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Feasibility of Bell tests with the W state
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The feasibility of Bell tests depends to a large extent on the tradeoff of difficulty between the preparation and
the measurement of entangled systems. Polarization-entangled systems, though easy to measure, pose a relative
challenge in their preparation. The opposite holds with entangled energy eigenstates for which the preparation
is relatively straightforward. A way to perform measurements using a photodetector along the x, y, and z axes
(in a Bloch sphere picture) on such Fock-state qubits shall be worked out, taking the W state as our entangled
system. This will, by the same token, allow us to determine the minimum quantum efficiency required to perform
a conclusive Bell test with the W energy eigenstate.
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I. INTRODUCTION

From an experimental perspective, tests of nonlocality
present a two-fold challenge: The first is the production of
the entangled state and the second is its characterization. The
choice of how to physically implement the entangled state, be
it in terms of polarization, Fock states, or otherwise, should
therefore take into account this tradeoff in difficulty between
preparation and characterization. We shall, in this article, work
with a W state as our entangled system. The choice of this state
is motivated by the ubiquitous use of multiqubit systems in
quantum information [1], where the W state offers the added
advantage that entanglement of two of its qubits persists even
if the third mode suffers decoherence [2,3]. We shall express
it in Fock space as

|W 〉 = 1√
3

(|100〉 + |010〉 + |001〉). (1)

We note that this is a special case of the single photon,
n mode, W state, for which an “all-versus-nothing” test
of local realism was recently proposed (with the predicted
result being a violation of local realism) [4]. The preparation
of this three-mode, single-photon state can be achieved by
feeding a single photon into two consecutive beam splitters
with reflectivities of 1

3 and 1
2 , respectively. Had the W state

consisted of polarization qubits instead, its preparation will be
significantly more difficult [5]. Similarly, other proposals of
Bell tests of W states trade a relatively simple detection for a
complicated state preparation [6]. Given the relative ease with
which the W can be prepared in terms of Fock states, it then
remains to devise a way to characterize its entangled qubits.
The first goal of this article is to work out a way to project
qubits onto both the z and x axes of the Bloch sphere, where
in terms of Fock states

z− = |0〉, z+ = |1〉,
(2)

x± = 1√
2

(|0〉 ± |1〉).
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Projection onto the z basis is thus relatively easy as it
corresponds to a zero or one-photon number measurement
outcome from an avalanche photo diode. An x and y-basis
projection in this basis using a photo diode is nontrivial.

The need to project the qubits onto (in this case) two
orthonormal axes of the Bloch sphere stems from the tripartite
Bell inequality of Cabello [7] we seek to violate

0 � 1 + P (zi = −1, zj = −1) − P (zi = −1, xj �= xk)

−P (xi �= xk, zj = −1) − P (xi = xj = xk) � 1. (3)

(Here, we added unity to the original inequality for conve-
nience.) The indices ijk are used in two different ways. For
the first and fourth terms, the probabilities are summed over all
permutations of ijk. For the middle two terms, however, ijk

refer to a specific combination and are therefore fixed. In either
case, i, j , and k indicate distinct modes. The eigenvectors of
z and x are given in Eq. (2) and the associated eigenvalues
assumed when deriving Eq. (3) are ±1.

Theoretically, the inequality is violated by the W state by a
factor of 1.25. (Any local realistic model will predict a value in
the range 0 to 1, while the W state will achieve the value 1.25
[7].) However, because of experimental imperfections, this
factor may be significantly less, or even below unity, thereby
rendering local and quantum predictions undistinguishable in
the laboratory. The second goal of this article is thus to quantify
the minimum quantum efficiencies that allow for a violation
of Eq. (3). An analysis for the violation of bipartite local
realistic theories, much along the same lines, was undertaken
by Wieśniak and Żukowski [8].

