we consider the highly incoherent regime
of interaction, ρ = Ld/Lnl � 1, where the rapid temporal
fluctuations of the field make linear effects dominant with
respect to nonlinear effects.

III. DERIVATION OF THE WEAK TURBULENCE
VLASOV-LANGMUIR-LIKE KINETIC EQUATION

We follow the usual procedure to derive an equation
describing the evolution of the autocorrelation function
C(z, t1, t2) = 〈ψ(z, t1)ψ∗(z, t2)〉,

i∂zC = β
(
∂2
t2

− ∂2
t1

)
C + γ

∫
χ (θ )[〈ψ(t1)ψ∗(t2)ψ(t1 − θ )

×ψ∗(t1 − θ )〉 − 〈ψ(t1)ψ∗(t2)ψ(t2 − θ )ψ∗(t2 − θ )〉],
(4)

where we omitted to write the z label in the integrand.
Because of the nonlinear character of the NLS equation,
the evolution of the second-order moment of the field
depends on the fourth-order moment. In the same way,
the equation for the fourth-order moment depends on the
sixth-order moment, and so on. A simple way to achieve
a closure of the infinite hierarchy of moment equations
is to assume that the field has Gaussian statistics. This
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approximation is justified in the weakly nonlinear regime,
ρ = Ld/Lnl � 1 [12,21]. Under these conditions, one can
exploit the property of factorizability of moments of Gaussian
fields, for example, 〈ψ(t1)ψ∗(t2)ψ(t1 − θ )ψ∗(t1 − θ )〉 =
C(t1, t2)C(t1 − θ, t1 − θ ) + C(t1, t1 − θ )C(t1 − θ, t2).

Introducing the change of variables t = (t1 + t2)/2 and τ =
t1 − t2, we obtain a closed equation for the evolution of the
second-order moment

B(z, t, τ ) = C(z, t + τ/2, t − τ/2)

= 〈ψ(z, t + τ/2)ψ∗(z, t − τ/2)〉
that has the form

i∂zB(t, τ ) = −2β∂2
tτB(t, τ ) + γP (t, τ ) + γQ(t, τ ), (5)

where we have omitted the z label and we have denoted

P (t, τ ) = B(t, τ )
∫

χ (θ )[N (t − θ + τ/2)

−N (t − θ − τ/2)]dθ, (6)

Q(t, τ ) =
∫

χ (θ )[B(t − θ/2 + τ/2, θ )B(t − θ/2, τ − θ )

−B(t − θ/2, τ + θ )B(t − θ/2 − τ/2,−θ )]dθ,

(7)

and

N (z, t) ≡ B(z, t, 0) = 〈|ψ(z, t)|2〉 (8)

denotes the averaged power of the field, which depends on time
t because the statistics of the field is a priori nonstationary.

On the one hand we can remark that in the limit of an
instantaneous response, that is, fR = 0, we have P = Q and
Eqs. (5)–(7) recover the well-known equation for the mutual
coherence function [15]:

i∂zB(t, τ ) = −2β∂2
tτB(t, τ ) + 2γB(t, τ )

× [N (t + τ/2) − N (t − τ/2)]. (9)

Under the assumption of a quasistationary statistics, N (t +
τ/2) − N (t − τ/2) 	 τ∂tN (t), a Fourier transform of Eq. (9)
leads to the Vlasov-like kinetic equation. Note that there is a
factor 2 in front of the nonlinear term in Eq. (9), a feature that
is discussed in Sec. IV D (see also Ref. [8]).

On the other hand, in the limit of a stationary statistics, the
instantaneous contribution of the nonlinear response no longer
contributes to the kinetic equation (P = 0), and Eqs. (5)–(7)
can be reduced to

i∂zB(τ ) = γfR

∫
R(θ )[B(θ )B(τ − θ ) − B∗(θ )B(τ + θ )]dθ,

(10)

where the autocorrelation function B only depends on the
time lag τ . A Fourier transform of Eq. (10) readily gives
the weak Langmuir turbulence kinetic equation. Our aim
in the following is to derive a kinetic equation that generalizes
the weak Langmuir turbulence equation and the Vlasov-like
kinetic equation.

Equations (5)–(7) are quite involved. To provide an insight
into the physics of Eqs. (5)–(7), we shall assume that the
optical field exhibits initially a quasistationary statistics. We

introduce the small parameter ε, which is the ratio between
the coherence time of the initial field (i.e., the time scale of
the random fluctuations) and the time scale of variation of the
power of the field (i.e., the duration of the incoherent pulse),
ε = tc/tp. The autocorrelation function at z = 0 can then be
written in the form

B(z = 0, t, τ ) = B(0)(z = 0, εt, τ )

and we look for the solution of Eq. (5) in the form

B(z, t, τ ) = B(0)(εz, εt, τ ) + εB(1)(εz, εt, τ ) + · · · . (11)

The fact that evolution variable is scaled as εz follows from
the forthcoming analysis, in which it is shown that effects
of order one can be observed for propagation distances z

of the order of ε−1. It turns out that different regimes can
be obtained, depending on the ratio fR between the delayed
and the instantaneous contributions to the nonlinear response
function χ (t). The most interesting regime happens when fR

is of the order of ε, since then the two contributions are of the
same order in the kinetic equation. We therefore denote

fR = εfR0. (12)

We substitute the ansatz (11) into (5) and collect the terms with
the same powers in ε. It proves convenient to write the kinetic
equation for the local spectrum of the field, defined as a Fourier
(Wigner-like) transform of the autocorrelation function,

n(0)
ω (Z, T ) =

∫
B(0)(Z, T , τ ) exp(−iωτ )dτ.

