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Optical angular momentum: Multipole transitions and photonics
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The premise that multipolar decay should produce photons uniquely imprinted with a measurably
corresponding angular momentum is shown in general to be untrue. To assume a one-to-one correlation between
the transition multipoles involved in source decay and detector excitation is to impose a generally unsupportable
one-to-one correlation between the multipolar form of emission transition and a multipolar character for the
detected field. It is specifically proven impossible to determine without ambiguity, by use of any conventional
detector, and for any photon emitted through the nondipolar decay of an atomic excited state, a unique multipolar
character for the transition associated with its generation. Consistent with the angular quantum uncertainty
principle, removal of a detector from the immediate vicinity of the source produces a decreasing angular
uncertainty in photon propagation direction, reflected in an increasing range of integer values for the measured
angular momentum. In such a context it follows that when the decay of an electronic excited state occurs by an
electric quadrupolar transition, for example, any assumption that the radiation so produced is conveyed in the form
of “quadrupole photons” is experimentally unverifiable. The results of the general proof based on irreducible
tensor analysis invite experimental verification, and they signify certain limitations on quantum optical data

transmission.
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I. INTRODUCTION

It is surprising to discover that the deep fundamental link
between photon angular momentum and multipolar forms of
charge distribution is not as comprehensively well understood
as one might suppose. In the field of atomic spectroscopy the
rules governing multipole transitions and angular momentum
are noncontroversial [1], yet it transpires that unguarded
applications of these same rules to the history of any individual
photon, emitted by relaxation from an atomic excited state,
can raise unresolved questions. Specifically, to resolve the
multipolar character of the electronic transitions associated
with atomic excited state decay and subsequent detection of the
ensuing fluorescence can create apparent paradoxes. Whereas
the familiar selection rules for atomic transitions are widely
and rightly asserted as arising from a connection between
transition dipoles and the unit spin of the photon, incautious
extrapolations of this principle to higher-order multipoles may
not be as sound. Further complexities arise in the case of
molecular systems. Addressing such issues invites a detailed
analysis—which resolves not only these, but a host of related
questions.

Consider, for example, a very simple system in which
a single atom, initially in an excited state, decays through
electric-dipole forbidden, electric-quadrupole allowed photon
emission. To judge by certain sections of the literature it is
often assumed, if not explicitly stated, that electric quadrupole
decay transitions produce photons of a distinct character.
However, usually little or no theoretical basis is given for such
a supposition—neither can one find a robust theory addressing
the quantum measurements that would be necessary for its
experimental verification. Although radiative emission of a
given multipolar origin is in principle identifiable from the
characteristic form of its spatial distribution, it does not directly
follow that multipolar origination of any specific form should
necessarily or measurably translate into a distinction in nature
of the individually emitted photons.
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One can reasonably pose the question: is there a clear
physical meaning, in the sense of a possibility for unambiguous
measurement, in using the term quadrupole photon? Focusing
on the issue of measurability: is it possible to determine, by
direct detection of an emitted photon, the multipolar character
of the transition associated with its creation? Again, under
what circumstances, if any, should it be possible for any such
photon to be absorbed by a dipolar detector? And does the
answer to any of these questions change if the emitter is
anisotropic—if so, is it possible to discern whether an observed
emission arises from an atomic, as distinct from a molecular or
crystalline source? Previous attempts to tackle these questions
are surprisingly sparse; the answers are not generally known.

It is the aim of the analysis that follows to tackle and resolve
the issues, and to provide answers, to the above and related
questions, through a detailed irreducible tensor analysis. The
necessary equations are developed using quantum electrody-
namics (QED). It will be shown that when an atomic transition
involves an electric multipole of order AL, associated with
an internal change in electronic orbital angular momentum
by this same amount (ignoring spin-orbit coupling), the
photon thereby released cannot meaningfully be asserted to
convey this same quantity of angular momentum AL to
a remote photodetector. In the context of quantum optical
communication, this is a result that represents a potentially
significant and widely overlooked constraint.

