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Intracavity dynamics in high-power mode-locked fiber lasers
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A theoretical model is developed which characterizes the intracavity pulse evolutions in high-power fiber
lasers. It is shown that experimentally observed dynamics of the key pulse parameters can be described by a
reduced model of ordinary differential equations. Critical in driving the intracavity dynamics is the amplitude
and phase modulations generated by the discrete elements in the laser. The theory gives a simple geometrical
description of the intracavity dynamics and possible operation modes of the laser cavity. Furthermore, it provides
a simple and efficient method for optimizing the performance of complex multiparametric laser systems.
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I. INTRODUCTION

Over the past two decades, mode-locked lasers have evolved
from the confines of fundamental science to commercial
instruments, with a wide variety of applications [1,2]. Cur-
rently there is a high level of interest in mode-locked fiber
lasers due to the practical advantages they offer such as
superior waveguide properties, reduced thermal effects, power
scalability, and integrability with other telecom components.
Despite much progress in mode-locked fiber lasers, its broader
impact has been limited due to restrictions on pulse energies,
which is a consequence of the underlying fiber nonlinearities.
Indeed, conventional soliton fiber lasers [3] that rely on the
balance between anomalous group velocity dispersion (GVD)
and self-phase modulation (SPM) only generate pulses with
energies up to 0.1 nJ [1,2]. Recently much progress has
been made experimentally to achieve high energy, ultra-
short pulses from mode-locked fiber lasers. The desire for
higher energy pulses suggests consideration of cavities with
segments of normal and anomalous GVD or with large and net
normal GVD. These include the stretched-pulse laser [4–6],
self-similar laser [2,7], and the all-normal dispersion laser
[2,8–10]. Indeed, these lasers have increased the pulse energy
limits in femtosecond fiber lasers by orders of magnitude.
For example, all normal fiber lasers have recently produced
pulses with energies approaching the micro-Joule level [10].
A new, interesting direction was found recently in Ref. [11],
where by increasing the cavity length of the fiber laser to an
impressive 3.8 km, a 3.9-µJ nanosecond (chirped) pulse was
demonstrated. In contrast to soliton-like processes [3] where
the pulse experiences small changes in the pulse parameters
within a single round trip, this new generation of high-power
fiber lasers depends strongly on dissipative processes as well
as on phase modulations to shape the pulse, often resulting in
large intracavity pulse variations per round trip. This requires
the development of new, adequate mathematical models for
the analysis of such laser systems.

Pulses in mode-locked lasers are referred to generically
as dissipative solitons and are usually described within the
context of distributed models that captures both the temporal
pulse shaping and the propagation in the laser cavity [1].
However, most high-energy fiber lasers rely on large pulse
fluctuations per cavity round trip. Specifically, a dispersion
map is implemented so pulse solutions may undergo large

breathing per cavity round trip [4–6]. Indeed, this concept was
exploited in optical communications and fiber transmission
[12] where higher energy pulses are possible due to the
increased average pulse duration. Furthermore, pulse shaping
is dominated by either large phase or amplitude modulations.
As a result, modeling the pulsed solution with a distributed
partial differential equation (average model) does not fully
characterize the intracavity dynamics. Here we provide a
semianalytical method to describe the intracavity dynamics
in such lasers. In contrast to recent analytical results based
upon an averaged Ginzburg-Landau equation [13–15] where
the pulse dynamics is averaged over one round trip, we develop
a variational method of the fiber propagation equations which
includes the essential discrete components that are responsible
for large intracavity pulse fluctuations. Such an approximate
approach is verified by extensive direct numerical modeling
demonstrating the validity of the model. The reduction
demonstrates the underlying attracting Poincaré map of the
mode-locked solution and highlights how phase profiles, which
have been experimentally observed [4–6,8–10], are critical
in the mode-locking dynamics. Furthermore, the variational
model provides an excellent theoretical framework for multi-
parametric optimization of the performance of complex laser
systems [16]. The article is outlined as follows: In Sec. II,
the governing equations for fiber propagation as well as
point-wise elements in the laser are introduced which are to
be the basis of discussing the variational model. Section III
considers the reduced system for both fiber propagation and
point-wise elements and highlights the Poincaré mapping for
stable mode-locking. Sections IV and V consider the reduced
system for a Gaussian ansatz and modified hyperbolic secant
ansatz, respectively. Finally, Sec. VI concludes with a short
review of the article.