In the Appendix we show that n(0)
ω (Z, T ) is ruled by the follow-

ing weak turbulence Vlasov-Langmuir-like kinetic equation:

∂Zn(0)
ω (Z, T ) + ∂ωκ (0)

ω (Z, T )∂T n(0)
ω (Z, T )

− ∂T κ (0)
ω (Z, T )∂ωn(0)

ω (Z, T )

= γfR0

π
n(0)

ω (Z, T )
∫

R̃i(ω − ω′)n(0)
ω′ (Z, T )dω′. (13)

The generalized dispersion relation reads

κ (0)
ω (Z, T ) = k(ω) + V (0)(Z, T ), (14)

with the effective potential

V (0)(Z, T ) = γ

π

∫
n

(0)
ω′ (Z, T )dω′. (15)

Let us briefly address the degenerate cases in which fR is
not of the form (12):

If fR is smaller than (12), that is, fR = εpfR0 with p > 1,
then the collision term of the right side of Eq. (13) vanishes
and we recover the Vlasov limit. This means that, in the first-
order approximation in ε, the noninstantaneous character of
the nonlinearity does not affect the evolution of the incoherent
wave.

If fR is larger than (12), that is, fR = εpfR0 with p < 1,
then the collision term of the right side is dominant and we
recover the weak Langmuir turbulence kinetic equation; that
is, the nonstationary statistics does not affect the dynamics of
the incoherent field. The “Vlasov” and “Langmuir” limits of
Eq. (13) are discussed in Sec. IV.
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In the particular case (12), if we push the expansion to the
second order in ε and consider

n(ε)
ω (Z, T ) =

∫
[B(0)(Z, T , τ ) + εB(1)(Z, T , τ )] exp(−iωτ )dτ,

we obtain the following generalized Vlasov-Langmuir-like
kinetic equation for n(ε)

ω (Z, T ) (see the Appendix):

∂Zn(ε)
ω (Z, T ) + ∂ωκ (ε)

ω (Z, T )∂T n(ε)
ω (Z, T )

− ∂T κ (ε)
ω (Z, T )∂ωn(ε)

ω (Z, T )

= γfR0

π
n(ε)

ω (Z, T )
∫

R̃i(ω − ω′)n(ε)
ω′ (Z, T )dω′, (16)

with the effective dispersion relation and the effective potential

κ (ε)
ω (Z, T ) = k(ω) + V (ε)

ω (Z, T ), (17)

V (ε)
ω (Z, T ) = γ (2 − fR0ε)

2π

∫
n

(ε)
ω′ (Z, T )dω′

+ εγfR0

2π

∫
R̃r(ω − ω′)n(ε)

ω′ (Z, T )dω′. (18)

Let us remark that the effective potential V (ε)
ω (Z, T ) now

involves a convolution with the real part of the Fourier
transform of the response function, R̃r(ω), so that V (ε)

ω (Z, T )
now depends on the frequency ω. Then contrarily to the
conventional Vlasov-like equation [see Eqs. (13)–(15)], the
effective dispersion relation κ (ε)

ω (Z, T ) no longer splits into
the sum of a t-dependent and a ω-dependent contribution.
Note that the kinetic equations (13) and (16) have the same
structure as the inhomogeneous weak Langmuir turbulence
kinetic equation discussed in Refs. [12,21]. Let us remark,
however, that the mean-field potential Vω(z, t) involved in
the dispersion relation considered in Refs. [12,21] differs
substantially from the mean-field potentials obtained here.

IV. PROPERTIES OF THE VLASOV-LANGMUIR
KINETIC EQUATION

A. Vlasov limit

As discussed previously, when the delayed response of the
nonlinearity is not relevant, the kinetic equation (13) recovers
the Vlasov-like equation,

∂znω(z, t) + ∂ωκω(z, t)∂tnω(z, t)−∂tκω(z, t)∂ωnω(z, t) = 0,

(19)

with the generalized dispersion relation

κω(t) = k(ω) + 2γN (z, t), (20)

where we recall that N (z, t) = 1
2π

∫
nω(z, t)dω.