II. FOUNDATION THEORY

The classical methodology of atomic emission spec-
troscopy [2] does not address the mechanism and selection
rules for the detection of atomic fluorescence, a process whose
relationship to the original emission will prove to be a central
issue in the following analysis. With the development of a
robust theory rigorously based on quantum electrodynamics
[3], it has become possible to encompass a complete photon
history as an embodiment of the causal linkage between
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source decay and detector excitation events [4]. In the QED
representation, the propagation of light from an emissive
source to an absorptive detector is the long-range limit of a
general mechanism that, when it operates over subwavelength
distances, is usually designated resonance energy transfer [5].

To begin, consider a simple system with a source A and
detector B, each comprising an electronically distinct, neutral
atom. Developing the theory in terms of multipolar coupling in
the Coulomb gauge ensures that the associated fields are duly
retarded and satisfy causality [6]. In this dynamical system,
the process to be addressed in its entirety begins with the
excited state decay of A and ends in the resulting electronic
excitation of B. Quantum mechanically, this is an evolution
from an initial system state in which A is electronically excited
and B is in its ground state to a final state with A in a lower
energy state and B electronically excited. Reflecting standard
experimental conditions, it can be assumed that there is a rapid
decay channel for the excited state of B by any means that can
produce a measurable signal of the fluorescence detection—so
the system as a whole does not support a state of delocalized
excitation.

To formulate theory with due regard to the multipolar
character of the atomic transitions, it is appropriate to adopt
a system Hamiltonian cast in multipolar form, which may be
represented as follows;

H=Hua+ ) HuE+ ) Hw®) M

£=A,B £=A,B

Here H,, is the Hamiltonian for the radiation field in vacuo,
Hy (&) is the field-free Hamiltonian for atom &, and Hj, (&)
represents an atomic interaction with the radiation field. The
tripartite simplicity of Eq. (1) results from an adoption of the
multipolar form of light-matter interaction. While it can indeed
be argued that the multipolar concept is intrinsically applicable
only in a quantum electrodynamical formulation [7], it is
a method that delivers results precisely equivalent to those
arising in a minimal-coupling formulation [8]. For present
purposes, with a focus on electric multipole transitions, the
interaction terms in (1) can be determined from the following;

Hiy(§) = —ealpr(E,r)'dL(r)d%. 2)

Here, d'(r) is the transverse electric displacement field
operator and p*(£, r) is the transverse electric polarization.
The latter operator is succinctly expressible in a form whose
expansion in powers of A delivers the entire multipolar
series [9];

1
PrE ) = eulq, — Re) fo 8r — Re — (g, — Ro)ldA,
a(é)
3)

where the summation is over constituents of the atom &
located at Rg, i.e., charges e, located at positions ¢,. Here
it is necessary to consider only the lowest orders of electric
multipole that can support the given source and detector
transitions. Moreover, a traceless form can be adopted for
the quadrupole, consistent with the transverse character of the
electric displacement field [10].
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Adopting the shorthand En to denote an electric multipolar
interaction of order n (E2 denoting the electric quadrupole,
for example), we now focus on the electrodynamic coupling
between two transition electric multipoles Em and En, the
former signifying the source decay and the latter, the detector
excitation. Magnetic transitions are to be considered later. For
example, in the specific case that prompted this study and
which best exemplifies the issues, m = 2 and n = 1 signify
electric quadruple emission registered with an electric dipole
detector. In this or any other such case, QED calculation
will deliver a quantum amplitude M ; for the entire system,
connecting the initial state i (excitation located at the source,
detector in its ground state) with the final state f (deactivated
source, detector in its excited state). The general result can be
cast as follows [11,12];

Em—E
Mfim "= EX’?ZI...am Val---ambl---bn(k’R)E(Bn;)bl...b,,’ “4)

using the convention of implied summation over repeated
Cartesian (lowercase subscript) indices. In Eq. (4), Eém) is
the transition multipole tensor of order m for atom &, and the
following defines the coupling tensor that engages E,, source
emission at A with E,, detection at B:

(_1)m+n71
Val...u,,,bl...b,, (k, R) = 47'[8() Vaz e Va,,, Vbz e Vh,,
e:l:ikR
X (—V26albl —+ ValVb])T. (5)

Here k = AE /hc, where AE is the energy released in source
decay, correspondingly acquired by the detector, and R is the
displacement vector defined by Rz — R4.

