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Controllable optical Bloch oscillation in planar graded optical waveguide arrays
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Optical Bloch oscillation is studied theoretically in planar graded optical waveguide arrays with nearest-
neighbor couplings. The gradient in the propagation constants can be achieved with the eletro-optical effect. We
identify a variety of normal modes (called gradons) in the waveguide arrays with the aid of a phase diagram.
Moreover, the localization properties of the normal modes are characterized and the transitions among these
modes are obtained from a picture of overlapping bands. The existence of Bloch oscillation and other oscillations
are confirmed by using the field-evolution analysis with various input Gaussian beams. From the results, we
obtain a correspondence between gradon localization and Bloch oscillation. This study can be extended to more
general waveguide arrays in higher dimensions and with further neighbor couplings. The results offer great
potential applications in controlling wave propagation by means of graded materials and graded systems, which
can be used to explore the tunability of light manipulation and applied to design suitable optical devices.
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I. INTRODUCTION

Light transferring and processing have become hot topics
in modern optics. Artificial materials (e.g., metamaterials [1],
photonic crystals [2,3], and waveguide arrays [4]) are used
in timely and important studies to manipulate light. Among
them, waveguide arrays are simple and promising candidates
for realizing the optical analog of electronic Bloch oscillation
(BO). BO is the oscillatory motion of a particle in a periodic
potential when a constant force is acting on it. The occurrence
of BO requires two conditions [5]: (i) periodic potential and
(ii) external force. The first condition can be achieved by
periodic structures, where Bragg reflection occurs. The second
condition can be fulfilled with an external electric field for
electronic BOs or linear potential for other BOs of different
natures (optical [6], acoustic [7], or matter waves [8]). For
optical BOs, optical waveguide arrays with a linear gradient
in the propagation constants have been proved to be ideal [6].
The gradient is either a temperature gradient in thermo-optical
polymer waveguide arrays [9] or a gradient in a width [10]
and/or refractive index [11]. Equivalent linear potential can
also be achieved via geometrical variation in waveguides
[12–14], for example, helical (deformed) waveguides [12] and
curved waveguide arrays [14]. Optical BOs have also been
observed in laterally confined structures [15]. The nonlinear
[10] and dissipative [16] effects of optical BOs in waveguide
arrays have been investigated. Discrete optical solitons have
been observed in nonlinear optical waveguide arrays [17].
In two-dimensional waveguide lattices, various types of
lattices [18–20], for example, square [18], hexagonal [20], or
general lattices [20], have been investigated for optical BOs.
Light evolution inside such waveguide arrays is found to be
completely determined by the conditions of the input field [19].
However, the correspondence between the dynamic evolution
and various input beams has not been fully investigated.
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In this work, we aim to address such a correspondence in
optical waveguide arrays with linearly varying propagation
constants.

We have discovered a peculiar kind of localized mode
called a gradon in graded elastic lattices whose force constant
or mass varies in space [21–25]. We studied gradon physics
in one-dimensional graded chains [21,22], two-dimensional
orthogonally graded square lattices [23], diagonally graded
square lattices [24], and diatomic lattices [25]. The body of
research shows that there are a variety of gradon modes and
transitions among these modes. Gradon modes have also been
identified in various systems, for example, plasmonic gradon
modes in graded plasmonic systems [26,27] and photonic
gradon modes in graded optical systems [6]. Furthermore,
we have discovered an obvious correspondence between
plasmonic gradon confinements and various beam oscillations
in graded plasmonic waveguides [28].

In this work, we study photonic gradon modes in planar
graded optical waveguide arrays (GOWAs). We aim to find
the correspondence between various oscillations and con-
finements of photonic gradon modes in such systems. The
eigenmodes are obtained by using an optical-quantum analog
method. Various gradon modes are distinguished through a
diagrammatic approach. This is based on the band overlapping
picture, which is a powerful tool for constructing a phase
diagram of a GOWA. The transitions between different local-
ized modes are analyzed through pseudodispersion relation
and density of states (DOS). The variety of oscillations in
GOWAs is explored using field-evolution analysis, which
shows the propagation of a discrete Gaussian beam along
the axis of waveguides. It is similar to the wave-packet
dynamic analysis used in the graded plasmonic waveguides
[28]. The correspondence between these oscillations and
gradon confinements can be determined. This study is not
only important in understanding the mechanism of BO and
non-Bloch oscillation but also useful in photonic applications
and engineering functionally graded materials.
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II. MODEL AND FORMULA