An important phenomenon described by Eq. (19) is the
MI of partially coherent waves. Incoherent MI has been the
subject of a recent detailed investigation in the context of
optical waves, from both the theoretical and the experimental
points of view [2,7]. In the following we briefly recall some
salient aspects of incoherent MI that will be used to analyze
the properties of the Vlasov-Langmuir kinetic Eqs. (13) and
(16) in Sec. V. In the temporal domain, an incoherent field
that exhibits a stationary statistics can become modulationally
unstable in the presence of anomalous dispersion, β < 0. Let

us recall that any statistical stationary distribution n0(ω) is a
solution of the Vlasov Eqs. (19) and (20), that is, ∂zn0(ω) = 0.
Modulational instability is thus studied by perturbing such
a z-invariant solution with small noise, nω(z, t) = n0(ω) +
δnω(z, t). An analytical expression of the incoherent MI gain
can be obtained under the assumption of an initial Lorentzian
spectrum [7,12],

n0(ω) = 2σN

σ 2 + ω2
,

where σ represents the characteristic spectral width of the
Lorentzian. Linearizing the Vlasov Eqs. (19) and (20) with
respect to δnω(z, t) yields the MI growth rate for a modulation
at the frequency α,

λ(α) = −2|βα|σ + 2|α|
√

γN |β|, (21)

in which we implicitly assume β < 0. Note that this expression
of the MI gain corresponds to the low-frequency expansion
of the corresponding gain derived from the equation for
the mutual coherence function B(z, t, τ ) [Eq. (9)], that is,
λB(α) = −2|βα|σ + |α|

√
4γN |β| − α2β2. This is consistent

with the fact that the Vlasov Eq. (19) corresponds to
the first-order correction of the nonstationary statistics of
Eq. (9). Accordingly, the Vlasov MI gain (21) only provides
the low-frequency slope of the whole gain curve λB(α), and
for this reason it does not exhibits a frequency cutoff; that is,
the cutoff frequency goes to infinity as the scaling parameter
ε = tc/tp → 0.

We also recall that, contrarily to the usual MI induced
by a coherent field, wave incoherence can suppress MI
[2,7,8,12,14]. The threshold for incoherent MI is usually
defined from the MI-gain slope at the origin, ∂αλ|α=0 > 0.
The Vlasov expression (21) thus correctly predicts the MI
threshold, that is, σ <

√
γN/|β|, which indicates that MI

is suppressed when the bandwidth of the spectrum becomes
comparable to the MI frequency. Let us note that these
expressions of incoherent MI gain and MI threshold slightly
differ from those usually reported in Ref. [7] for an “inertial”
nonlinearity, that is, a nonlinearity whose response time is
much larger than the coherence time of the optical field
(see Ref. [8]). This aspect is discussed in Sec. IV D.

B. Weak Langmuir turbulence limit

We have seen in Sec. III that when the nonstationarity of
the statistics is not relevant, Eq. (13) can be reduced to the
weak Langmuir turbulence kinetic equation

∂znω(z) = γfR0

π
nω(z)

∫
R̃i(ω − ω′)nω′(z)dω′. (22)

Several simplified forms of this kinetic equation have been
the subject of a detailed study in the literature. A differential
(“hydrodynamic”) approximation of the integrodifferential
equation (22) was derived for the first time by Kompaneets
[33]. This Compton Fokker-Planck equation has been sub-
sequently analyzed by several authors [34]. The complete
integral kinetic equation (22) may be derived from the Za-
kharov equations [32]; it can also be derived from the quantum
version of the Boltzmann-like kinetic equation describing the
nonlinear induced Compton scattering [35].
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A peculiar property of the weak Langmuir turbulence
equation (22) is that it admits solitary wave solutions [21–23].
This fact can be anticipated by remarking that, as a result of the
convolution product in Eq. (22), the spectral gain curve R̃i(ω)
amplifies the front of the spectrum at the expense of its trailing
edge, thus leading to a global red-shift of nω(z). The numerical
simulations of the NLS Eq. (1) and of the Langmuir-like
Eq. (22) reveal that, after a transient regime, the averaged
spectrum of the field self-organizes in the form of a solitary
wave, which propagates without distortion in the frequency
domain toward the low-frequency components [19,21–23].
Because the statistics of the field is stationary, the soliton
behavior manifests itself in the spectral domain, but not in the
temporal domain.

A spectral soliton can be generated in the presence of
a background, nω → n∞ > 0 as |ω| → ±∞ [21–23]. The
weak Langmuir turbulence Eq. (22) verifies the following
conservation relations:

∂z

[ ∫
ln

(
nω

n∞

)
dω

]
= 0,

∂z

[ ∫ (
nω

n∞
− 1

)
dω

]
= 0,

∂z

[ ∫
ω ln

(
nω

n∞

)
dω

]

=
[

γ

π

∫
ωR̃i(ω)dω

][ ∫ (
nω

n∞
− 1

)
dω

]
.

The first and second equations express the conservation of the
nonequilibrium entropy and of the total power of the field,
respectively. The third relation can be used to compute the
soliton velocity V . Indeed, if nω is a spectral soliton with
center frequency �(z), the third relation gives the constant
velocity V ≡ ∂z�(z) in terms of the constant profile:

V =
∫ (

nω

n∞
− 1

)
dω∫

ln
(

nω

n∞

)
dω

[
γ

π

∫
ωR̃i(ω)dω

]
. (23)

Note that ln(nω/n∞) 	 (nω/n∞ − 1) − 1
2 (nω/n∞ − 1)2 +

O[(nω/n∞ − 1)3]. Therefore, if the profile has a small
amplitude, Eq. (23) reduces to V = γ

π

∫
ωR̃i(ω)dω, which

corresponds to the Korteweg–de-Vries limit of the soliton
velocity [21]. Formula (23) also shows that the velocity
increases with the amplitude of the wave.