III. DIPOLE-DIPOLE COUPLING

In the most familiar case m = 1, n = 1, the result (5)
delivers the well-known solution for dipole-dipole coupling
[13]’ MJE[]_EI = H’A;al Valbl (k’R)'u’B;b| ’ Where;

ikR
V,, (k,R) = 4;8?{(1 — ikR)(8ayy — 3Ray Ry,
— (kR)* (a5, — R, Ra,) }. (6)

As is also the case for higher-order couplings, the retarded
result applies over all distances, accommodating readily
identifiable short-range (near-field, kR < 1) and long-range
(wave-zone, kR >> 1) asymptotes. While the former behavior
is commonly identified with Forster resonance energy transfer,
i.e., virtual photon transfer, and the latter with radiative
transfer involving a real photon, the two descriptions merge
seamlessly [14—17]. Thus, as the detector is moved outwards
from the source, away beyond the subwavelength near-field,
a progressively propagating character to the energy transfer
emerges.

In performing the calculation that leads to the E1-E1
result, there is neither any assertion nor an assumption that
the photon conveying the excitation to the detector has in
any sense a dipole character. Although it might be surmised
that the coupling photon conveys a single unit of angular
momentum (irrespective of the detector displacement from
the source)—consistent with the character of the source and
detector transitions—this is a conjecture whose extension to
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higher multipole transitions has significant pitfalls, as the
following analysis shows.

IV. QUADRUPOLE-DIPOLE COUPLING

A specific example that both illustrates the physics and
focuses attention on the key issues is the case of electric
quadrupole emission. It is evidently not yet widely recognized
that quadrupole decay releases radiation that is detectable not
only by a quadrupole detector but also by a dipole detector—in
fact a clearly nonzero result [12,18] emerges for the latter case
of E2-E1 coupling. Specifically, from (4) and (5) we find the
following;

M = 0 4nar Varass, (k. R)pigy, 7)
kR

e
Va|agb| (k,R) = 4

m[(3 — 3ikR — k*R*)(84,4, R,

®)

Interchanging A and B, the same form of result applies to
the detection of electric dipole radiation with a quadrupolar
detector. The nonvanishing result (7) is consistent with exper-
imental measurements of atomic quadrupole emission. There
are, indeed, many well-studied atomic spectral lines uniquely
attributable to electric quadrupole transitions, a well-studied
example being the 1Sy < ' D, transition in O%** [19]. There
has not been, it seems, any suggestion that the detection of such
radiation requires anything other than a conventional dipolar
detector. There are indeed no constraints on the nature of the
detector, other than those of an energy gap to match the photon
energy and a suitable disposition with respect to the photon
polarization.

On recognition that this and other such processes (E2-
E?2 and so on) are both fully allowed and addressed by
the general QED theory, and assuming that the source and
detector transitions are allowed by no other multipole orders,
questions of angular-momentum conservation inevitably arise.
In the following section, it is shown that the excitation of
the photodetector operates by the same mechanism that is
deployed in detecting any other form of light. In describ-
ing the detection of quadrupolar emission, for example, it
proves unnecessary, even potentially misleading, to introduce
the concept of a “quadrupole photon” [20]. With regard
to conventional detector measurements, such a designation
has a fundamentally unverifiable status. The rigor of the
mathematics underlying the QED description needs to be
reflected by a commensurate care in semantic distinction;
the act of radiation may legitimately be termed quadrupolar
with regard to the electronic states that the decay transition
connects, but that descriptor cannot be applied to single photon
measurements on the radiation thereby emitted.

V. IRREDUCIBLE TENSOR ANALYSIS

To make further progress, an irreducible tensor construction
is introduced. Although spherical tensors are commonly
engaged for the analysis of atomic multipole transitions [21],
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an irreducible Cartesian tensor formulation [22] significantly
facilitates a more immediate connection with the development
given above, and it conveys the same physical information. The
connection between the two representations is well established
[23].