We consider planar GOWAs with a linearly varying
propagation constant which can be obtained by taking
advantage of the electro-optical effect [6]. As shown in
Fig. 1, the waveguide array takes a planar structure composed
of individual waveguides, in each of which light propa-
gates along the longitudinal axis of waveguide, that is, the
z direction. The waveguide is indexed by n (n = 1, 2, . . . , N).
The evanescent fields leaking from nearby waveguides are
coupled, leading to a collective supermode. The struc-
ture is thus quasi-two-dimensional and the supermodes
are laterally (or transversely) confined by the gradon
mechanism.

dielectric block

z

n

z

n

FIG. 1. (Color online) Schematic diagrams for the planar graded
optical waveguide arrays and the input Gaussian beam described
by Eq. (7), with the input transverse wave numbers (a) k0 = 0 and
(b) k0 �= 0. The light propagates along the axis of the waveguide, i.e.,
the z direction. The waveguide is labeled as n (n = 1, 2, . . . , N).
The graded propagation constant αn varies linearly with n. The
boundary conditions of the two cases are as follows: (a) k0 = 0. A
plane wave inputs at the z = 0 boundary. (b) k0 �= 0. The additional
optical path differences due to the dielectric blocks placed in
front of the input channels lead to the required phase differences
exp [−ik0(n − n0)] between the nth and n0th waveguide at the z = 0
boundary.

A. Normal-mode approach

According to the coupled-mode theory, the evolutionary
equation of modal amplitude an in the nth waveguide can be
scaled as [6](

i
d

dz
+ αn

)
an(z) + an+1(z) + an−1(z) = 0,

(1)
(n = 1, 2, . . . , N),

where α = �/C and z = CZ are normalized quantities. Here
� is the wave-number spacing between two waveguides, C

the linear coupling constant, and Z the propagation distance
of the beam along the axis of the waveguide. The solution of
eigenmodes has the form

am
n (z) = um

n eiβmz, (2)

where βm means the wave number of the supermode m and the
transverse mode profile is given by a superposition of the mode
amplitudes um

n of the individual waveguides. Substituting
Eq. (2) into Eq. (1), we have

βmum
n = αnum

n + um
n+1 + um

n−1. (3)

Equation (3) can be written in the matrix form

β|u〉 = H|u〉, (4)

where the Hamiltonian matrix H is defined as Hnn = αn and
Hn,n−1 = Hn,n+1 = 1. The column vector |u〉 and β denote the
eigenvectors and eigenvalues of H, respectively. In GOWA,
these eigenmodes are also called photonic gradon modes.

Using the preceding definition of Hamiltonian matrix H,
Eq. (1) can be written as a z-dependent equation:

−i
d

dz
|u〉 = H|u〉. (5)

It is analogous to the Schrödinger equation in quantum system,

i
d

dt
|φ〉 = H|φ〉. (6)

Here h̄ is taken to be unity. We note that z and β in GOWAs
are equivalent to t and ω in a quantum system, respectively.

B. Field-evolution analysis

In this study, we perform the field-evolution analysis with
the input wave function at z = 0,

ψ(0) = 1

(2πσ 2)1/4
e
− (n−n0)2

4σ2 e−ik0(n−n0), (7)

where k0 is the input transverse wave number. The incoming
field at z (z < 0) is ψ(z) = ψ(0) exp(iβ0z), where β0 is the
propagation constant of an individual channel. The intensity
profile |ψ(0)|2 has a discrete Gaussian distribution centered
at the n0th waveguide with spatial width σ . This kind of
input beam is referred to as a discrete Gaussian beam.
The exponential factor exp [−ik0(n − n0)] denotes the phase
differences between input beams excited on the nth and the
n0th waveguides. We note that k0 = 0 represents the case
where the phase difference between input beams at different
waveguides is zero; that is, the input beam is a plane wave,
as shown in Fig. 1(a). Finite phase differences are realized by
putting some small blocks of dielectric mediums with different
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FIG. 2. (Color online) Pseudodispersion relation between β and the supermode index number m for (a) α = 0.5 when β(N,π ) > β(1, 0)
and (c) α = 0.05 when β(N,π ) < β(1, 0). Panels (b) and (d) are the corresponding density of states (DOS) for (a) and (c), respectively.

thicknesses or refractive index right in front of each waveguide,
as shown in Fig. 1(b). The additional optical path differences
due to the dielectric blocks placed in front of the input channels
lead to the required phase differences and set up a finite k0 in
the input discrete Gaussian beam.