II. FIBER PROPAGATION EQUATIONS AND
DISCRETE ELEMENTS

Pulse propagation in a fiber laser can be modeled with
normalized equations that include the dominant physical
effects of the system. These effects include GVD, SPM,
and attenuation for all fibers, as well as gain saturation and
bandwidth limited gain for an active medium such as rare-earth
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doped fibers [17]. The governing equations are given by

iuz + 1
2d(z)utt + γ |u|2u = i(g(z) − α)u + iνg(z)utt , (1)

with the saturating gain

g(z) =
{

g0/[1 + ‖u‖2/e0] for active fiber,

0 for passive fiber.
(2)

Here u represents the electric field envelope normalized by the
peak power P0, ‖u‖2 = ∫ |u|2dt is the energy of the pulse, t

represents time normalized by T0, and z is the propagation
distance normalized by the typical cavity length scale L

(=1 m). The normalized GVD and SPM coefficients are
given by d(z) = −β2(z)L/T 2

0 and γ = 2πn2P0L/(λ0Aeff),
respectively. Here β2 is the fiber dispersion coefficient, n2

is the nonlinear refractive index, λ0 is the carrier wavelength,
and Aeff is the effective fiber area. Equation (1) differs from
the well-known nonlinear Schrödinger equation (NLSE) due
to the dissipative terms on the right-hand side of the equation,
which represents gain saturation, gain dispersion, and linear
loss. The dissipative parameters g0 = LG, e0 = Esat/(P0T0),
α = L�, and ν = 1/(�gT0)2 are the normalized small-signal
gain coefficient, saturation energy, loss coefficient, and gain
dispersion coefficient, respectively. Here G (in 1/meter) is the
linear gain from amplification, � (in 1/meter) is the fiber loss
coefficient in the cavity, Esat (in nanojoules) is the saturation
energy of the gain medium, and �g (in nanometers) is related
to the gain bandwidth. The fiber laser also consists of some
form of dispersion management (DM), where each segment
of fiber can potentially have a different dispersion value. In
general, for a fiber laser that consists of M segments of length
Lj , there will be M dispersion values dj .

In addition to fiber propagation, the pulse experiences
action induced by the discrete elements such as a saturable
absorber, output coupler, and spectral filter in mode-locked
fiber lasers. Indeed, it is necessary to have some form of
a saturable absorber (intensity discrimination) to provide
self-starting [1]. A variety of different saturable absorber
mechanisms have been achieved experimentally and described
theoretically in femtosecond mode-locked lasers, including,
among others, nonlinear polarization rotation [8,18–20], non-
linear interferometry [21], semiconductor saturable absorber
(SESAM) [22–24], and saturable Bragg reflectors [25]. Often,
under certain conditions, the action of fast saturable absorbers
can be approximated by a simplified, but generic, nonlinear
transfer function [1]

uf(t) =
[

1 − l0

1 + |ui(t)|2/ps

]
ui(t), (3)

where ui (uf) is the input (output) field, l0 is the unsaturated
loss due to the absorber, and ps = Psat/P0 is the normalized
saturation power. Note that this transfer function effectively
promotes high intensities while attenuating lower intensities
of the pulse. The discrete action of the output coupler can be
approximated by a simple scalar multiplication of the field

uf(t) = √
ρ × ui(t). (4)

