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Two-path interferometry with coherent states and a squeezed vacuum can achieve phase sensitivities close to
the Heisenberg limit when the average photon number of the squeezed vacuum is close to the average photon
number of the coherent light. Here, we investigate the phase sensitivity of such states in the presence of photon
losses. It is shown that the Cramer-Rao bound of phase sensitivity can be achieved experimentally by using a weak
local oscillator and photon counting in the output. The phase sensitivity is then given by the Fisher information
F of the state. In the limit of high squeezing, the ratio (F − N )/N2 of Fisher information above shot noise to the
square of the average photon number N depends only on the average number of photons lost, nloss, and the fraction
of squeezed vacuum photons µ. For µ = 1/2, the effect of losses is given by (F − N )/N2 = 1/(1 + 2nloss). The
possibility of increasing the robustness against losses by lowering the squeezing fraction µ is considered, and
an optimized result is derived. However, the improvements are rather small, with a maximal improvement by a
factor of 2 at high losses.
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I. INTRODUCTION

Quantum states of light can improve the sensitivity of
phase measurements beyond the limits that apply to classical
light sources. The phase sensitivity of coherent light (and
hence of all classical light) is limited by the shot noise of
independent photon detection events to the standard quantum
limit of δφ2 = 1/N . This limit can be overcome by using
the multiphoton coherences of nonclassical light [1–13]. For
two-mode N -photon systems, the highest possible phase
sensitivity is achieved by maximally path-entangled states,
which are superposition states (|N ; 0〉 + |0; N〉)/√2 where
all photons are either in one path or in the other path of a
two-path interferometer [14–22]. The phase sensitivity of these
states defines the Heisenberg limit of δφ2 = 1/N2. Since no
N -photon states achieve a higher phase sensitivity, this is the
absolute limit of phase estimation for a fixed photon number
N [11].

Unfortunately, it is rather difficult to generate maximally
path-entangled states using the available sources of nonclas-
sical light [23–25]. It was therefore a significant discovery
that the interference of a coherent state and a squeezed
vacuum produces a high fraction of maximal path-entangled
states when the average photon number from the squeezed
vacuum is about equal to the average photon number of the
coherent light [26,27]. In particular, Pezze and Smerzi showed
that conventional two-path interferometry can achieve phase
sensitivities close to the Heisenberg limit even in the presence
of fluctuating total photon number [27]. These results seem to
put Heisenberg-limited phase estimation within the reach of
well-established quantum technologies. However, maximally
path-entangled states are very sensitive to photon losses, since
the loss of a single photon can completely randomize the
multiphoton coherence between the paths [28–30]. We can
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therefore expect that the Heisenberg-limited phase sensitivity
achieved by coherent light and squeezed vacuum will rapidly
decline as photon losses increase.

In the following, we investigate the effect of photon losses
on the phase sensitivity of the two-mode states generated by
interference of coherent light and squeezed vacuum in detail.
Assuming equal losses in both optical modes, we derive the
mixed state after losses and find an optimal phase estimator
based on the general analysis for quantum metrology using
mixed states [31]. We find that the Cramer-Rao bound giving
the maximal phase sensitivity of the state can be achieved
by a simple experimental setup using a weak local oscillator
field and photon detection. It is therefore possible to obtain
a phase sensitivity equal to the Fisher information F in an
experimentally feasible setup using only linear optics and
photon detection. In the limit of high squeezing, the ratio
(F − N )/N2 of Fisher information above shot noise to the
square of the average photon number N depends only on
the fraction of squeezed vacuum photons µ and the average
number of photons lost nloss. Thus the effect of photon losses
on phase sensitivities close to the Heisenberg limit has the
same dependence on the average number of photons lost,
regardless of the total average photon number N . In particular,
photon losses reduce the phase sensitivity for Heisenberg-
limited estimation at µ = 1/2 by a factor of 1/(1 + 2nloss).
Finally, we investigate the possibility of improving the Fisher
information by optimizing the squeezing fraction µ for a
given number of photons lost. However, the result shows
only small improvements, approaching a maximal increase
of Fisher information by a factor of 2 in the limit of high
photon losses.