The first step is a decomposition of the three tensor forms
in Eq. (4) into a sum of irreducible parts. In general, the
transformation properties of these irreducible terms, under
the symmetry operations of the relevant material system,
conform to irreducible representations that correlate with those
of integer angular momentum in a space of spherical symmetry.
A Cartesian tensor of rank n thus comprises irreducible
constituents of integer weights j in the interval (0 < j <
n), each j signifying the associated angular momentum; see
Fig. 1. The decomposition is trivial in the case of the electric
dipole and quadrupole moments since each is properly and
uniquely expressible as a natural tensor, i.e., one whose
angular momentum equals its rank, j = n, and which has
only (2j + 1) independent, nonvanishing components. As
applied to atomic multipole transitions, this property is a
direct reflection of the local isotropy. It is not, however, a
feature of any of the coupling tensors V(k,R) delivered by
Eq. (5); the entirety of the source-detector system which those
tensors engage is clearly of lower, nonspherical symmetry. For
example the familiar result (6) for E1-E 1 coupling comprises
irreducible constituents of weights 0 and 2; a prescription for
their determination is readily available [24].

An insight into the attributes of the various tensor weights
in each coupling tensor V(k, R) is afforded by recognizing in
the latter the structure of a power series in R. Exploiting this
feature, and using the results of detailed calculations [11,12],
it is possible to cast the coupling in the form of a series of
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FIG. 1. General representations of angular-momentum (a.m.)
coupling, tensors, and weights: (i) j, = n units of a.m.; (ii) j, =
m units; (iii) vector coupling generates integer values in the range m —
n < ji1 + j» < m + n; (iv) general tensor 7 of rank n accommodating
weights 0 < jiry < n; (v) natural tensor of rank n, comprising weight
Jjay = n alone; (vi) outer product of natural tensors of ranks m
and n, the result of rank m + n spanning weights in the interval
(m — n, m + n); (vii) inner product of rank m and n natural tensors,
the resulting rank m — n tensor carrying weight m — n alone; any
contributions from weights exceeding the rank vanish.
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terms in inverse integer powers of kR, expressible as

Vv k. R) = (47¢ —lkm+n+leikR
ay...ayby..b, \ Vs 0
m+n+1

< Y GR)TTWL (R, (9)
p=1

Here, the entire tensor and angular-momentum character of
the left-hand side is distributed between individual W®(R)
tensors (these being dimensionless in terms of physical
quantity), in each of which the superscript label serves to
identify the associated inverse power of kR. Again focusing
on the E2-FE1 case, for example, where m = 2, n = 1 and the
explicit coupling is given by equation (8), the index p on the
above summation runs from 1 to 2 4 1 + 1, signifying that
the coupling has terms running from R~' through to R™*.

Resolving each WP (R) into irreducible parts, it emerges
that the only nonvanishing terms are those whose weights ji,)
are delimited within the range (p — 1 < ji,) < m +n) [11].
For each value of j,,) of opposite parity to the tensor rank, i.e.,
where the sum m + n + j,,) is odd, each WP)(R) entails an
index antisymmetry and hence vanishes. Two examples will
serve to illustrate the decomposition.

(i) E1-E1: In the common case where m = 1 and n = 1,
the parity rule decrees that each term with j,) = 1 term is
forbidden, and the coupling has only the following nonzero
termsinp =1, 2, and 3;

p=1R":jn=02
p=2 (RD:jo=2
p=3 (R7): js =2

In each case the allowed values of j(,) are determined by
twin conditions, the range limitation (p — 1 < j,) < m +n)
and the parity rule. The p = 3 contribution carries the
highest inverse power of R and therefore dominates near-field
behavior; the corresponding value j3) = 2 signifies that in this
distance regime, precisely two units of angular momentum
are involved (essentially one that is coupled with the source
transition and another with the detector transition). The same
conclusion, concerning the angular momentum, is indeed
evident on inspection of Eq. (6); any weight 0 component
would involve contraction with §,,;,, which, with the angular
factor (84,5, — 3Ry Rp,) in the R~ and R~ terms—see
Eq. (6)—yields a vanishing result. Hence only weight 2
components contribute in the short-range.