The article outline is as follows. In Sec. II we shall work
out a way to perform measurements of a single qubit in the
three maximally noncommuting bases (sometimes referred to
as a set of mutually unbiased bases). Our proposed technique
bears some similarity to single-photon homodyning, except
that we are interested not in a quadrature amplitude [9], but
in the discrete x-basis projection. In Sec. III we shall extend
the discussion to the tripartite W state and derive projection
probabilities as functions of experimental parameters. Finally
in Sec. IV, Bell’s inequality will be numerically analyzed to
delimit the range of experimental imperfections that permit a
validation of the inequality.
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II. EXPERIMENTAL SELECTION OF BASES

A. Detection probabilities for a single qubit

Since photodetection is presently the only measurement
tool at our disposal at the single photon level, the probability
of detecting a given number of photons is the only statistic
that can be gathered. The projection of a qubit on some axis
of the Bloch sphere has then to be somehow related to the
probability of detection or no-detection of photons. A generic
qubit can be written |ψ0〉 = √

p|0〉 + ei�
√

1 − p|1〉 (where
0 � p � 1). Both the probability p and the quantum phase
� are, in general, unknown, a priori, but as was shown
[10,11] a mixing of the qubit with a coherent state |α〉 with
phase θ will generate beats in terms of |� − θ |, which will
allow us to extract information as to the initial orientation
of the qubit (Fig. 1). Let us explore this idea, applying a
setup that is similar to that used to characterize squeezed
states, namely an unbalanced homodyne measurement
[10,12–14].

For example, the probability of detecting no photons at
detector A in Fig. 1 is obtained by summing the projection
〈0,m, k|ψout〉 over all ancillary modes, labeled k and m

P (n = 0) =
∞∑

m=0

∞∑
k=0

|〈0,m, k|ψout〉|2

= e−β2η2
[p + (1 − p)(1 − t2η2 + t2β2η4)

+ 2
√

p(1 − p)βtη2 cos(� − θ )], (4)

where t(r) is the beam splitter transmittivity (reflectivity)
where r = (1 − t2)1/2 and we can, without any loss of
generality, assume that both are real and positive, β = |α|r , θ

is the phase angle of the coherent field as α = |α|eiθ , and η2

is the detector quantum efficiency.
In an experimental setting, laser phase diffusion will make

it difficult to keep the phase-difference � − θ constant over
time if the qubit and the laser come from independent sources
and propagate along independent paths to the mixing beam
splitter. However, by using the polarization degree of freedom
and making the qubit and the local oscillator copropagate,
but have orthogonal polarizations this stability problem can

FIG. 1. Setup of the four-port unbalanced homodyne measure-
ment that is used to create beats between the Fock-state qubit and
the coherent field. The second beam splitter is only shown to model
losses (since detectors in the real world are inevitably imperfect) and
is not present in the actual setup. The detector A in this theoretical
depiction is therefore assumed to be ideal.

be solved, as suggested in Ref. [11] and demonstrated in
Ref. [15].

B. Characterization of a qubit

Now that we can compute the probability of detect-
ing any given number of photons, we need to relate that
probability to the direction the input qubit |ψ0〉 has in the
Bloch sphere. That is, we need to know how to set up the
experimental parameters to project the qubit in either the z or
x basis.

The measurement of z projections is straightforward since
the z basis is the pointer basis in which the meter-environment
interaction Hamiltonian is diagonal [16]. It suffices to remove
the first beam splitter from Fig. 1 and check whether a photon
is detected (z+) or not (z−). In the x basis, however, photode-
tection only allows approximate projections and the homodyne
setup described previously is then needed. To this end we set
t → 1 and α → ∞ in such a way that |α|r = β = 1. Plugging
all these parameters into expression (4) and assuming an ideal
quantum efficiency, we obtain P (n = 0) as a function of �

(solid line in Fig. 2).

C. Rescaling of projective probabilities in the x and y bases

The method devised previously to conduct measurements
in the x basis is a priori unsatisfactory since it calls
upon approximate projectors. In this instance, we are only
“sure” by about 74% that we have x− if no photon is
detected.

Going back to Fig. 2, we see that if only a rescaling of the
P (n = 0) function can be legitimized, we can “stretch” the
74% certainty in measuring x− to a 100% certainty, thereby
allowing for a confident identification of the x projection of
the state. The way to legitimize such a rescaling is to check
that the experimental function Pexpt = P (n = 0) obtained in
Eq. (4) is strictly proportional to its theoretical counterpart
Ptheor = |〈x±|ψ0〉|2. This turns out to be indeed the case under
one crucial assumption, namely that the quantum efficiency be
close to unity, that is, η ≈ 1. In this case

Ptheor(x
±) = 1

2 [1 ± 2
√

p(1 − p) cos �], (5)
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FIG. 2. Probabilities for detection P (n > 0) and no-detection
P (n = 0) as functions of the quantum phase � of a single qubit.
The phase for the coherent field is fixed at θ = π . A horizontally
symmetric plot is obtained for θ = 0.
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and