In this approximation, we are assuming that the output coupler
is only an amplitude modulation and any phase modulations
are assumed to be small, so that the laser output field would be

given by
√

1 − ρ × ui(z, t). Finally, we consider the discrete
action of a spectral filter Â(�) on the pulse. The pulse form is
modified in both amplitude and phase and can be written as

uf(t) =
∫ ∞

−∞
ûi(�) × Â(�) e−i�td�, (5)

where û(�) denotes the Fourier transform of u(t).
Including all effects of pulse propagation in passive and

active fibers as well as the discrete elements of the saturable
absorber, output coupler, and spectral filter allows for stable
and robust mode-locking in a variety of experimentally
realized configurations [1]. Haus proposed that all these effects
can be considered in a distributed model of Ginzburg-Landau
type that effectively assumes averaging the pulse dynamics
over one cavity round trip [1]. However, this distributed model
fails when intracavity pulse fluctuations are large. Analysis of
modern high-power laser systems in which large modulations
within one cavity round trip requires the development of
new mathematical approaches. In the following section, we
consider the nondistributed model (1)–(5) where parameters
characterizing the pulse can change drastically; however, the
pulse maintains its form in both the temporal and the spectral
domain.

III. VARIATIONAL REDUCTION AND
POINCARÉ MAPPING

Often, pulse propagation through fibers can be character-
ized by the change of key parameters such as pulse width,
power, and chirp, while the pulse keeps its general shape in
both the temporal and the spectral domain. Mathematically,
this can be treated as a reduction from an infinite dimensional
system corresponding to the governing partial differential
equation to a finite-dimensional system responsible for the
evolution of the key pulse parameters. In other words, the
pulse evolves as a particle keeping its identity, rather than
as an object built from an infinite set of linear waves that
evolve independently. In such a situation one can use a
variational method to describe the complete evolution problem
with ordinary differential equations that govern the evolution
of a finite set of pulse parameters [26]. Variational reduc-
tions have been used extensively in nonlinear Schrödinger-
type systems to describe the underlying pulse behaviors
(see, e.g., [27–30] and references therein). Recent work
has focused on variational reductions in the context of
mode-locked lasers and general Ginzburg-Landau equations
[31–34]. The variational method is traditionally rooted in
the Hamiltonian nature of the system (i.e., it is assumed
that some conserved energy functional can be constructed).
Classical Hamiltonian theory then allows for the construction
of the associated Lagrangian via a Legendre transformation.
The variational reduction then applies the Euler-Lagrange
equations to the free parameters in the ansatz assumption.
As exhibited in the following discussion, this leads to ordinary
differential equations which determine the evolution of the
ansatz parameters.

The right-hand side of (1) represents additional dissi-
pative terms to the NLSE. These terms can be included
in the variational method as perturbations to the over-
all Hamiltonian structure [26]. Assuming a pulse form
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u(z, t) = ua(p1(z), p2(z), . . . , t), where the parameters pj (z)
are z dependent and correspond to the pulse amplitude,
duration, chirp, etc., the governing set of ordinary differential
equations are given by

δ

δpj

(∫ ∞

−∞
L[ua]dt

)
= 2Re

{∫ ∞

−∞
iR[ua]

∂u∗
a

∂pj

dt

}
. (6)

The left-hand side of Eq. (6) contains the Hamiltonian
contribution, and the right-hand side contains the dissipative
perturbations, where

L[u] = i

2
(uzu

∗ − u∗
zu) − 1

2
d(z)|ut |2 + γ

2
|u|4, (7)

R[u] = [g(z) − α]u + νg(z)utt . (8)

The resulting set of ordinary differential equations must be
coupled with the discrete action of the saturable absorber,
output coupler, and spectral filter. In the phase space of the
pulse parameters p1, p2, . . . pN , the flow is determined by the
ordinary differential equations (6). When a discrete element
is applied, it effectively modifies the pulse parameters pj in
some way. This corresponds to moving the pulse position in the
phase plane to another location in the phase plane. In a stable
mode-locking configuration, this periodic forcing generates a
closed periodic loop, or Poincaré map, in the parameter space
p1, p2, . . . pN . Indeed, it is this phase-space representation
that highlights the pulse dynamics per cavity round trip. In the
following sections, we will obtain explicit ordinary differential
equations for particular ansatz functions which represent pulse
forms observed in experiments [4–6,8–10]. These reduced set
of pulse propagation equations are coupled with the discrete
elements in a laser cavity to provide the overall intracavity
dynamics.