(i1) E2-E1: Withm =2 and n = 1, the coupling has nonzero
terms in p = 1-4:

L (R joy = 1.3;
2, R :jo=13;
=3, (R): jz =3
4 R : juy=3
Here, the short-range contribution (p = 4) with juy = 3 is
consistent with a coupling that can accommodate an exchange
of three units of angular momentum—two engaging the source,
and one the detector. At longer distances, where lower inverse

powers of R become prominent, the coupling permits values
of both j) =1 and j,) = 3 for the angular momentum.
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Returning to the general case, and reappraising the tensor
contractions in Eq. (4) with regard to their irreducible
components, the first of several general conclusions can be
drawn. Consider the result of the following tensor contraction:

Fyy..,(k,R) = EL{)

Asay...ap

Vay.anby..o, (K, R). (10)

In the E'1-E1 case, F}, (k, R) physically signifies the retarded
electric (vector) field generated by dipolar decay in the source,
in accordance with the classical result [25,26]. More generally,
Fy, .5, (k,R) denotes a generated tensor field of rank r, and the
weights jr) that it comprises are determined from its E™ and
V(k,R) constituents by the usual rules of angular-momentum
addition [2]. The connection between the familiar rules for
the coupling of electronic angular momenta and the general
principles operating here are exhibited in Fig. 1. Taking into
account all possible values of p, it transpires that the reducible
tensor Fp, 5, (k,R) may convey any angular momentum in the
range 0 < jir) < n. However, with reference to Eq. (9) there
is, in addition, a clearly significant and characteristic distance-
dependence associated with the manifestations of each such
angular momentum.

(1) In the near-zone (kR < 1) it emerges that the term
in R"™*"*+1  the one with the highest inverse power of R
and which dominates V,, 4, 5,.5,(k,R), entails weight m + n
alone [since this relates to the highest value of p; the result
also follows from Eq. (5), k — 0 corresponding to the short-
range result; see the appendix]. In this case, Eq. (10) gives
Fp, . »,(k,R) as a product of natural tensors, producing a natural
tensor that delivers exactly n units of angular momentum.
The detector thus acquires the angular momentum necessary
to effect its multipolar electronic excitation by the source
field, irrespective of the multipolar character of the transition
involved in the detection;

(i) In the wave zone (kR > 1) the term with the lowest
inverse power of R (always R~1) dominates Va,..apby.. b, (K, R),
and the resulting Fp, 5, (k,R) entails a spectrum of integer
weightsin the range [0 < j) < n]. Given the exclusion of alter-
nate weights on index symmetry grounds, each allowed weight
in the generated field can deliver a corresponding quantity of
angular momentum. The multipolar electronic excitation of the
detector necessarily engages only the irreducible component
of the field that confers the requisite angular momentum.

In either case, of course, angular momentum is locally
conserved in both the source emission and detector excitation
quantum transitions; this reflects the spatial isotropy of
each atomic center, consistent with Noether’s theorem—see
Ref. [27]. As noted above, however, local isotropy is not a
feature that extends to the combined source-detector system.

Now consider the matrix element (4) represented as
Fbluﬁn(k’R)Egl;)b],,,b,l’ the scalar product of the source field
and the detector transition multipole—two tensors of equal
rank and known irreducible decompositions. In every distance
regime, Fj,  ,, (k,R) accommodates at least one weight jm =
n component—which, on vector addition to the weight n com-
ponent of the detector multipole, the natural tensor E gli,l by
produces a range of contributions, including | jz—n| = 0. This
is the term necessary to deliver a finite scalar, i.e., a nonzero
result for Eq. (4), signifying the quantum amplitude for a
complete photon transit.
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VI. PHYSICAL INTERPRETATION

The difference between near-zone and wave-zone behavior
exhibits the fact that the results of measurement on the
quantity of angular momentum conveyed by the tensor field are
modified on propagation beyond the near-zone. This feature
parallels other, better-known retardation effects, such as
the progression from a short-range to a long-range asymptote
in the form of distance dependence [12,13] and a correspond-
ingly diminishing longitudinal character of the electric field
[16]. It is also consistent with the angular quantum uncertainty
principle [28,29]: as a detector recedes, the decreasing angular
uncertainty in photon propagation direction is reflected in
an increasing range of values for the angular-momentum
content. A central conclusion and a range of corollaries now
emerge.