Pexpt(x
±) = e−1[1 ± 2

√
p(1 − p) cos �], (6)

where we chose the additional parameters as t ≈ 1 and β = 1.
Hence

Ptheor(x
±) = κPexpt(x

±) ∀ |ψ0〉 ⇒ κ = e

2
. (7)

A slightly more sophisticated analysis, involving Eq. (4) and
the fact that the sum of the x+ and x− projection probabilities
for any qubit state should equal unity, gives the proportionality
factor

κ(η) = eη2

2 − η2 + η4
, (8)

for t ≈ 1 and β = 1. The proportionality factor κ(η) will
subsequently be used as a multiplicative constant to rescale
Pexpt to become the estimated probability of a projection
onto the x basis. The factor will ensure that for any quan-
tum efficiency, the sum of the two possible probabilities
for any orthogonal qubit projection is normalized to unity.
For example, the probability of an x− projection is given
by κ(η)P (n = 0 | t → 1, β = 1, θ = π ) or if one wants to
associate clicks rather than no-clicks to such a projection
κ(η)[1 − P (n � 1 | t → 1, β = 1, θ = π )]. Similarly, for an
x+ measurement, we shall use κ(η)P (n = 0 | t → 1, β =
1, θ = 0). One can similarly show that a y+ projection is
accomplished through the setting κ(η)P (n = 0 | t → 1, β =
1, θ = π/2) and a y− projection through κ(η)P (n = 0 | t →
1, β = 1, θ = 3π/2). With this scaling, our homodyne scheme
is proven to perform approximate projective measurements
onto the x or y basis, provided the quantum efficiency is
close to unity. Just how close η has to be to unity shall
be computed numerically in the next section. Before doing
so, we shall first investigate the projectors’ behavior under
loss.

The z-projection probabilities, being based in a straight-
forward photodetection, will have the following values as a
function of the detector quantum efficiency η2

P (z = 1|z+) = η2, (9)

P (z = −1|z+) = 1 − η2, (10)

P (z = 1|z−) = 0, and (11)

P (z = −1|z−) = 1, (12)

where P (z = 1|z+) is the probability of the projection result
z = 1, given that the measured state is z+. These probabilities
assume that the detector dark count rate is negligible.

The corresponding results for the x projector when β = 1,
t → 1, and p = 1/2 (the latter which corresponds to the x+
and x− states) is obtained from Eq. (4), rescaled by the factor
κ(η) as explained previously

P (x = 1|x+) = P (x = −1|x−)

= κ(η)P (n = 0 | t → 1, β = 1,� − θ = 0)

= 1

2

(
1 + 2η2

2 − η2 + η4

)
, and (13)

P (x = 1|x−) = P (x = −1|x+)

= κ(η)P (n = 0 | t → 1, β = 1,� − θ = π )

= 1

2

(
1 − 2η2

2 − η2 + η4

)
. (14)

We see that just as in the case with the z-basis projectors,
the projection errors grow with decreasing detector quantum
efficiency, but whereas there is an asymmetry between
the detection of the z+ and z− states, the situation is
symmetric for the x basis. As the quantum efficiency
goes down, the probability of the correct projections
P (x = 1|x+) = P (x = −1|x−) decreases and the probability
of the erroneous projections P (x = −1|x+) = P (x = 1|x−)
increase. When η = 0 both projections are completely
random, as expected.

III. EXTENSION TO THE W STATE

We have so far only dealt with the characterization of
individual qubits. The extension to the W simply appends
the apparatus depicted in Fig. 1 to each of the three modes
(Fig. 3). The initial state is then |W 〉 ⊗ |α1〉 ⊗ |α2〉 ⊗ |α3〉
and the probability of detecting ni photons in the ith
mode is

P (n1, n2, n3) =
∞∑
k,m

|〈n1n2n3,m1m2m3, k1k2k3|ψout〉|2

= 1

3
e−β2

1 η2
1
(β1η1)2n1

n1!
e−β2

2 η2
2
(β2η2)2n2

n2!
e−β2

3 η3
1
(β3η3)2n3

n3!