IV. REDUCED MODEL FOR GAUSSIAN ANSATZ

Similar to DM systems in communications [12], many high-
power mode-locked fiber lasers rely on a strong dispersion
map which alternates between normal and anomalous GVD
segments. In this case, the pulse can be approximated by a
Gaussian-type pulse [12] of the form

ua(t, z) =
√

η(z) exp{−[1 − iC(z)][t/τ (z)]2 + iϕ(z)}. (9)

Here η is the peak amplitude, τ is the pulse duration, C is the
chirp parameter, and ϕ is the phase parameter. Using (9) in (6)
gives the following ordinary differential equations:

ηz = −2d(z)
Cη

τ 2
+ 2(g − α)η − 4νg

η

τ 2
, (10)

τz = 2d(z)
C

τ
− 2νg

1

τ
(C2 − 1), (11)

Cz = 2d(z)
1

τ 2
(1 + C2) −

√
2

2
γ η − 4νg

C

τ 2
(1 + C2), (12)

where

g(z) =
{

g0/[1 + √
π/2 ητ/e0] for active fiber,

0 for passive fiber.
(13)

Note that the overall phase parameter ϕ is decoupled from the
system (10)–(13) (i.e., the system has a phase invariance). The
ansatz (9) and the corresponding reduced system (10)–(13)

is an extension to that which was successfully used in the
context of conservative DM solitons [27,35,36]. The reduced
set of ordinary differential equations determines the evolution
of the peak amplitude, pulse duration, and chirp parameter in
both the active and the passive fiber segments of the laser.

The discrete elements can modify the pulse parameters
significantly. To see how the pulse parameters change due to
the saturable absorber transfer function (3), we approximate
the function⎡
⎢⎣1 − l0

1 + ηi

ps
e
− 2t2

τ2
i

⎤
⎥⎦ √

ηi e
−(1−iCi) t2

τ2
i ∼ √

ηf e
−(1−iCf ) t2

τ2
f , (14)

where the subscript “i” (“f”) represents input (output) parame-
ter values. Using a linear least-squares fitting routine, we find
that the parameters can be mapped using the functions

ηf/ηi = F1(l0, ηi/ps), (15)

τf/τi = F2(l0, ηi/ps), (16)

Cf/Ci = τ 2
i /τ 2

i , (17)

where F1 and F2 are shown in Fig. 1. The modulation of ηf is
independent of τi where it is linear for the pulse duration
τf . Furthermore, the saturable absorber changes the chirp
parameter only due to the change in pulse duration. The
simple form of the output coupler (4) translates to a scalar
multiplication of the amplitude

ηf = ρ × ηi. (18)

The application of a spectral filter will cause modulation
in both the amplitude and the phase parameters. Indeed,
spectral filters have been used experimentally to provide
additional dispersion compensation, effectively reducing the
chirp across a pulse [8,33,37]. To make analytical progress,
we assume a Gaussian profile for the spectral filter Â(�) =
exp[−�2/(4�2

f )] so that we can calculate the integral (5).