We can expand the input wave function in terms of the
supermodes |um〉,

|ψ(0)〉 =
∑
m

Am|um〉, (8)

where Am = 〈um|ψ(0)〉 is the constituent component of the
input Gaussian beam. The subsequent wave function at
propagation distance z is

|ψ(z)〉 =
∑
m

Ameiβmz|um〉. (9)

The evolution of beam intensity |ψ(z)|2 along the propagation
distance z is used to illustrate various oscillations, including
BO, breathing-wave-like (BW) oscillation, and other kinds of
motions.

The gradon dynamics can also be calculated with the
approach of Hamiltonian optics. The evolution of a beam can
be obtained by solving the Hamiltonian for the mean values of
position 〈x〉 and wave vector 〈k〉. However, the Hamiltonian
optics approach cannot reveal the width of the field evolution.

III. PHOTONIC GRADON MODES IN PLANAR GRADED
OPTICAL WAVEGUIDE ARRAYS

The photonic gradon modes are obtained by directly
diagonalizing the eigenvalue problem of GOWAs, as described
by Eq. (4). Since the variables (β, z) in the optical waveguide
arrays correspond to (ω, t) in a quantum system, we refer to the

functional dependence of β on the transverse wave number k

as the dispersion relation in periodic optical waveguide arrays.
In GOWAs, although the broken translational symmetry in
the gradient direction does not allow us to consider such a
dispersion relation, the relationship between the eigenvalue β

and the mode index m, which is defined as the ascending order
with respect to βm, can be regarded as a pseudodispersion
relation [23], as shown in Figs. 2(a) and 2(c) for α = 0.50
and α = 0.05, respectively. Figures 2(b) and 2(d) are the
corresponding numerical DOS, which describe the number
of states per unit β. These numerical DOS are obtained by
D(β) = 1/(N∂β/∂m). To understand the pseudodispersion
relation, we divide the infinite graded waveguide array into
a large number of subwaveguide arrays, each of which is still
infinite in size. Because the gradient in each subwaveguide
array is infinitesimal, we can treat it as homogeneous; thus,
the solution satisfies the relation un+1 = un exp(ik), where k

is the transverse wave vector. Substituting this relation into
Eq. (3), we obtain the analytic local dispersion relation

β(n, k) = αn + 2 cos k (10)

for a subwaveguide array with a specific propagation constant
αn. Here the mode index m is omitted for simplicity. For
various propagation constants αn (n = 1, 2, . . . , N), two
overlapping bands are obtained by β(n, 0) = αn + 2 and
β(n, π ) = αn − 2. With the aid of a band-overlapping picture,
the phase diagram is constructed as shown in Fig. 3. The
lower and upper limits of the two bands determine the four
phase boundaries in the phase diagram: β(1, π ) = α − 2
(solid line), β(1, 0) = α + 2 (dotted line), β(N,π ) = αN − 2
(dash-dotted line), and β(N, 0) = αN + 2 (dashed line).
The intersections of the four lines define the four phase
regions, each of which corresponds to a particular kind
of photonic gradon mode. Different kinds of modes are
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FIG. 3. (Color online) Phase diagram for the planar graded optical
waveguide arrays with N = 50 waveguides. There are four regions
of different gradon modes in the phase diagram as follows: soft
gradon (S), hard gradon (H), soft-hard gradon (SH), and unbounded
modes (U). The corresponding oscillations for input beams consist
of different gradon modes are as follows: LR, left-end reflection;
RR, right-end reflection; BW, breathing-wave-like oscillations; BO,
Bloch oscillation. The left-and-right-end reflection (LRR) in the
U region is not shown here. The distribution of a component for
each kind of oscillation is marked on the corresponding positions on
the phase diagram.

localized at different transverse positions of the waveguide
arrays. When β(n, 0) = β(n, π ), that is, α + 2 = αN − 2,
the critical value αc = 4/(N − 1) is obtained. For α < αc,
the unbound (extended) modes (U) cover a wave-number range
αN − 2 < β < α + 2 (lower vertical-line-shaded region). In
the lower wavenumber range α − 2 < β < αN − 2 (when
α < αc) and α − 2 < β < α + 2 (when α > αc), the modes
are localized at the left-hand side of the array, and are called