II. EFFECTS OF LOSSES ON THE TWO-MODE
SQUEEZED-COHERENT STATE

Figure 1 shows a possible experimental setup realizing
Heisenberg-limited phase estimation with coherent light and
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FIG. 1. Illustration of Heisenberg-limited estimation of a small
phase shift φ with coherent light and squeezed vacuum in the presence
of linear losses. The probability that any given photon is lost between
generation and detection is given by the loss fraction σ .

squeezed vacuum in the input ports of a two-path interferom-
eter. Initially, mode â1 is in a coherent state |α〉 and mode
â2 is in a squeezed-vacuum state |S(r)〉 = Ŝ(r)|vac.〉, where
Ŝ(r) = exp[ 1

2 (râ2â2 − r∗â†
2â

†
2)] is the squeezing operator. In-

terference at the initial beam splitter then results in multiphoton
coherences between the two paths inside the interferometer,
as discussed in [26,27]. However, photon losses occurring
at any point between the generation and the detection of
the light fields will reduce these multiphoton coherences.
In the following, we assume linear losses with equal loss rates
in the two modes. It is then possible to represent the losses by
the loss fraction σ , defined as the probability that any given
photon is lost between generation and detection.

The effects of linear losses on the two input modes
correspond to interference with a vacuum state, followed by
a trace over the modes representing the losses. Since photon
losses from orthogonal modes are statistically independent,
it is possible to consider the effect of photon losses on the
two input modes separately. For the coherent state, the losses
simply reduce the amplitude α by a factor of

√
1 − σ , so

that the output amplitude is αred = √
1 − σα, and the density

matrix ρ̂1 of mode â1 after losses is

ρ̂1 = |αred〉〈αred|. (1)

In the case of the squeezed vacuum, losses change the variances
of the quadrature components x̂2 and ŷ2 of the field mode
â2 = x̂2 + iŷ2. The output is a Gaussian state with quadrature
variances of

4�x2
2 = σ + (1 − σ )e−2r ,

(2)
4�y2

2 = σ + (1 − σ )e2r .

In general, a Gaussian mixed state defined by the variances
�x2

2 and �y2
2 can be described by a squeezed thermal state,

ρ̂2 = Ŝ(rred)ρ̂th(λ)Ŝ†(rred), (3)

where the thermal state is given by

ρ̂th(λ) = (1 − λ)
∞∑
n

λn|n〉〈n|, (4)

and rred < r is the reduced squeezing parameter obtained from
the ratio of the variances after losses. In terms of the parameters

λ and rred, the variances of ρ̂2 are

4�x2
2 = 1 + λ

1 − λ
e−2rred ,

(5)

4�y2
2 = 1 + λ

1 − λ
e2rred .

Thus it is possible to determine the values of λ and rred

corresponding to an initial squeezing parameter r and a loss
probability σ from Eqs. (3) and (6).

The complete two-mode state after losses is given by the
product of the states in mode â1 and in mode â2,

ρ̂ = ρ̂1 ⊗ ρ̂2. (6)

The phase sensitivity achieved by this state can be analyzed
using the general formalism for mixed states [31]. It is then
possible to determine both the quantum Cramer-Rao bound of
phase estimation and the measurement procedure that achieves
this bound in the presence of photon losses.

III. PHASE ESTIMATION WITH MIXED STATES

Quantum phase estimation is performed by measuring a
phase estimator Â. If the average value of Â is chosen to
be zero at φ = 0, the phase derivative of the average gives
the ratio of the average of Â and the small phase shift that
quantum estimation seeks to detect. Thus the average phase
estimate 〈φest〉 = 〈Â〉/(∂〈Â〉/∂φ) converges on the correct
value φ as the number of measurements increases. However,
each individual measurement has a statistical error of δφ2

that determines how quickly the average of the measurement
results converges on the correct value of φ. In terms of
this measurement error, the phase sensitivity obtained with
a specific estimator Â is given by

1

δφ2
= |∂(Tr{Âρ̂})/∂φ|2

Tr{Â2ρ̂} . (7)

An optimal phase estimator Â maximizes this phase sensitivity
and achieves the quantum Cramer-Rao bound of the state ρ̂.
As was shown in [31], the optimal estimator is given by the
symmetric logarithmic derivative Ĝ of the density matrix ρ̂,
as defined by the operator relation

∂

∂φ
ρ̂ = 1

2
(ρ̂Ĝ + Ĝρ̂). (8)