After transforming (9), multiplying by Â(�) and integrating,
we obtain a Gaussian pulse with modified parameters

ηf =
(

τi
4
√

a2 + b2

)
ηi, (19)

τf =
√

a2 + b2

a + b2
, (20)

FIG. 1. Peak-power (a) and pulse duration (b) modulations from
the discrete action of the saturable absorber (3) on a Gaussian pulse
for the parameter values l0 = 0.3 (solid), 0.5 (dashed black), and 0.7
(dashed gray).
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Cf =
( τ 4

i

a2 + b2

)
Ci, (21)

where a = τ 2
i + 1/�2

f and b = τ 2
i Ci/�f . Note that as �f →

∞, a → τ 2
i and b → 0 resulting in no modification of the

pulse parameters. For a finite filter bandwidth, the spectral
filter reduces the chirp parameter by a factor that is inversely
proportional to the ratio of chirp parameter to filter bandwidth.
Thus, the larger the chirp value, the more it will get reduced.
Furthermore, the spectral filter induces a significant amplitude
modulation in both peak power and pulse duration.

With the system of fiber propagation equations (10)–(13)
and discrete operations (15)–(21), we can solve the reduced set
of equations and compare them with numerical simulations of
the full equations for a particular laser system. Figure 2 shows
an example of the resulting pulse evolution from numerical
simulation of (1)–(2) consisting of an active fiber segment of
length L1 = 1 with normal dispersion d1 = −0.9 followed by
a passive segment of length L2 = 1 with anomalous dispersion
d2 = 1. Thus, the net-dispersion d̄ = 0.05 is in the anomalous
dispersion regime. A saturable absorber and output coupler
follow the passive segment. The initial condition is white
noise; thus, the pulse evolution is, in a global sense, the
final attracting state. This fiber laser setup is similar to that
where stretched pulse operation was achieved in Ref. [4].
Note that the discrete elements cause the pulse to undergo
large changes in its pulse parameters; however, the pulse shape

FIG. 2. Temporal (a) and spectral (b) solutions from numerical
simulation of (1) with gain (2) in the net-anomalous dispersion
regime. Dispersion map parameters are d1 = 1, L1 = 1, and d2 =
−0.9, L2 = 1. Dissipative parameters are g0 = 2, e0 = 1, ν = 0.05,
α = 0.1, l0 = 0.5, ps = 3, and ρ = 0.5. Note that the saturable
absorber (SA) and output coupler (OC) are applied at the end of
the map resulting in last two pulses. Gray shade corresponds to the
gain segment.

FIG. 3. Evolution of pulse parameters over two map periods from
full simulations (solid) and the reduced system (dashed) for the laser
setup in Fig. 2. The results from application of the saturable absorber
(SA) and output coupler (OC) are shown for both the full (circle) and
reduced (gray diamonds) models. Shaded regions correspond to the
gain segment.

remains of Gaussian form. Figure 3 shows the comparison of
the pulse parameters from full numerical simulation and from
solving the reduced system (10)–(13) and discrete operations
(15)–(18). The initial condition for the reduced model was
[η0, τ0, C0] = [0.1, 1, 0.1]. The final periodic state is obtained
from a wide variety of initial conditions and is indeed the
attracting state. Although the reduced model is constrained
by the ansatz (9), it is remarkable how accurately it models
the full equation dynamics. It is clear from Fig. 3 that the
pulse compress twice per cavity round trip, reach a minimum
duration in the middle of each segment, and acquire both
signs of chirp. Furthermore, the saturable absorber and output
coupler reduce the peak power of the pulse; however, they only
slightly perturb the pulse duration and chirp parameter once
the pulse has settled into its stable periodic state.