soft photonic gradons (S) (slanted-dotted-line-shaded region).
In the higher wave-number range α + 2 < β < αN + 2 (when
α < αc) and αN − 2 < β < αN + 2 (when α > αc), the
modes are localized at the right-hand side of the array and are
called hard photonic gradons (H) (upper vertical-line-shaded
region). The gradon modes in GOWAs can be characterized
by a mapping of the dynamic equation Eq. (1) to that of a
spring-mass chain with graded force constants [21,23]. The
force constant is smaller (larger) at the left (right) side of
the chain, and thus the modes localized at the left (right)
side are called soft (hard) gradons. For α > αc, the modes
become localized in the middle parts of the array and cover
a wave-number range α + 2 < β < αN − 2 (cross-hatched
region). We call these modes soft-hard photonic gradons (SH).
The mode patterns of typical photonic gradon modes, that is,
the numerical modal amplitude versus waveguide index, are
demonstrated in Fig. 4. Figures 4(a) and 4(b) are mode patterns
of SH with different eigenvalues of β. They are localized in
the middle part of the waveguide array. The numerical results
are similar to the analytic results in the Ref. [6]. Figures 4(c)
and 4(d) are mode patterns of S and H, which are localized at
the left and right parts of the waveguide array, respectively.

At the phase boundaries, transitions between different local-
ized gradon modes occur. A critical wave number is referred
to as the transition wave number. For example, the transi-
tion wave numbers β(1, 0) = α + 2 and β(N,π ) = αN − 2
are marked on the plots of pseudodispersion relation and
DOS, as shown in Fig. 2. Here two specific values of α

are chosen, one for α = 0.50 when SH exists and the other
for α = 0.05 when no SH exists. For α = 0.50 (α > αc), as
shown in Figs. 2(a) and 2(b), β(1, 0) < β(N,π ), SH exists in
the intermediate wave-number range β(1, 0) < β < β(N,π ).
Thus, at β(1, 0), S-SH transition occurs, and at β(N,π ),
SH-H transition takes place. It is evident that DOS is almost

SH

S H

(a) (b)

(c) (d)

FIG. 4. (Color online) Typical mode patterns of (a) and (b) soft-hard gradon (SH), (c) soft gradon (S), and (d) hard gradon (H), corresponding
to the dominant modes of beams, which undergo Bloch oscillation, breathing-wave-like oscillation, left-end reflection, and right-end reflection,
respectively. The unit of the model amplitude is arbitrary, while the abscissa denotes the waveguide index.
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constant for SH. These modes with equal energy distance
are commonly referred to as Wannier-Stark states (WSSs) in
Ref. [6]. For α = 0.05 (α < αc), β(1, 0) > β(N,π ) as shown
in Figs. 2(c) and 2(d), no SH exists and only unbounded modes
survive in the intermediate wave-number range β(N,π ) <

β < β(1, 0). Thus, at β(N,π ), the S-U transition happens,
and at β(1, 0), the U-H transition occurs. The DOS is not
flat for unbounded modes, which are different from WSSs.
These transitions between various gradon modes indicate that
it is possible to vary the localized position and extension of
photonic gradon modes. Furthermore, the types of transition
are controllable for different gradients α. It offers more
options to realize light manipulation by varying gradients.
To achieve tunability, it is quite necessary to understand the
correspondence between different localized gradon modes and
evolutions of light beams in these planar GOWAs.

IV. CORRESPONDENCE BETWEEN VARIOUS
OSCILLATIONS AND GRADON CONFINEMENTS

Here a few cases are addressed to illustrate the corre-
spondence between the gradon confinements and the various

oscillations of incoming beams. The occurrence of various
oscillations depends on the localization extent of modes
forming the input beams. Since the phase diagram as sketched
in Fig. 3 explicitly reflects the spatial extension of the various
gradon modes that the planar GOWAs sustain, it helps us to
have an instant judgment about whether an input beam contains
a component that can reach either the left or the right end
of the array, where reflection by the boundary occurs. Such
beams shall not undergo BO or BW oscillation. A necessary
condition for the occurrence of BO or BW oscillation is that
the input beam only consists of soft-hard gradons, because SH
are localized in the middle part of the array. We have marked
the constituent components (|Am|2 versus β) of the different
input beams at certain α on the phase diagram (see Fig. 3). As
expected, in the SH region, BO can occur. Depending on the
input beam, BW oscillations can also occur. The differences
are that the input beam for BO has a larger spatial width than
that for BW. In the S region, the input beam consisting of soft
gradons is reflected at the left end of the array, such a dynamic
evolution is denoted by LR (left-end reflection). While in the
H region, right-end reflection, denoted by RR, occurs. Finally,
in the U region, an extended beam can be reflected by both