Note that this relation does not uniquely define Ĝ if ρ̂ has
eigenvalues of zero. In that case, any operator Ĝ fulfilling
Eq. (8) is an optimal estimator. The maximal phase sensitivity
achieved by an optimal estimator Ĝ is equal to the Fisher
information F = 1/δφ2

opt of the quantum state ρ̂. The Fisher

information can be evaluated from Eq. (7) by using Â = Ĝ

and Eq. (8). The result is equal to the variance of the optimal
phase estimator Ĝ,

F = Tr{Ĝ2ρ̂}. (9)

Equations (8) and (9) summarize the results for quantum
metrology with mixed states obtained in [31] without the
explicit expansion into eigenstates of the density matrix used
in the original derivation. In general, these results apply to
any parameter φ that changes the quantum state ρ̂. In the
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specific case of a phase shift, φ is the parameter of a unitary
transformation exp[−iφĥ] generated by an operator ĥ. The
phase derivative of the density matrix is therefore given by the
commutation relation of ρ̂ and ĥ,

∂

∂φ
ρ̂ = −i(ĥρ̂ − ρ̂ĥ). (10)

To find an optimal estimator Ĝ for a given generator ĥ and a
given quantum state ρ̂, we have to solve Eq. (8) using the phase
derivative given by Eq. (10). This relation can be summarized
by

1
2 (Ĝρ̂ + ρ̂Ĝ) = −i(ĥρ̂ − ρ̂ĥ). (11)

For unitary transforms, an optimal estimator Ĝ is therefore
obtained when the anticommutation of Ĝ and ρ̂ has the same
form as the commutation of ĥ and ρ̂.

IV. DERIVATION OF AN OPTIMAL PHASE ESTIMATOR

We can now derive an optimal estimator for phase estima-
tion with coherent light and squeezed vacuum in the presence
of losses. The density matrix was derived in Sec. II, and the
generator ĥ for a two-path interferometer is given by half
the photon number difference between the two paths. In the
present context, the two-mode density matrix is a product of the
two-input-mode density matrices. It is therefore convenient to
express the generator ĥ in terms of the input modes â1 and â2,
which are equal superpositions of the modes describing the two
paths inside the interferometer. The photon number difference
between the two paths is then equal to an interference term of
the input modes â1 and â2. Specifically, it can be written as

ĥ = −i 1
2 (â†

1â2 − â
†
2â1). (12)

With this generator, Eq. (11) provides a relation between the
optimal estimator Ĝ and the two-mode state ρ̂ in terms of the
creation and annihilation operators of the input states,

Ĝρ̂ + ρ̂Ĝ = ρ̂(â†
1â2 − â

†
2â1) − (â†

1â2 − â
†
2â1)ρ̂. (13)

Since the density matrix can be written as a product of states
in mode â1 and mode â2, the effects of the operators â1 and
â2 on the states ρ̂1 and ρ̂2 can be determined separately. It is
then possible to derive a particularly simple form of Ĝ by only
considering the relations between single-mode Gaussian states
and the creation and annihilation operators of their respective
modes.

First, we consider the effects of the annihilation and creation
operators of mode â1 on the coherent state density matrix ρ̂1.
The coherent state |αred〉 is a right eigenstate of the annihilation
operator â1. It is therefore possible to replace the operator â1

operating from the left on ρ̂ and the operator â
†
1 operating

from the right with the complex number αred. The application
of â

†
1 to the coherent state |αred〉 changes that state into a

superposition of the original state with an amplitude of αred

and an orthogonal state that can be represented by a displaced
one-photon state. The creation operator can thus be written
as a sum of the coherent amplitude αred and an operator that

changes the initial state into an orthogonal state,

â
†
1 = αred + (â†

1 − αred). (14)

It is possible to separate the relation for the estimator Ĝ

given by Eq. (13) into two parts, one that leaves the coherent
state unchanged, and one that describes the transition matrix
elements between the coherent state and the displaced one-
photon state. The separation is achieved by writing the optimal
estimator as Ĝ = ĝ1 + ĝ2, where ĝ1 is the component of
the estimator associated with the transition matrix elements
in mode â1, and ĝ2 is the component of the estimator that
commutes with the coherent state ρ̂1. The two relations
defining ĝ1 and ĝ2 then read