In general, characterizing the laser requires an investigation
of a very large parameter space. Typically many numerical
simulations of the full governing equations are needed to
completely understand the different modes of operation. The
accuracy of the reduced model in characterizing the pulse
evolution in the laser allows for one to do these simulations
at a reduced computational price. Specifically, the laser
can be analyzed by numerically solving the (3 × 3) system
(10)–(13) followed by scalar multiplications for the discrete
elements per round trip. In contrast, simulations of the full
equations (1) involve solving an (N × N ) system (N large)
after discretization. Figure 4 shows the phase plane of the
intracavity dynamics in the experimentally relevant phase
plane of pulse energy E, duration τ , and chirp parameter
C. The periodic application of the saturable absorber and
output coupler (once per round trip) actively controls the
parameters of the mode-locked pulse. Here, after application
of the saturable absorber, the phase point is moved to the black
diamond. The output coupler moves the phase point to the
gray circle, where then the solution evolves along the flow line
shown. The geometrical picture presented here gives a way to
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FIG. 4. Poincaré map of stable mode-locking operation of Fig. 2.
The jump condition associated with the saturable absorber results in
the flow moving to the black diamond, while that associated with the
output coupler moves the phase point to the gray circle. The solid lines
correspond to the full model (1–4), and the dashed lines correspond
to the reduced model (10)–(13) illustrating good agreement. Gray
segments correspond to the gain fiber segment.

rapidly predict the intramap pulse evolutions and to optimize
the laser cavity for optimal performance.

There are many laser systems where a Gaussian pulse
form in both the temporal and the spectral domains is
violated. Indeed, the reduced model can be used for a wide
variety of pulse ansatz. However, it is interesting that the
Gaussian ansatz used to obtain the reduced model (10)–
(13) and the discrete operations (15)–(18) does remarkably
well in characterizing pulse dynamics even when the pulse
is not of Gaussian form. For example, Fig. 5 shows the
temporal and spectral evolution with the same laser con-
figuration as in Fig. 2, but with a dispersion parameter
d2 = −1.2 giving a net-dispersion d̄ = −0.1. Indeed, at
some points in the map the spectrum has a flat-top profile
with steep sides which is characteristic in normal-dispersion
mode-locking [1]. Figure 6 shows the pulse evolutions over
two map periods from both the full Eqs. (1)–(4) and the reduced
model (10)–(13) with discrete actions (15)–(18). Note that in
contrast to the net-anomalous dispersion laser, here the pulse
compresses once per cavity round trip and is positively chirped
throughout the cavity. Because the Gaussian trial function
parameters can be related to the pulse integral characteristics
(see, e.g., [12,38]), in many cases the overall reduced system
does not depend heavily on the actual pulse form. However,
there are laser setups that demand pulse forms that have more
complicated spectral profiles [2,8,9]. In the following section,
we obtain a reduced set of ordinary differential equations that
govern the pulse parameters of an ansatz that is capable of
describing such features.

V. REDUCED MODEL FOR MODIFIED CHIRPED-SECH
ANSATZ

Recently there has been much interest and progress in
generating high-power pulses in a fiber laser that consists

FIG. 5. Temporal (a) and spectral (b) solutions from numerical
simulation of (1) with gain (2) in the net-normal dispersion regime.
The laser setup is the same as in Fig. 2 but with d2 = −1.2. Gray
shade corresponds to the gain segment.

of all-normal dispersion elements. To control the dispersive
spectral broadening, a spectral filter is placed within the
laser cavity. These lasers can have rounded-top or flat-top
spectral profiles, as well as spectral profiles with peaks at its
edges [8–10]. To fully capture the varying spectral profiles
which have been observed in these all-normal fiber lasers, we

FIG. 6. Evolution of pulse parameters over two map periods from
full simulations (solid) and the reduced system (dashed) for the laser
setup in Fig. 5. The results from application of the saturable absorber
(SA) and output coupler (OC) are shown for both the full (circle) and
the reduced (gray diamonds) models. Shaded regions correspond to
the gain segment.
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assume a modified chirped hyperbolic secant ansatz of the
form [9]

ua(t, z) =
√

η(z)

B(z) + cosh
(

t
τ (z)

) e−i
C(z)

2 ln[B(z)+cosh(t/τ (z))]. (22)

The specific form of the phase profile is essential to capture
the different spectral profiles observed experimentally [8–10].
Furthermore, ansatz (22) is general and can capture many pulse
shapes in both the temporal and the spectral domains. Using
(22) in (6) gives the following system of ordinary differential
equations:

M �f = �q, (23)

where

M =

⎡
⎢⎢⎢⎣

0 CF τG −τCF ′

−CF 0 η(G − F ) −2ηCF ′

−τG η(F − G) 0 −ητ (F ′ + G′)

τCF ′ 2ηCF ′ ητ (F ′ + G′) 0

⎤
⎥⎥⎥⎦,

(24)

�f = [η, τ, C,B]z, and the components in the vector �q include
the terms from dispersion, self-phase modulation, and the gain
and loss perturbations. Neglecting gain dispersion (ν = 0), we
have

q1 = d(z)

4

(1 + C2)

τ
Q + 2γ ητF ′, (25)

q2 = −d(z)

4

η(1 + C2)

τ 2
Q + γ η2F ′ + 2(g − α)ηCF, (26)

q3 = d(z)

2

ηC

τ
Q − 2(g − α)ητG, (27)

q4 = d(z)

4

η(1 + C2)

τ
Q′ + γ η2τF ′′ + 2(g − α)ητCF ′, (28)

where

g(z) =
{

g0/ [1 + ητF/e0] for active fiber,

0 for passive fiber.
(29)

All primes denote differentiation with respect to the parameter
B, and the parameters F , G, and Q are B-dependent integrals
given by

F =
∫

dt

�
, G =

∫
ln �dt

�
, Q =

∫
sinh2 t dt

�3
,

with � = B + cosh t and all integrations ranging from t ∈
[−∞,∞].

For the ansatz (22), obtaining analytic expressions for
how the pulse parameters change due to discrete operations
is difficult. However, a simple least-squares fit between the
modified pulse and ansatz (22) in both the temporal and the
spectral domains allows for the modified parameters to be
obtained. Indeed, ansatz (22) has more fitting parameters than
the Gaussian ansatz (9), thus allowing for a wide variety of
pulse forms.

Figure 7 shows the final steady state of a laser consisting
of L1 = 3 of passive fiber, followed by a gain segment with
L2 = 0.6, which is then followed by a passive fiber of length
L3 = 1. All segments of the fiber have normal dispersion value

FIG. 7. Temporal (a) and spectral (b) solutions from numerical
simulation of (1) with gain (2) for an all-normal dispersion laser.
Dispersion map parameters are d1 = −1, L1 = 3, d2 = −1, L2 = 0.6,
and d3 = −1, L3 = 1, and γ = 2. Dissipative parameters are g0 = 30,
e0 = 1, ν = 0, α = 0, l0 = 0.5, ps = 3, ρ = 0.7, and �f = 0.8. Note
that the saturable absorber (SA), output coupler (OC), and spectral
filter (SF) are applied in series resulting in the last three pulses in the
map. Gray shade corresponds to the gain segment.

d = −1. These fiber segments are followed by a saturable
absorber, output coupler, and spectral filter, respectively.
The spectral filter is of Gaussain form as in the previous
section. This laser is similar in design to that in Ref. [8].
Note that the temporal and spectral profiles clearly show
various states of the ansatz (22) with rounded-top, flat-top,
and fringed spectral profiles. Figure 8 shows the comparison
of the physically relevant quantities energy [E = ητF (B)],
peak power [Q = η/(1 + B)], pulse duration (τ ), and chirp
parameter (C) over two map periods from the full governing
Eqs. (1)–(2) with that obtained from the reduced model
(23). The modified parameters as a result of the discrete
elements were obtained by a linear least-squares fit of the
resulting pulse with ansatz (22). Figures 9 and 10 show the
temporal and spectral profiles of the pulse solution from
the full governing Eqs. (1)–(2) as well as the ansatz (22)
with parameter values given by the solutions to the reduced
Eq. (23) at four distinct locations in the cavity. It is clear that
the reduced model does an excellent job in describing the
overall structure of the mode-locked solution throughout
the laser cavity. Furthermore, the reduced model captures
the main features observed experimentally in all-normal
dispersion lasers such as a large, increasing pulse duration and
chirp parameter per cavity round trip [8]. The discrete elements
reduce these pulse parameters. Indeed, it is interesting that
for the ansatz (22) the saturable absorber and output coupler
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FIG. 8. Evolution of pulse parameters over two map periods from
full simulations (solid) and the reduced system (dashed) for the laser
setup in Fig. 7. The results from application of the saturable absorber
(SA), output coupler (OC), and spectral filter (SF) are shown for both
the full (circle) and reduced (gray diamonds) models. Shaded regions
correspond to the gain segment.