(1) There is no restriction on the order of multipole involved
in the detection of atomic decay fluorescence: specifically,
there is no constraint effecting a one-to-one correlation
between the transition multipoles involved in source decay
and detector excitation.

This result amplifies an earlier remark to the effect that,
whereas a process of atomic decay may legitimately be termed
multipolar with regard to selection rules for the electronic
transition, the same term cannot be applied to the emitted
radiation. Specifically, to assert that a quadrupole decay
transition |g) <— |p) produces a photon of uniquely identi-
fiably “quadrupolar” character is demonstrably unverifiable.
Furthermore, there are significant corollaries.

(i) It is impossible to uniquely imprint any multipole
character in a decay transition on a single photon or with
complete fidelity to communicate the angular-momentum
change associated with radiative decay of this kind to a remote
detector.

(iii) Whereas the character of multipolar emission shapes
the angular distribution of the radiation, and hence the location
dependence of any detector signal, such features are not
measurable by detection of any individual photon of the
emergent radiation.

To reinforce the second and third of the above assertions,
it is instructive to consider the application of time-reversal
symmetry to a simple example. The above assertions resolve an
apparent paradox that can arise when multipolar connectivity
is too loosely assumed. As has been shown, a photon
released by electric quadrupole emission at A can, on its
annihilation, produce dipolar excitation at B. If the photon
so employed were to be deemed a ‘“quadrupole” photon,
then the time-reversed process—dipolar decay at B leading
to the excitation of A—would afford the equally logical but
incompatible inference that the quadrupolar excitation |p) <«
|g) is effected by a “dipole” photon. The self-contradictory
nature of the description is evident; the photon responsible
would be ascribed a different multipolar character in each case.
In fact, apart from their opposing directions of propagation,
the two photons are not measurably different; each is a single
quantum of the same radiation field. The thought-experiment
powerfully demonstrates that, at the level of fundamental
quantum measurement, any “‘multipole photon” terminology is
fundamentally inconsistent with the principles of time-reversal
symmetry.
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VII. THE DETECTION OF MULTIPOLAR RADIATION

It is illuminating to introduce another perspective on the
main conclusions from the last section. The results certainly
exhibit the fact that, as the detector recedes, there are
identifiable physical consequences of a decreasing angular
uncertainty about the source-detector axis; however, there
are also consequences for mixed-origin angular momentum.
For any “point” source, such as an atom undergoing a decay
transition, it is well known that one can develop the radiating
electromagnetic field in the form of a multipolar expansion
cast in spherically symmetric radiation modes [30-33]. These
are definite parity eigenfunctions of the operators for the total
angular momentum of the field and its azimuthal component.
However, removal of a detector from the immediate vicinity
of the source generates increasing departures in form be-
tween spherical radiation modes centered on each location
as origin. In particular, eigenstates of the operator for the
azimuthal component of angular momentum are no longer
eigenstates of the correspondingly displaced operator—as has
recently been pointed out in connection with schemes for
the management of optical angular momentum [34]. Viewed
in this context, it is not surprising to find that a pure state
produced at the source as origin engenders a mixture of states
that can be registered as a spectrum of different angular-
momentum values, exactly consistent with the results of
Sec. IV.

The corollary that emerges from this perspective is that,
even if one could in principle design a remote detector
whose excitation could be achieved only by electromagnetic
fields of a given multipolar type, the registration of an
individual photon by such a detector could not generally
be interpreted as unequivocal evidence of a corresponding
multipolar origination in the prior process of photon emission.
The exception would be a multipolar detector either colocated
with the source, or else cleverly formed as a spherical shell,
centered on the source. Notwithstanding the fundamental
viability of the latter concept, the technical demands associated
with producing such a device appear daunting.