It is possible to compute the width and velocity of the
soliton given its peak amplitude nm in the regime nm � n∞.
This was done in Ref. [23] for the particular case where
the gain spectrum R̃i(ω) is the derivative of a Gaussian. In
the following we generalize the procedure of Ref. [23] for a
generic gain spectrum R̃i(ω). For this purpose, let us introduce
the antiderivative of the MI spectrum:

G(ω) = −
∫ ∞

ω

R̃i(ω
′)dω′. (24)

The gain spectrum R̃i(ω) is characterized by its typical gain
amplitude gi and its typical spectral width ωi. Regardless of the
details of the gain curve R̃i(ω), gi and ωi can be assessed by two

characteristic quantities, namely, the gain slope at the origin
∂ωR̃i(0) and the total amount of gain G(0) = − ∫ ∞

0 R̃i(ω)dω.
A dimensional analysis allows us to express gi and ωi in terms
of these two quantities:

gi = 1√
2

[−∂ωR̃i(0)]1/2

[
−

∫ ∞

0
R̃i(ω)dω

]1/2

,

(25)

ωi =
√

2

[−∫ ∞
0 R̃i(ω)dω

]1/2

[−∂ωR̃i(0)]1/2
.

With these definitions, the function G(ω) can be written in the
following normalized form

G(ω) = giωih
( ω

ωi

)
,

where the dimensionless function h(x) verifies h(0) = 1,
h′(0) = 0, and h′′(0) = −2. Proceeding as in [23], we find
that the profile of the soliton in the regime nm � n∞ is of the
form

ln

(
nω(z)

n∞

)
= ln

(
nm

n∞

)
h

(
ω − V z

ωi

)
,

(26)

nω(z) − n∞ = (nm − n∞) exp

[
− ln

(
nm

n∞

)
(ω − V z)2

ω2
i

]
,

where the velocity of the soliton is

V = − nm − n∞
ln3/2

(
nm

n∞

) γgiω
2
i√

π
, (27)

and its full width at half maximum is

ωsol = 2 ln1/2 2

ln1/2
(

nm

n∞

)ωi. (28)

This soliton solution is valid, in principle, for any gain
spectrum R̃i(ω). It generalizes the solution found in Ref. [23]
for the particular case where the gain spectrum R̃i(ω) is the
derivative of a Gaussian.

C. Reversibility of the Vlasov-Langmuir kinetic equation

The Vlasov-like equation and the weak Langmuir turbu-
lence equation both conserve the total power (quasiparticle
number) of the optical field, N = (2π )−1

∫ ∫
nω(z, t)dωdt .

These equations are also known to conserve the nonequilib-
rium entropy,

S = 1

2π

∫ ∫
ln[nω(z, t)]dωdt. (29)

Let us show that the Vlasov-Langmuir-like kinetic Eq. (13)
or (16) also conserves S. This is obvious for (13) since the
dispersion relation (14) for κ (0)

ω (t) splits into the sum of a
t-dependent and an ω-dependent contribution, as it occurs for
the Vlasov equation. However, this is not the case for the
generalized dispersion relation κ (ε)

ω (t) [Eq. (17)] associated to
the Vlasov-Langmuir Eq. (16). To show that Eq. (16) conserves

033831-5



JOSSELIN GARNIER AND ANTONIO PICOZZI PHYSICAL REVIEW A 81, 033831 (2010)

S, one can simply write

∂zS = 1

2π

∫ ∫
∂tκ∂ω ln(n)dω dt

− 1

2π

∫ ∫
∂ωκ∂t ln(n)dω dt. (30)

Integrating by parts the first (second) term with respect to t

(ω), the two terms cancel each other and ∂zS = 0.
The conservation of the nonequilibrium entropy (29) is

consistent with the fact that the Vlasov-Langmuir kinetic
Eqs. (13) and (16) are formally reversible; that is, they are
invariant under the transformation (z, ω, t) → (−z,−ω, t).
Note that the requirement of the sign inversion in ω can be
understood by analogy with kinetic gas theory, where time
reversal needs the inversion of the velocities of the particles,
(t, k, x) → (−t,−k, x). Accordingly, the Vlasov-Langmuir
kinetic Eq. (13) or (16) does not describe an irreversible
evolution of the optical field to thermodynamic equilibrium.