[
3 + t2

1 β2
1η4

1 − t2
1 η2

1 + t2
2 β2

2η4
2

− t2
2 η2

2 + t2
3 β2

3η4
3 − t2

3 η2
3 + t2

1

β2
1

n2
1 − 2t2

1 η2
1n1 + t2

2

β2
2

n2
2 − 2t2

2 η2
2n2 + t2

3

β2
3

n2
3 − 2t2

3 η2
3n3

+ 2 cos(θ1 − θ2)

(
β1t1η

2
1β2t2η

2
2 − β1t1η

2
1

t2

β2
n2 − β2t2η

2
2

t1

β1
n1 + t1t2

β1β2
n1n2

)

+ 2 cos(θ1 − θ3)

(
β1t1η

2
1β3t3η

2
3 − β1t1η

2
1

t3

β3
n3 − β3t3η

2
3

t1

β1
n1 + t1t3

β1β3
n1n3

)

+ 2 cos(θ2 − θ3)

(
β2t2η

2
2β3t3η

2
3 − β2t2η

2
2

t3

β3
n3 − β3t3η

2
3

t2

β2
n2 + t2t3

β2β3
n2n3

)]
. (15)
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FIG. 3. Overall experimental setup for measuring the state of the
W in different bases. Note that the local oscillator states (α1, α2,

and α3) in an experimental setup can be generated by splitting the
output of single laser into three modes, thereby ensuring their mutual
phase coherence. Recall that the beam splitters labeled with η are only
shown to model losses in the detection—they are not present in the
actual setup since detectors in the real world are inevitably imperfect.

Now that we have the probabilities of (no-)detection for
each of the three modes, we can select what projection we
want based on the experimental “recipe” we devised in Sec. II.
We summarize it here:

z basis: t = 1, n � 1 for z+, n = 0 for z−

x basis: t → 1, β = 1, θ = π for x−, (16)

θ = 0 for x+, n = 0.

Assembling all four probabilities that enter in Eq. (3), we can
evaluate numerically the middle term of the inequality, rescale
the x-basis projection probabilities according to Eq. (8), and
simulate the effect of errors in the experimental parameters.
Bell tests are then expected to be conclusive only if the middle
term of the inequality is outside the [0, 1] range predicted by
local theories.

IV. RESULTS

Assuming for now that all other experimental errors are
zero, the middle term of the inequality can be plotted as a
function of quantum efficiency η2, which we take—for the sake
of simplicity—to be uniform for all three detectors (Fig. 4).
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FIG. 4. Middle term of the tripartite Bell inequality as a function
of quantum efficiency. The dotted line delimits the upper value for
which the inequality is satisfied. The parameters t , β, and θ were all
assumed to have their nominal values.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Error in transmission coefficient

M
id

dl
e 

te
rm

 o
f B

el
l’s

 in
eq

ua
lit

y

FIG. 5. Middle term of Bell’s inequality as a function of the
transmission coefficient t . All other parameters are ideal.

Making the fair sampling assumption, we see that in
otherwise ideal conditions a minimum quantum efficiency
of approximately 69% is required to violate local realism.
Such a threshold is in the range of what photodetectors to
date are capable of. Takeuchi et al. reported a 88% quantum
efficiency Si shallow-impurity conduction-band detector [17],
Billotta et al. measured quantum efficiencies up to 72% in
Si single-photon avalanche diodes [18], and Rieke [19] quotes
efficiencies of up to 98% for Si:As block impurity band (BIB)
detectors with a reflective back surface.

Figure 4 assumes a W state as the input to the Bell
measurement setup and we argued that this state can relatively
simply be generated from a single photon state as explained
in Fig. 3. A legitimate question is how to generate the single
photon state. At present, the best way seems to be to first
generate a photon pair through spontaneous parametric down-
conversion (SPDC). The pairs are then produced randomly
in time. However, it is possible to herald the space-time
position of one of the photons if the other is detected at an
auxiliary photodetector. The state of the remaining photon will
then “collapse” to a single-photon state. A nonunity quantum
efficiency of the heralding detector will not degrade the
possible violation of the Bell inequality since, if the heralding
photon is not recorded, one simply does not record anything
from the three Bell measurement detectors in Fig. 3. Hence,
a nonunity quantum efficiency of the heralding detector will
simply reduce the rate of collecting data, but not degrade the
data. On the other hand, dark counts in the heralding detector
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FIG. 6. Middle term of Bell’s inequality as a function of the
quantum phase θ of the coherent field. All other parameters are ideal.
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FIG. 7. Middle term of Bell’s inequality as a function of β. All
other parameters are ideal.

will trigger a recording from the three detectors although no
photon was entering the setup, and such events, coming from
the separable state |0, 0, 0〉, instead of the nonseparable W

state, will reduce the middle term in Eq. (3). However, modern,
good grade, solid state, Si avalanche photodetectors have dark
count rates on the order of 25–100 Hz, whereas the photon-pair
production rate can be in excess of 106 Hz [20]. Hence, the
degradation of the middle term of Eq. (3) will be on the order
of a factor (106 − 100)/106 = 0.9999, which is imperceptible
within the resolution of Fig. 4.