Since, therefore, one cannot demand a unique, one-to-
one correlation between multipolar characters in the decay
emission and detector absorption in conventionally engineered
systems, there is a compelling case for discarding the ter-
minology of “multipolar photons” as a useful descriptor of
the associated electromagnetic quanta. Moreover the specific
instance that has illustrated these principles, concerning the
detection of electric quadrupole emission by a regular dipolar
detector, is not only of fundamental importance — it is in
principle testable. Here is a pivotal question; ignoring relative
intensities, could the radiation emitted in such a decay be
experimentally differentiated from the dipole emission of
another source (at the same wavelength), using the same
detector? From the analysis presented here the answer is
that it would be possible only with a tantalizingly complex
detector. In any other case, the information to afford such
discrimination is not remotely communicable. This conclusion
establishes a previously unrecognized fundamental limitation
on the propagation of multipolar character, representing a
constraint on achievable information delivery in quantum
communication.
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VIII. MOLECULAR SYSTEMS

The isotropy of atomic systems, which engages irreducible
representations (irreps) of the full rotation group O(3), affords
a simple and direct one-to-one connectivity between angular
momentum and multipolar form. In the case of molecular
systems, necessarily of lower symmetry than atoms, such
a correspondence is no less rigorous — but the decay and
excitation transition moments typically have components that
span more than one irreducible representation of the molecular
point group. The general rule for an allowed transition is
that the product of the irreps for the initial and final states
(here the ground and excited states, or vice-versa) spans one
or more irreps under which components of the transition
moment transform, under symmetry operations determined by
the molecular structure [35].

For example in one important type of antenna molecule, a
carotenoid of C,; symmetry, components of the E1 electric
dipole operator transform as A, + 2B,. This signifies that
transitions to or from the A, and B,, excited states are electric
dipole allowed (assuming a totally symmetric A, ground state).
Equally, transitions to or from A, and B, states are E2, electric
quadrupole allowed. However, in planar dendrimers of D3,
symmetry, E1 components transform as Aj + E’, and E2
components as A}, + E' + E”, with the result that ground-state
transitions to or from states of E’ symmetry are equally E1
and E2 allowed. Consequently the decay of an E’ electronic
excited state cannot conceivably be said to deliver a photon
of either dipole or quadrupole character; there are no grounds
for adopting such a terminology, and even the atom-focused
arguments advanced in earlier sections become redundant. In
molecules of C, symmetry, moreover, symmetry-preserving
transitions are simultaneously allowed by all orders of electric
multipole [36].

The other issue that becomes important in molecular
systems is the possibility of transitions allowed by Mn
magnetic coupling. Whereas in atoms the magnetic multipoles
have opposite parity to their electric counterparts, and therefore
transform under different irreducible representations, the
situation is more complicated in systems that lack a center
of symmetry. In the case of chiral molecules (those lacking
any rotation-inversion axis), the irreps under which electric
and magnetic multipole operators transform become identical.
Any electric dipole-allowed transition in such a molecule is
also necessarily magnetic dipole allowed, for example—and
the effect is manifest in phenomena such as circular dichroism
that exhibit the chirality [37,38]. There are further intricacies
with achiral molecules such as the D3, case considered above,
where the decay of an E’ state proves to be both electric
quadrupole and magnetic dipole allowed. Clearly, there is no
sensible multipolar designation for the photons emitted in such
a process.

One further corollary has another experimental conse-
quence. If there were indeed to be a means of determining
quadrupole character in photons released by electric quadrupo-
lar decay, then it might be considered that with judiciously
chosen samples it should be possible to discriminate between
atomic and molecular or crystalline sources delivering fluo-
rescence of the same wavelength. The present analysis leads
to the inexorable conclusion that any such discrimination, on
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the basis of a different character in the emitted photons, is
manifestly impossible. One cannot anticipate achieving the
requisite fidelity of information transfer by detection of an
emitted photon.