The essential properties of optical wave thermalization
to equilibrium are described by the wave turbulence theory
[28]. The derivation of the wave turbulence kinetic equation
requires a second-order closure of the hierarchy of moments
equations, that is, a second-order perturbation expansion in
ρ = Ld/Lnl [28]. In this framework, one obtains a kinetic
equation whose collision term exhibits a H theorem of entropy
growth, dzS � 0, whereS refers to the nonequilibrium entropy
(29). This kinetic equation has a structure analogous to the
Boltzmann equation and, by analogy with kinetic gas theory,
it describes an irreversible evolution of the wave to the
thermodynamic equilibrium distribution, that is, the Rayleigh-
Jeans spectrum [28]. More precisely, the wave turbulence
theory assumes that the random field exhibits a stationary
(or homogeneous) statistics. But this is not sufficient, since
the noninstantaneous nonlinearity leads to the weak Langmuir
turbulence equation in the first-order approximation in ρ, and
as discussed previously, this equation does not describe wave
thermalization. Actually, it is the causality property inherent
to the nonlinear response function R(t) which prevents the
thermalization process to occur. This becomes apparent by
remarking that Eq. (1) is almost identical to the NLS equation
governing wave propagation in a nonlocal nonlinear medium
[2], provided one substitutes the response function with the
nonlocal potential, that is, i∂zψ = −α∂xxψ + ψ

∫ +∞
−∞ V (x −

x ′)|ψ |2(x ′)dx ′. However, nonlocal effects are not constrained
by the causality condition. Moreover, under the assumption
of spatial homogeneity, V (x) is an even function of x. Its
Fourier transform Ṽ (k) is thus purely real and the weak
Langmuir turbulence equation (22) reduces to the trivial
equation ∂zn(z, ω) = 0. Accordingly, the kinetic description
of a nonlocal interaction requires a second-order perturbation
expansion in ρ, and the corresponding kinetic equation exhibits
the usual H theorem of entropy growth, which describes the
irreversible thermalization process. This discussion reveals
that (in the first-order approximation in ρ), both the nonin-
stantaneous nonlinear response and the nonstationary statistics
prevent the thermalization of the nonlinear wave from taking
place.

D. The limit of an “inertial” nonlinearity

Let us finally discuss the limit of an “inertial” nonlinearity,
that is, the limit in which the response time of the nonlinearity
τR is much larger than the coherence time of the incoherent
field, tc � τR . In this limit, the convolution product into the
NLS Eq. (1) can be approximated by an averaged nonlinearity,∫

χ (θ ) |ψ |2(z, t − θ ) dθ 	 〈|ψ |2〉 = N (z, t). This means that
the nonlinear medium responds to the averaged intensity, but
not to the individual fluctuations (speckles) of the optical field.
The evolution of the field amplitude is thus governed by an
averaged NLS equation,

i∂zψ(t) = −β∂ttψ(t) + γN (t)ψ(t). (31)

Note that, because of the “inertial” character of the nonlin-
earity, Gaussian statistics is preserved under the nonlinear
evolution of the field [36]. It is important to underline that,
in contrast to the usual NLS equation, Eq. (1), the averaged
NLS equation, Eq. (31), does not lead to an infinite hierarchy of
moment equations. Indeed, the derivation of the second-order
moment equation from (31) does not require any additional
assumption on the nature of the statistics of the field. Following
the same procedure as that outlined at the beginning of
Sec. III, one can derive the following equation without any
approximation:

i∂zB(t, τ ) = −2β∂2
tτB(t, τ ) + γB(t, τ )

× [N (t + τ/2) − N (t − τ/2)]. (32)

We remark that, except for the factor 2 in front of the nonlinear
term, this equation is identical to that derived in the opposite
limit of an instantaneous nonlinearity, tc � τR , that is, the
limit fR = 0 [see Eq. (9)]. The corresponding kinetic equation
for an “inertial” nonlinearity is thus again the Vlasov Eq. (19)
without the factor 2 in the generalized dispersion relation (20),
that is κω(t) = k(ω) + γN (t). Accordingly, the value of the
MI growth rate is reduced by a factor ∼√

2 with respect to
the corresponding value of the instantaneous nonlinearity con-
sidered in Sec. IV A, a feature that was discussed in Ref. [8].
The limit of an “inertial” nonlinearity actually corresponds to
the limit usually considered experimentally in photorefractive
crystals, where the dynamics of spatial incoherent MI and
spatial incoherent solitons were investigated in detail [4,5,7].
Let us note in this respect that the Vlasov-Langmuir-like
kinetic equations (13) and (16) derived in the temporal domain
may be extended to account for the spatiotemporal coherence
properties of the optical field (see, e.g., [37]).

V. INTERPLAY OF THE VLASOV AND LANGMUIR
TERMS IN THE KINETIC EQUATION

In this section we see that a simple analysis of the
Vlasov-Langmuir-like equation derived in Sec. III provides
physical insight into the dynamics of partially coherent optical
waves ruled by the NLS Eq. (1). In particular, the process of
incoherent MI described by the Vlasov term can be highly
affected by the delayed nonlinear response described by
the Langmuir term. Reciprocally, the dynamics of spectral
incoherent solitons can be affected by incoherent MI. In the
following we illustrate these two aspects separately.
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A. Incoherent MI suppression by the noninstantaneous
nonlinear response