induce large phase modulations due to the phase parameter
B in the amplitude. Again, the reduced system captures the
overall dynamics at a fraction of the computational cost:
solving a (4 × 4) system with six (three temporal, three
spectral) least-squares fits per round trip. Thus, the reduced
system can be used to explore various modes of laser operation
quickly. As an example, Fig. 11 shows the output pulse energy
over a range of spectral filter bandwidth values �f . Two laser
configurations are considered, where all parameters are the
same as in Fig. 7, but the order of the saturable absorber
and the output coupler are switched. All output energies are

FIG. 9. Temporal profiles of the pulse solution from the full
governing Eqs. (1)–(2) (solid) as well as the ansatz (22) with
parameter values given by the solutions to the reduced Eq. (23)
(dashed) at four distinct locations in the cavity. (a) At the beginning
of the gain segment; (b) at the end of the gain segment; (c) after the
output coupler; and (d) after spectral filtering.

FIG. 10. Spectral profiles of the pulse solution from the full
governing Eqs. (1)–(2) (solid) as well as the ansatz (22) with
parameter values given by the solutions to the reduced Eq. (23)
(dashed) at the same four distinct locations in the cavity as in Fig. 9.

normalized by the output pulse energy of the laser system
considered in Fig. 7. It is clear that stable mode-locking exists
over a broad range of filter bandwidths and the output energy
does not depend heavily on the filter bandwidth. Furthermore,
by placing the output coupler before the saturable absorber, the
output pulse energy can be significantly increased by a factor
of three or four. The output energies obtained from direct
numerical simulations of Eqs. (1)–(2) confirm the validity of
the reduced model. Although here we have only considered

FIG. 11. Output pulse energies as a function of spectral filter
bandwidth values �f for two laser configurations from both the full
governing Eqs. (1)–(2) (diamonds) and the reduced model (23). All
parameters are the same as in Fig. 7, but the order of the saturable
absorber and the output coupler are switched. All output energies are
normalized by the output pulse energy of the laser system considered
in Fig. 7. The output pulse energies are significantly increased in
the configuration where the output coupler precedes the saturable
absorber.
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two variations in the laser cavity, the reduced model can be
used efficiently to explore the multiparametric system and
optimize the performance of the laser. Future directions will be
to use the reduced system to obtain optimal modes of operation
experimentally.

VI. CONCLUSION AND APPLICATION OUTLOOK

In conclusion, we have considered the large pulse fluc-
tuations in high-energy fiber lasers. We have shown that
the intracavity dynamics can be modeled by a reduced set
of ordinary differential equations governing the evolution of
the pulse parameters. The discrete elements are included as
a periodic forcing and generate a closed Poincaré loop for
the evolution. The variational method used here provides a
geometrical interpretation which is in good agreement with
the intracavity temporal and spectral profiles observed in
numerical and experimental results. Indeed, the accuracy
of the reduced model allows for a large multiparameter
analysis of the laser performance to be made at a fraction
of the computational cost when compared with full numerical

simulations. Furthermore, the location of the output coupler,
saturable absorber, and spectral filter can be readily and
easily moved within the cavity to explore various modes of
operation while full simulations would make this impractical.
This simple geometric approach allows for the engineering of
cavities to achieve peak performance in both peak power and
pulse energies. This mathematical formalism could potentially
have a broad impact in the design and development of fiber
lasers.
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