IX. CONCLUSION

The designation of any multipolar character to photons, on
any assumption of a direct mapping from the character of the
responsible decay transition, is of very limited application
and is in general misleading. There are indeed numerous
cases where a decay transition is allowed by more than
one form of multipole—such as the M1-E2 interference
observable in Pb [39]. Moreover the received usage cultivates
a misconception; that there exists the possibility of long-
range communication of multipolar character, from an atom
or molecule in which an emissive or absorptive multipolar
transition occurs. To be clear, this does not undermine usage
of the term quadrupole radiation: the latter designates an
angular distribution in emission that does indeed reflect the
nature of the decay transition in atomic systems. However, at
the quantum level such spatial distributions are to be regarded
as serving only to identify the relative probabilities of emitted
photons propagating in different directions.

With the sole exception of dipole emission, each emitted
photon as it travels from its source conveys an angular
momentum that acquires a progressively broader spectrum of
values, signified by weights in the tensor field Fj, 5, (k,R).
The detection of any individual photon at a specific point
in space serves to demolish the directional uncertainty in
its emission, and the price is a loss of angular-momentum
information [40]. In this connection it is worth recalling
that, whereas in the multipole formulation the electric fields
associated with photons are orthogonally disposed to their
directions of propagation, this transversality does not hold
with respect to the displacement, R, between the source
and detector. With regard to the R the retarded source field,
which in the near-zone has a longitudinal character, acquires a
progressively transverse character as it propagates [16]. This
again reflects the diminishing uncertainty in identifying the
direction of photon propagation with R. Here, there is plenty of
scope for future work to address in more detail the correlation
between these behaviors.

ACKNOWLEDGMENTS

This analysis, long in gestation, has hugely benefited
from the encouragement and feedback of numerous indi-
viduals whose comments and interest have encouraged its
completion. Together with an anonymous referee, whose
insightful comments helped the final formulation, this list
includes Les Allen, Mohamed Babiker, Stephen Barnett,
David Bradshaw, Luciana Davila Romero, Roger Grinter, and
Gediminas Juzelitinas. In addition I record my indebtedness
to the late T. Thirunamachandran. Work in the QED group
at UEA is supported by funding from the Engineering and
Physical Sciences Research Council.

033825-6



OPTICAL ANGULAR MOMENTUM: MULTIPOLE ...

APPENDIX

Proof that %irr(l) Virimjr.jnk, R) is a natural tensor. From
—
Eq. (5),

Jim Vi iy s ko R) = e Vi oo

V; V-V,
€0 m ¥ Jn

) 1
X(—V Siljl +V51le)ﬁ. (Al)
The rank m + n tensor may comprise weights in the range (0,
m + n); to identify the result for each weight j,) <m +n
involves contraction with at least one Kronecker delta or one
Levi-Civita tensor.

In the case of contracting (A1) with a Kronecker delta, the
result is clearly zero if both its indices are in the set containing
ir---iyand j,--- ju, since this will generate a Laplacian, and
Vz(%) = —4m1§(R); the result is therefore zero for any finite
source-detector separation. In the case where the one index of
the deltaisinthesetis - - - iy, jo - - - j,—call it i;—and the other
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is i1, the del operator carrying the index i;, on contraction with
the bracketed term in (Al), gives V; (=V?38; ;, + V;,V;) =
—V;, V2 4+ V2V, = 0; the same conclusion of a zero result is
drawn if one index of the delta is from the set iy .. .7y, j2 ... jn
and the other is j;. Last, when the two indices of the
Kronecker delta are i) j;, the bracketed term in (Al) pro-
duces (—3V? + Vz)% = 8w 8(R), again leading to a vanishing
result.

The other case that arises is that of a contraction of (A1) with
a Levi-Civita antisymmetric tensor. Concerning the latter, at
least two of its indices must be in the full seti; ... i, J; - .. ju-
Effecting the contraction, the result will clearly be zero if
two or three of the Levi-Civita tensor indices are in the
setiy...im,j2...jn, or indeed if they include i, ji; no other
possibilities arise.

Consequently, since it is proven that the tensor defined by
(A1), i.e., the short-range limit of V;, ;.. j,(k,R), comprises
no contributions of weights less than m + n; it is a natural
tensor, of weight m + n alone. Q.E.D.
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