The existence of a noninstantaneous nonlinear response
can change the dynamics of incoherent MI in a significant
way. This fact can be anticipated by remarking that, con-
trarily to what happens for the Vlasov Eq. (19) (see Sec.
IV A), a statistically stationary (in time) distribution is no
longer a z-invariant solution of the Vlasov-Langmuir kinetic
Eq. (13) or (16), that is, ∂zn0(ω) �= 0. Indeed, let us refer
back to the incoherent MI analysis discussed in Sec. IV A,
in which the z-invariant solution is perturbed as nω(z, t) =
n0(ω) + δnω(z, t). Because of the presence of the weak
Langmuir turbulence collision term in the right-hand side of
Eq. (13), a statistical stationary spectrum is now governed
by the weak Langmuir turbulence equation, ∂zn0(z, ω) =
γ

π
n0(z, ω)

∫
R̃i(ω − ω′)n0(z, ω′)dω′. This indicates that, in the

first-order approximation in δn, the incoherent field is solely
governed by the weak Langmuir turbulence term and thus
exhibits a spectral red-shift instead of the expected incoherent
MI process. In other terms, incoherent MI can be suppressed
by the noninstantaneous nonlinear response.

We illustrate this unexpected conclusion by direct nu-
merical simulations of the NLS Eq. (1) in the anoma-
lous dispersion regime (β < 0). For concreteness, we
consider the detailed expression of the Raman re-
sponse function of silica optical fibers, R(t) = faha(t) +
fbhb(t), where ha(t) = τ1(τ−2

1 + τ−2
2 ) exp(−t/τ2) sin(t/τ1)

and hb(t) = (2τb − t) exp(−t/τb)/τ 2
b , with τ1 = 12 fs, τ2 =

32 fs, τb = 96 fs, and fb = 0.21 (fa + fb = 1) [2,38]. The
initial condition of the field refers to a Gaussian spectrum with
δ-correlated random spectral phases, that is, ψ(z = 0, t) has
mean zero and a stationary Gaussian statistics. The Gaussian
spectrum has been superposed to a small amplitude back-
ground white noise. In order to illustrate the MI suppression,
parameters have been chosen in such a way that the Raman
effect and the MI processes compete with each other. The
optimal MI frequency has thus been taken of the same order
as the maximum gain frequency of the Raman gain curve, that
is, ωMI ∼ ωi [see Eq. (25)]. Figure 1 reports the spectra of
the field in the presence of an instantaneous (a) and a delayed
(b) response function. This numerical simulation shows that
incoherent MI can be suppressed by the noninstantaneous
nonlinear response: Instead of the expected incoherent MI
process, we see in Fig. 1(b) that the spectrum experiences an
asymmetric deformation, which is characterized by an energy
transfer toward the low-frequency components. Such asym-
metry of the spectrum can be naturally ascribed to the spectral
red-shift induced by the Langmuir term of the kinetic Eq. (13).

B. Incoherent MI prevents spectral incoherent soliton
generation

One can wonder whether weak Langmuir turbulence
incoherent solitons could be affected by the incoherent MI
described by the Vlasov terms in the kinetic Eq. (13). To
analyze this aspect, we remark that the characteristic width
of a Langmuir incoherent soliton is of the same order as
the width of the spectral gain curve R̃i(ω), that is, ωsol ∼ ωi

[see Eq. (28)]. We can thus expect that the Vlasov terms will
not affect the generation of a spectral incoherent soliton when
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FIG. 1. (Color online) Spectrum of the field, |ψ̃ |2(z, ω) (in Log10

scale), obtained by integrating numerically the NLS Eq. (1) with
fR = 0 (a) and fR = 1 (b). Panel (a) refers to z = 1.6Lnl; panel (b)
refers to z = 12.5Lnl [τd = (|β|Lnl)1/2 = 11 fs]. The frequency ω is
in units of τ−1

d .

the optimal MI frequency is much smaller than the (Raman)
gain frequency, ωMI � ωi ∼ ωsol, since in this case the broad
spectrum of the field suppresses the MI (see Sec. IV A).
Conversely, when ωMI becomes greater than ωi, we can
anticipate that incoherent MI will prevent the generation of
the spectral incoherent soliton.

The numerical simulations of the NLS Eq. (1) confirm these
expectations. A suitable initial condition to generate a spectral
soliton is provided by Eq. (26). The corresponding initial spec-
trum of the field ψ̃(z = 0, ω) thus refers to the Gaussian (26),
in which we have added random spectral phases and a small-
amplitude white noise. The numerical results are reported in
Fig. 2, for ωMI/ωi 	 0.015 � 1 (a) and for ωMI ∼ 10ωi (b).
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FIG. 2. (Color online) Spectrum of the field, |ψ̃ |2(z, ω) (in Log10

scale), obtained by integrating numerically the NLS Eq. (1) in
the anomalous dispersion regime β < 0 (fR = 0.25). The initial
condition corresponds to Eq. (26). The spectrum of the field is plotted
at z = 25Lnl (a) (τd = 0.78 ps) and z = 1.7Lnl (b) (τd = 2.2 fs). The
frequency ω is in units of τ−1

d .
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Note that in practice one can go from configuration (a) to
configuration (b) by increasing the power of the optical field.
The numerical simulations reveal that, as expected, a spectral
incoherent soliton is generated in Fig. 2(a), whereas in Fig.
2(b) incoherent MI prevents the generation of the soliton.