ĝ1ρ̂ + ρ̂ĝ1 = −[(â†
1 − αred)â2ρ̂ − ρ̂â

†
2(â1 − αred)], (15)

ĝ2ρ̂ + ρ̂ĝ2 = −αred[(â2 − â
†
2)ρ̂ − ρ̂(â2 − â

†
2)]. (16)

To find ĝ1, we make use of the fact that (â1 − αred)ρ̂ = 0. It is
therefore possible to add or subtract multiples of this operator
and its self-adjoint operator to the right side of Eq. (15) without
changing the relation. The solution for the self-adjoint operator
ĝ1 obtained in this manner is

ĝ1 = −[(â†
1 − αred)â2 + â

†
2(â1 − αred)]. (17)

To find ĝ2, we make use of the fact that Eq. (16) only
includes operators acting on the state in mode â2. Therefore,
we only need to consider the density matrix ρ̂2 of the
squeezed thermal state. Since (â2 − â

†
2) = 2iŷ2 corresponds

to the antisqueezed quadrature component, the right side of
Eq. (16) corresponds to the commutation relation between
the quadrature ŷ2 and the density matrix ρ̂2. For Gaussian
states, this kind of commutation relation can be converted
into an anticommutation relation for a different quadrature
component. In the case of the squeezed thermal states given
by ρ̂2, the conversion is given by

−i (ŷ2ρ̂2 − ρ̂2ŷ2) = 1 − λ

1 + λ
e2rred (x̂2ρ̂2 + ρ̂2x̂2) . (18)

Comparison with Eq. (16) indicates that ĝ2 is a multiple of the
quadrature component x̂2. Specifically, Eq. (16) can be solved
by

ĝ2 = αred

2�x2
2

x̂2, (19)

where the coefficients λ and rred have been expressed in terms
of the quadrature variance �x2

2 using Eq. (6).
The optimal estimator Ĝ is given by the sum of ĝ1 and ĝ2.

Since ĝ1 is a quadratic function of the creation and annihilation
operators, and ĝ2 is a linear function of the operators of mode
â2, it is possible to express Ĝ as a quadratic function of the
field operators. Specifically, the result can be written as an
interference term of â2 and a field b̂,

Ĝ = b̂†â2 + â
†
2b̂, (20)

where the field b̂ is given by

b̂ = αred

(
1

4�x2
2

+ 1

)
− â1. (21)
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FIG. 2. Schematic setup for the observation of optimal phase
sensitivity obtained by coherent light and squeezed vacuum in the
presence of losses. The optimal phase estimation is realized by
subtracting a coherent amplitude of αred( 1

4 �x2
2 + 1) from the output

mode â1 using a local oscillator and a beam splitter with low
transmittivity T (BS3).

Experimentally, this estimator can be realized by subtracting
a coherent amplitude of αred( 1

4�x2
2 + 1) from the output field

in â1 using interference with a local oscillator. A possible
setup is shown in Fig. 2. At zero phase shift, the output modes
correspond to the input modes. A small displacement of the
coherent field mode â1 is realized by interference with a local
oscillator field at a beam splitter of very low transmittivity T

(BS3). Finally, the displaced mode b̂ and the output mode â2

interfere at a fourth beam splitter (BS4). The phase estimator
is then equal to the photon number difference in the output.

Interestingly, the estimator is a linear function of the de-
tected photon numbers. This is quite different from the optimal
phase estimation for pure states considered in the initial work
on Heisenberg-limited phase estimation with coherent and
squeezed light, where higher order moments of the detected
output photon number distribution were essential [27]. In the
context of general approaches to Heisenberg-limited phase
estimation, it has also been pointed out that sensitivities near
the Heisenberg limit can be achieved when standard homodyne
detection is used for two-mode squeezed vacuum inputs [32].
However, the estimator used in that proposal is a quadratic
function of the output intensity differences. Although the
optimized measurement obtained here could be seen as a
hybrid of photon detection and homodyne detection, it seems
remarkable that it achieves the Heisenberg limit through a
linear relation between output photon number difference and
phase estimate, in contrast to the nonlinear estimators of
both [27] and [32]. The present setup therefore represents
a major simplification of the phase estimation procedure for
phase sensitivities close to the Heisenberg limit, even in the
pure state case where the phase sensitivity is equal to that
obtained from direct photon counting in the output.