Our result for high quantum efficiencies seems to confirm
the findings in Ref. [8] where the authors conclude that the
unbalanced homodyne measurements scheme used to measure
along the x axis is actually relatively robust under photon loss
(or equivalently, less than unity photodetector efficiency). This
is in spite of the fact that one will assume relatively strict
requirements in our case for two reasons. One is that while
the bipartite Clauser-Horne-Shimony-Holt (CHSH) inequality
(in the ideal case) can be violated by a factor 2

√
2/2 ≈ 1.41,

the tripartite inequality (3) can only be violated by the factor
1.25, so that the margin of error is smaller already from the
start. The second reason is that the inequality (3) requires
the coincident detection of three independent detectors, so a
deviation from an ideal characteristic of each detector will be
multiplied by three in the final inequality while in a bipartite
test of local realism the corresponding factor is two. The fact
that a violation can still be detected with a detector whose
quantum efficiency deviates substantially from unity makes
the prospects of implementing the nonlocality test suggested
in Ref. [4] realistic.

The introduction of experimental errors can also be
simulated, with the predictable result that it will deteriorate
the conclusiveness of the tests. Let us look at the effect
of these experimental errors one at a time, taking all other
parameters to be ideal. Consider, for example, an error 	t in
the transmission coefficient that ranges from 0 to 1 (Fig. 5).
At around 	t ≈ 0.3, the middle term of Bell’s inequality

enters the zone where locality cannot be disproved. A similar
situation arises for errors in the phase of the coherent state
where 	θ ∈ [π/3, 2π/3] (Fig. 6). Indeed, if the quantum
phase of the coherent field is off by π/2, beats between
|ψ0〉 and |α〉 will be least likely to occur and in fact we
are implementing a projection along the y axis rather than
the x axis, thereby defeating our measurement scheme Of all
errors in experimental parameters, 	β is the one which the
inequality is the most sensitive to (Fig. 7). This can be seen
from the rapid descent of the middle term of the inequality
into the “locality zone” starting at 	β ≈ 0.1.

V. CONCLUSION

In brief, we built a mathematical model of a Bell inequality
with a single-photon W state, which incorporates experimental
parameters. The prime challenge to this end came from the
fact that photon detection is the only measurement technique
available and that it, per se, does not seem useful in performing
measurements onto bases other than the photon number
basis. To remedy this, we adopted an unbalanced homodyne
measurement scheme, which acted as an approximate projector
onto the x or y bases in Fock space. Our scheme seems easier
and more realistic to implement experimentally than either of
the two schemes proposed in Ref. [4].

Our scheme was subsequently shown to be valid for such
projective measurements under the condition that we operate
with quantum efficiencies reasonably close to unity. This
scheme should be of value for general qubit measurements in
the bases complementary to the photon number basis, which
we have been taken to be the z basis. Hence, though we applied
such projections to the particular case of the W state, they can
be equally used for the characterization of any photonic qubits
of the form |ψ0〉 = √

p|0〉 + ei�
√

1 − p|1〉.
An expression for the middle term of the Bell inequality was

obtained, which was then numerically analyzed to simulate
the effect of experimental imperfections. The main result
was that a quantum efficiency of at least 69% is required
if any manifestation of nonlocality is to be shown with a
W state in Fock space. Additionally, the middle term of
Bell’s inequality was graphed as a function of experimental
errors, one parameter at a time, to visualize the effect of each
imperfection on the conclusiveness of Bell tests. In relative
terms, the second-most sensitive parameter after the detector
efficiency is the beating-field amplitude β = |α|t , which can
only err by 10% or so. On the positive side, this parameter
is easy to adjust experimentally since it only requires an
adjustment of the coherent field amplitude |α|.
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