VI. CONCLUSION

In summary, we have derived a kinetic equation describing
the propagation of a random field that exhibits a quasistation-
ary statistics in the presence of a noninstantaneous nonlinear
response. Note that, although the kinetic equation has been
derived in one-dimension and in the temporal domain, it can
easily be generalized to the spatiotemporal evolution of the
field. This unified kinetic formulation combines the previously
studied Vlasov-like and Langmuir-like approaches within a
general framework. While the Vlasov and Langmuir dynamics
have been usually studied separately, we have shown that their
interplay can lead to rather unexpected results: The generation
of spectral incoherent solitons can be prevented by incoherent
MI, and reciprocally, incoherent MI can be suppressed by
the weak Langmuir turbulence effect. A complete analysis of
the Vlasov-Langmuir kinetic equation still needs to be done.

In particular, it would be important to study the existence
of soliton solutions of the whole Vlasov-Langmuir kinetic
equations [Eqs. (13) and (16)], which would constitute a
nontrivial generalization of Vlasov-like solitons [11] and weak
Langmuir turbulence solitons [22]. This issue is presently
under consideration.

Given the universality of the NLS equation in physics, this
work can find applications in any system of random nonlinear
waves, such as water, matter, or plasma waves. In the latter
case, we can mention, for instance, the important issue of
inertial confinement fusion for which the coherence properties
of nonlinear waves are known to be essential for the ultimate
control of the confinement process [39].

APPENDIX: DERIVATION OF EQS. (13) AND (16)

In this appendix we compute the expansions up to the
second order in ε of the terms P and Q defined by (6) and (7)
when B has the two-scale form

B(t, τ ) = B0(εt, τ ) = 1

2π

∫
nω(εt)eiωτ dτ.

The Fourier transform of the term P defined by (6) gives

∫
P

(
T

ε
, τ

)
e−iωτ dτ =

∫ ∫
B0(T , τ )χ (θ )

[
B0

(
T − εθ + ετ

2
, 0

)
− B0

(
T − εθ − ετ

2
, 0

)]
e−iωτ dθdτ

= 1

(2π )2

∫ ∫
nω1 (T )χ (θ )

[
nω2

(
T − εθ + ετ

2

)
− nω2

(
T − εθ − ετ

2

)]
e−i(ω−ω1)τ dω1dω2dθdτ.

Remember that χ (θ ) = (1 − fR0ε)δ(θ ) + εfR0R(θ ). We decompose P = P1 + P2, where P1 is the contribu-
tion of the instantaneous nonlinear response and P2 is the contribution of the delayed nonlinear response.

The contribution of the instantaneous response is∫
P1

(
T

ε
, τ

)
e−iωτ dτ = (1 − fR0ε)

(2π )2

∫ ∫
nω1 (T )

[
nω2

(
T + ετ

2

)
− nω2

(
T − ετ

2

)]
e−i(ω−ω1)τ dω1dω2dτ.

By expanding in ε the difference inside the integral,∫
P1

(
T

ε
, τ

)
e−iωτ dτ = ε(1 − fR0ε)

(2π )2

∫ ∫
nω1 (T )∂T nω2 (T )τei(ω1−ω)τ dω1dω2dτ + O(ε3)

= − iε(1 − fR0ε)

(2π )2

∫ ∫
nω1 (T )∂T nω2 (T )∂ω1 [ei(ω1−ω)τ ]dω1dω2dτ + O(ε3).

By integrating by parts in ω1,∫
P1

(
T

ε
, τ

)
e−iωτ dτ = iε(1 − fR0ε)

(2π )2

∫ ∫
∂ω1nω1 (T )∂T nω2 (T )ei(ω1−ω)τ dω1dω2dτ + O(ε3).

The integration in τ gives the Dirac distribution δ(ω1 − ω) and finally we obtain∫
P1

(
T

ε
, τ

)
e−iωτ dτ = iε(1 − fR0ε)∂ωnω(T )∂T

[
1

2π

∫
nω′ (T )dω′

]
+ O(ε3).

We proceed in a similar way to compute the contribution of the delayed nonlinear response:∫
P2

(
T

ε
, τ

)
e−iωτ dτ = ε2fR0

(2π )2

∫ ∫
nω1 (T )R(θ )∂T nω2 (T )τei(ω1−ω)τ dω1dω2dθdτ + O(ε3)

= −ε2fR0

(2π )2

∫ ∫
nω1 (T )∂T nω2 (T )∂ω1 [ei(ω1−ω)τ ]dω1dω2dτ + O(ε3)

= ε2fR0

(2π )2

∫ ∫
∂ω1nω1 (T )∂T nω2 (T )ei(ω1−ω)τ dω1dω2dτ + O(ε3)

= iε2fR0∂ωnω(T )∂T

[
1

2π

∫
nω′ (T )dω′

]
+ O(ε3).
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The Fourier transform of the term Q defined by (7) gives∫
Q

(
T

ε
, τ

)
e−iωτ dτ = 1

(2π )2

∫ ∫
χ (θ )

[
nω1

(
T − εθ

2
+ ετ

2

)
nω2

(
T − εθ

2

)
eiω1θ+iω2(τ−θ)

−nω1

(
T − εθ

2
− ετ

2

)
nω2

(
T − εθ

2

)
e−iω1θ+iω2(τ+θ)

]
e−iωτ dω1dω2dθdτ.