V. DEPENDENCE OF PHASE SENSITIVITY ON
PHOTON LOSSES

As mentioned in Sec. III, the Fisher information of the
quantum state ρ̂ is equal to the expectation value of the
squared estimator Ĝ. Using the result of Eq. (20), the Fisher

information of the squeezed-coherent state ρ̂ is found to be

Tr{Ĝ2ρ̂} = α2
red

4�x2
2

+ n2, (22)

where n2 is the average number of photons in the squeezed
mode â2 after losses. Here, the effects of losses are expressed
indirectly through the values of n2, αred, and �x2. The specific
effects of a loss probability of σ on the input state are given
by αred = √

1 − σα, n2 = (1 − σ ) sinh2 r, and Eq. (3). The
Fisher information can then be expressed in terms of the input
amplitude α, the input squeezing r , and the loss probability σ .
The result reads

F = (1 − σ )

(
α2

σ + (1 − σ )e−2r
+ sinh2 r

)
. (23)

In this representation of the Fisher information, the most
significant effect of the losses is the limitation of squeezing
effects represented by e−2r . However, it is difficult to see
how this limitation relates to the maximal phase sensitivities
achieved at equal intensities of coherent light and squeezed
vacuum. It is therefore convenient to express the result in
terms of average photon numbers instead.

The total average photon number after losses is given by
N = (1 − σ )(α2 + sinh2 r). To evaluate the distribution of
photons between the coherent light and the squeezed vacuum,
we introduce the squeezing fraction µ = (1 − σ ) sinh2 r/N ,
defined as the fraction of photons in the squeezed mode â2.
Finally, the effects of losses can be given in terms of the average
number of photons lost, nloss = Nσ/(1 − σ ). Since N is the
average photon number after losses, the total photon number
of the input state is given by the sum of N and nloss, as shown
in Fig. 3. The Fisher information is then given by

F = N2 4(1 − µ)µ

1 − e−2r + 4µnloss
+ N. (24)

Note that this phase sensitivity can be greater than N2, since
the actual Heisenberg limit for fluctuating photon numbers is
given by the average of the squared photon number, not the
square of the average photon number [33].

Since we are mainly interested in Heisenberg-limited phase
sensitivities with large photon numbers, it is reasonable to
assume that the squeezing levels will be high enough to
satisfy e−2r � 1. We can then neglect the r-dependent term
in Eq. (24) to obtain a particularly simple relation between
phase sensitivity and photon losses. Specifically, the Fisher
information above the standard quantum limit, F − N , is
given by a fraction of N2 determined only by the squeezing
fraction µ and the average number of photons lost. Since this
fraction does not depend on N , it provides a photon-number-
independent expression of the effects of losses on the phase
sensitivity of squeezed-coherent states. In the following, we

FIG. 3. Illustration of the definition of N and nloss. N is the
average photon number after losses.
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will refer to this expression as the enhancement of sensitivity,

F − N

N2
= 4µ(1 − µ)

1 + 4µnloss
. (25)

As reported in [26,27], equal intensities of squeezed vacuum
and coherent light (µ = 1/2) result in maximal multiphoton
coherences, including a significant fraction of maximally path-
entangled states. In the absence of losses, the enhancement of
sensitivity for these pure states is (F − N )/N2 = 1, the max-
imal value that can be achieved in the limit of high squeezing.
However, Eq. (25) also shows that photon losses rapidly reduce
this enhancement of phase sensitivity. Specifically,

F − N

N2

∣∣∣∣
µ= 1

2

= 1

1 + 2nloss
. (26)

This dependence of phase sensitivity on the average number
of photons lost reflects the fact that the loss of a single
photon completely randomizes the N -photon coherence of a
maximally path-entangled state, irrespective of the total photon
number N . Thus, the average loss of just half a photon already
reduces the enhancement of sensitivity to half of its original
value.