FIG. 5. (Color online) Evolution of various excitation beams shown by the contour plots of |ψ(z)|2 on the propagation distance-waveguide
domain. The rescaled propagation distance is dimensionless, while the abscissa denotes the waveguide index. (a) Bloch oscillation (α = 0.5,
σ = 3, k = 0.0), (b) breathing-wave-like oscillation (α = 0.3, σ = 0.02, k = 0.8π ), (c) reflection from the left end (α = 0.1, σ = 3, k = 0.9π ),
and (d) reflection from the right end (α = 0.05, σ = 3, k = 0.0).
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FIG. 6. (Color online) Evolution of various excitation beams in k-space shown by the contour plots of |φ(k)|2 in the reciprocal position-
propagation distance (i.e., k-z) domain. The rescaled propagation distance is dimensionless. (a) Bloch oscillation (α = 0.5, σ = 3, k = 0.0),
(b) breathing-wave-like oscillation (α = 0.3, σ = 0.02, k = 0.8π ), (c) reflection from the left end (α = 0.1, σ = 3, k = 0.9π ), and (d) reflection
from the right end (α = 0.05, σ = 3, k = 0.0).

ends of the array, which is denoted by LRR (left-and-right-end
reflection), though it is not marked on the phase diagram.

These various oscillations are clearly observed from the
contour plots of |ψ(z)|2 in the β-α domain, as shown in Fig. 5.
The bright and intermediate regions indicate the very strong
and relatively strong intensity, respectively, and the dark region
is where the intensity is weak or zero. Figure 5(a) shows the
evolution of |ψ(z)|2 for α = 0.5, σ = 3, and k0 = 0.0. The
beam exhibits an oscillatory motion: the mean position shows
a periodic oscillation while the width is nearly constant. This
is a typical optical BO process. In Fig. 5(b), we show the case
of α = 0.3, σ = 0.02, and k0 = 0.8π . Now the beam’s width
shows a periodic variation but the mean position is nearly fixed
at the central input waveguide. This is a BW oscillation. Both
input beams for BO and BW oscillation are only formed by
soft-hard gradons, which are normal modes localized in the
middle part of the system. The difference is that the width of
input beam for BO (σ = 3) is much wider than that for BW
oscillation (σ = 0.02).

The different features of BO and BW oscillation are also
demonstrated in the contour plots of |φ(k)|2 in the wave-

number-propagation distance (i.e., k-z) domain, as shown in
Figs. 6(a) and 6(b). The reciprocal space wave function φ(k)
is obtained from the Fourier transform of the real-space wave
function ψ(x). The bright and intermediate regions indicate
the very strong and relatively strong intensity, respectively,
and the dark region is where the intensity is weak or zero.
The intensity |φ(k)|2 varies periodically in the range [0, 2π ].
Since we assumed a minimum uncertainty input beam, a large
(small) spatial x width for BO (BW) leads to a small (large)
momentum k width for BO (BW).

Besides the BO and BW oscillations, there are some other
oscillations, for example, reflection from the left end, the right
end, or both ends. Figure 5(c) (α = 0.1, σ = 3, k0 = 0.9π )
shows the reflection from the left end. In this case, the input
beam only consists of soft gradons, which are localized at the
left end of the system. Figure 5(d) (α = 0.05, σ = 3, k0 = 0.0)
demonstrates the right reflection for input beams formed by
hard gradons. The corresponding evolutions in k space are
shown in Fig. 6(c) and 6(d), respectively. If the components of
an input beam all fall into the extended mode (U) region, the
beam can reach both ends and be reflected in multiple fashions
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before eventually spreading across the whole waveguide array
(contour plot not shown here).

V. DISCUSSION AND CONCLUSION

Understanding the correspondence between various beam
oscillations and gradon confinements, we propose a mecha-
nism for controlling light in optical waveguide arrays. The
correspondence lies in that the BO period and its spatial
range of oscillation depend on the gradient. The results
may permit implementation in electro-optical switching or
steering devices. Thus, by changing the applied voltage across
the waveguide arrays, the output channel can be varied in
a controlled way. Similarly, we can take advantage of the
thermo-optical effect to achieve optical switching.

We can extend our study to diatomic and higher-
dimensional planar GOWAs. The gradient may have different
settings or be directed along different directions with respect
to the lattices. We can further introduce a single impurity to
the GOWA and study the localized modes due to the defect.
It is also interesting to explore the correspondence between

gradon confinements and slow light, which can be analyzed
with a hybridization model [29].

In summary, we study the optical BOs in planar GOWAs
with nearest-neighbor couplings. A variety of photonic gradon
modes are obtained: soft gradons, hard gradons, soft-hard
gradons, and unbounded modes. Excitation beams consisting
of different types of gradon modes undergo different evolution-
ary oscillations. The correspondences between various oscilla-
tions and gradon confinements have been established through
a phase diagram, which is constructed via a band-overlapping
picture. The understanding of such correspondence would
have important applications in both photonics and functional
materials.
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