We decompose Q = Q1 + Q2, where Q1 is the contribution of the instantaneous nonlinear response and Q2 is the contribution
of the delayed nonlinear response.∫

Q1

(
T

ε
, τ

)
e−iωτ dτ = (1 − fR0ε)

(2π )2

∫ ∫ [
nω1

(
T + ετ

2

)
− nω1

(
T − ετ

2

)]
nω2 (T )ei(ω2−ω)τ dω1dω2dτ

= ε(1 − fR0ε)

(2π )2

∫ ∫
∂T nω1 (T )nω2 (T )τei(ω2−ω)τ dω1dω2dτ + O(ε3)

= − iε(1 − fR0ε)

(2π )2

∫ ∫
∂T nω1 (T )nω2 (T )∂ω2 [ei(ω2−ω)τ ]dω1dω2dτ + O(ε3)

= iε(1 − fR0ε)

(2π )2

∫ ∫
∂T nω1 (T )∂ω2nω2 (T )ei(ω2−ω)τ dω1dω2dτ + O(ε3)

= iε(1 − fR0ε)∂ωnω(T )∂T

[
1

2π

∫
nω′ (T )dω′

]
+ O(ε3).

The contribution of the delayed nonlinear response has two nontrivial terms of order ε and ε2, respectively,∫
Q2

(
T

ε
, τ

)
e−iωτ dτ = ε

∫
Q2a

(
T

ε
, τ

)
e−iωτ dτ + ε2

∫
Q2b

(
T

ε
, τ

)
e−iωτ dτ + O(ε3),

∫
Q2a

(
T

ε
, τ

)
e−iωτ dτ = fR0

(2π )2

∫ ∫
R(θ )nω1 (T )nω2 (T )[ei(ω1−ω2)θ − ei(ω2−ω1)θ ]ei(ω2−ω)τ dω1dω2dθdτ

= fR0

2π

∫ ∫
R(θ )nω1 (T )nω(T )[ei(ω1−ω)θ − ei(ω−ω1)θ ]dω1dθ

= fR0

2π

∫
[R̃(ω − ω1) − R̃(ω1 − ω)]nω1 (T )nω(T )dω1

= fR0i

π

[∫
R̃i(ω − ω1)nω1 (T )dω1

]
nω(T ),

∫
Q2b

(
T

ε
, τ

)
e−iωτ dτ = fR0

2(2π )2

∫ ∫
R(θ )θ (ei(ω2−ω1)θ − ei(ω1−ω2)θ )∂T

[
nω1 (T )nω2 (T )

]
ei(ω2−ω)τ dω1dω2dθdτ

+ fR0

2(2π )2

∫ ∫
R(θ )(ei(ω2−ω1)θ + ei(ω1−ω2)θ )∂T nω1 (T )nω2 (T )τei(ω2−ω)τ dω1dω2dθdτ

= ifR0

2(2π )2

∫ ∫
R(θ )∂ω1 (ei(ω2−ω1)θ + ei(ω1−ω2)θ )∂T

[
nω1 (T )nω2 (T )

]
ei(ω2−ω)τ dω1dω2dθdτ

+ ifR0

2(2π )2

∫ ∫
R(θ )(ei(ω2−ω1)θ + ei(ω1−ω2)θ )∂T nω1 (T )nω2 (T )∂ω[ei(ω2−ω)τ ]dω1dω2dθdτ

= − ifR0

4π

∫ ∫
R(θ )(ei(ω−ω1)θ + ei(ω1−ω)θ )∂T

[
∂ω1nω1 (T )nω(T )

]
dω1dθ

+ ifR0

4π
∂ω

∫ ∫
R(θ )(ei(ω−ω1)θ + ei(ω1−ω)θ )∂T nω1 (T )nω(T )dω1dθ

= − ifR0

2π

∫
R̃r(ω − ω1)∂T

[
∂ω1nω1 (T )nω(T )

]
dω1 + ifR0

2π
∂ω

∫
R̃r(ω − ω1)∂T nω1 (T )nω(T )dω1

= − ifR0

2π

∫
∂ωR̃r(ω − ω1)∂T

[
nω1 (T )nω(T )

]
dω1 + ifR0

2π
∂ω

∫
R̃r(ω − ω1)∂T nω1 (T )nω(T )dω1

= −ifR0∂ω

[
1

2π

∫
R̃r(ω − ω1)nω1 (T )dω1

]
∂T nω(T )

+ ifR0∂T

[
1

2π

∫
R̃r(ω − ω1)nω1 (T )dω1

]
∂ωnω(T ).
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