Equation (25) indicates that the effect of photon losses
on the enhancement of sensitivity (F − N )/N2 decreases
when the squeezing fraction µ is lowered. Specifically, photon
losses reduce the enhancement of sensitivity by a factor of
1 + 4µnloss, defined by the product of squeezing fraction and
photon losses. Therefore, states with lower squeezing fraction
µ are more robust against photon losses. Figure 4 shows a
comparison of the loss-dependent enhancements of sensitivity
(F − N )/N2 for different squeezing fractions µ � 1/2. At
low losses, the enhancement of sensitivity is maximal for
µ = 1/2 and decreases with decreasing µ. As losses increase,
the enhancement of sensitivity for µ = 1/2 drops to values
below the corresponding enhancements at lower µ, indicating
that states with lower squeezing fraction can have higher Fisher
information in the presence of losses. If the average number
of photons lost is fixed, the highest enhancement of sensitivity

FIG. 4. Effects of photon losses nloss on the enhancement of
sensitivity (F − N )/N2 for phase estimation at squeezing fractions
of µ = 1/2 and µ = 1/8, 1/32, 1/128. Since photon losses reduce
the enhancement of sensitivity by a factor of 1 + 4µnloss, states with
lower squeezing fractions are more robust against photon losses than
the states with maximal multiphoton coherence at µ = 1/2.

FIG. 5. Comparison of enhancement of sensitivity (F − N )/N
obtained at the optimized squeezing fraction µ = µopt with the
enhancement of sensitivity obtained at µ = 1/2.

given by Eq. (25) is found at a squeezing fraction of

µopt = 1

4nloss
(
√

1 + 4nloss − 1). (27)

The enhancement of sensitivity at this optimal squeezing
fraction µopt is given by

F − N

N2

∣∣∣∣
µ=µopt

=
(√

1 + 4nloss − 1

2nloss

)2

. (28)

Figure 5 shows a comparison of the enhancement of
sensitivity at µopt with the enhancement of sensitivity at
µ = 1/2. Although the reduction of squeezing fraction µ

results in higher enhancements of phase sensitivity, the relative
improvements seem to be rather small. Figure 6 shows the
improvement factor given by the ratio of the enhancement
of sensitivity at µopt and the enhancement of sensitivity at
µ = 1/2. The improvement factor is negligibly small at low
losses, with a value of only 1.072 at average losses of half a
photon. Thus, the optimization of the squeezing fraction can
do little to compensate for the reduction of the enhancement
of phase sensitivity to half its value at nloss = 1/2. As losses
increase, the improvement achieved by an optimization of the
squeezing fraction becomes more significant. However, the

FIG. 6. Ratio of the sensitivity enhancement obtained at optimal
squeezing fraction and the sensitivity enhancement obtained at µ =
1/2. The ratio is close to unity at low losses and approaches a maximal
value of 2 at high losses.
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improvement is limited by its asymptotic value of

limnloss→∞
(F − N )|µ=µopt

(F − N )|µ=1/2
= 2, (29)

so that the optimization of the squeezing fraction can at most
double the enhancement of phase sensitivity achieved at a
squeezing fraction of µ = 1/2. The phase sensitivity achieved
at µ = 1/2 therefore remains close to the maximal phase
sensitivity that can be achieved with any squeezed-coherent
state, even in the presence of very high photon losses.

VI. CONCLUSIONS

We have shown that photon losses reduce the phase sensitiv-
ity of the multiphoton coherences obtained from interferences
of equal intensities of squeezed vacuum and coherent light by
a factor of 1 + 2nloss, where nloss is the average number of
photons lost. This result corresponds to the expectation that
a single photon loss randomizes the coherence of maximally
path-entangled states, regardless of the total photon number
N . A small improvement of the robustness against losses can
be achieved by reducing the fraction of squeezed vacuum
in the total photon number. However, the improvements are

rather small and indicate that the robustness against losses
of N -photon states depends mainly on their phase sensitivity,
regardless of the type of state used.

We have also shown that the Cramer-Rao bound of
squeezed-coherent states in the presence of losses can be
achieved in experimentally feasible measurements using a
weak local oscillator field, linear optics, and photon counting.
Interestingly, the use of the local oscillator simplifies the phase
estimation procedure to an estimator linear in the detected
photon numbers. It may therefore present an interesting
alternative to direct photon counting in the output, even if
the improvement in phase sensitivity is negligibly small.

In general, our results confirm that phase estimation near
the Heisenberg limit can be performed with squeezed-coherent
light, but only if the average number of photons lost can be
kept low. Therefore, high efficiencies of photon transmission
and detection will be essential for quantum metrology close to
the Heisenberg limit.
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