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The past decade has seen frequent use of a modified nonlinear Schrödinger equation to describe ultrashort
pulse propagation in materials where free-carrier plasmas are present. The optical contribution from the resulting
free-current densities in this equation is often described using a classical Drude model. However, the ultimate form
of this contribution in the modified nonlinear Schrödinger equation is somewhat inconsistent in the literature. We
clarify this ambiguity by deriving the modified nonlinear Schrödinger equation from the classical wave equation
containing a free-current density contribution. The Drude model is then used to obtain an expression for the
complex free-carrier current density envelope with temporal dispersion corrections for ultrashort laser pulses.
These temporal dispersion corrections to the current-density term differ, to our knowledge, from all other models
in the literature in that they depend more sensitively on the value of the Drude free-carrier collision time. These
corrections reduce to the current models in the literature for limiting cases. Theoretical analysis and computer
simulations show that these differences can significantly affect the dynamic interactions of plasma absorption
and plasma defocusing for materials with free-carrier collision times on the order of one optical cycle (or less)
of the applied field.
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I. INTRODUCTION

In the past decade there has been significant interest in the
precise modification of materials on both the micrometer and
nanometer length scales [1–6]. High-intensity, ultrashort laser
pulses are now used in micromachining and nanostructuring
applications, because of the ability to make precise material
modifications both on the surface and in the bulk, often while
avoiding the onset of irreversible structural damage to the
material [7]. Ultrashort laser pulses are also an important
tool for discovering fundamental information about optical
and material processes that occur on time scales approaching
the limit of one optical cycle of the applied laser field [8,9].
The widespread use of ultrashort pulses for these purposes
necessitates the development of a more detailed and funda-
mental description of free-carrier effects in the femtosecond
time regime [10,11]. Ultimately, this must involve a systematic
investigation of the interplay between high-intensity ultrashort
pulse propagation and the presence of free-carrier plasmas
within the material [12,13]. For linearly polarized laser pulses,
a scalar electric field envelope equation has proven to be an
accurate and efficient method of describing ultrashort pulse
propagation in a variety of isotropic nonlinear materials [9,14].

Nonlinear envelope equations have been used to model
high-intensity laser pulse propagation for over three decades
[15–18]. A basic nonlinear Schrödinger equation (NLSE) can
account for optical diffraction, dispersion, and a Kerr-type non-
linear polarization [19]. As laser pulses became progressively
shorter in duration and correspondingly stronger in intensity,
authors found it necessary to account for high-order energetic
and temporal effects [14]. The energetic (high-intensity)
corrections include high-order nonlinearities, multiphoton
absorption, and free-carrier effects [14]. Temporal corrections
to the NLSE can be largely attributed to two articles. In
the first of these articles, Blow and Wood [20] provide a
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basic model for temporal delay of the nonlinear response, for
the material of fused silica in particular. In the second of these
articles, Brabec and Krausz [9] derive a nonlinear envelope
equation valid for laser pulses as short as one optical cycle
in duration. This modified NLSE accounts for high-order
dispersion, linear shock, and self-steepening without actually
specifying the form of the nonlinear polarization, allowing
for a direct incorporation of the Blow and Wood model for
nonlinear delay.

The inclusion of nonlinear delay and high-order energetic
corrections to the nonlinear polarization in the modified
NLSE of Ref. [9] is straightforward. However, inclusion of
free-carrier effects is somewhat ambiguous, as a free-current
density term was not included in the original wave equation
from which the modified NLSE was derived [9]. Contributions
of a Drude free-carrier current density to the modified NLSE
to date have frequently been of the form [5,7,21,22],

[
∂ξ

∂z

]
f c

= −σ

2
(1 + iω0τc)T̂ −1 [ρξ ] , (1)

where ξ is the complex electric field envelope, z is the
propagation axis, σ = q2τc/n0cε0m(1 + ω2

0τ
2
c ) is the cross

section of inverse Bremsstrahlung absorption, n0 = k0c/ω0

is the linear index of refraction, q is the free-carrier charge,
c is the speed of light in a vacuum, τc is the free-carrier
collision time, ω0 is the carrier frequency of the field, ρ

is the time-dependent free-carrier density, and T̂ −1 is the
inverse of a steepening operator T̂ = 1 + (i/ω0)∂t as defined
in Ref. [9]. The inverse steepening operator in Eq. (1)
is sometimes assumed to be unity for longer pulses (i.e.,
T̂ −1 → 1), a zeroth temporal order approximation common
in the literature [23–25]. In other recent articles the inverse
steepening operator is attached only to the imaginary part of
Eq. (1) [26,27]. We have investigated this matter and have
found that Eq. (1), and all the other aforementioned free-carrier
contributions, are limiting cases of a more general Drude
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free-carrier contribution:[
∂ξ

∂z

]
f c

= −σ

2
(1 + iω0τc)Ĝ−1 [ρξ ] , (2)

where Ĝ−1 is the inverse of a free-carrier dispersion op-
erator Ĝ = 1 + (i/ω0)g∂t derived in this article. Here, g =
−iω0τc/(1 − iω0τc) is a dimensionless complex constant that
distinguishes the free-carrier operator Ĝ from the steepening
operator T̂ . The time derivative coefficient of the T̂ operator
depends only on the carrier frequency ω0, whereas the Ĝ

operator additionally depends on the electron collision time
τc, which is a material parameter from the Drude model. We
also demonstrate that Eq. (1) is an accurate approximation
of Eq. (2) only in the limiting case where the collision time
is much greater than an optical cycle of the applied field.
Under such conditions these results suggest that the full Drude
model corrections of Eq. (2) are required to accurately describe
the propagation of ultrashort laser pulses through free-carrier
plasmas. This not only includes the pulses whose temporal
widths approach one optical cycle, but also any ultrashort pulse
whose initial temporal shape is steepened by linear or nonlinear
shock, as well as laser-plasma interactions that occur during
the process of filamentation [7,27,28].

In this article we present the derivation of a modified NLSE
with a Drude free-current density contribution following the
method of Ref. [9]. The resulting equation shows that the
contribution of free carriers is given by Eq. (2), results of which
are in turn compared analytically with the results predicted
by Eq. (1). Results from simulations that solve the modified
NLSE in fused silica below the threshold of permanent optical
damage are also presented and Eqs. (1) and (2) are compared
as descriptions of free-carrier effects.

II. DERIVATION OF A MODIFIED NLSE WITH
A FREE-CURRENT DENSITY

A linearly polarized laser pulse propagating through a
nonlinear isotropic medium with free carriers can be described
by the following wave equation [9,27]:

∇2 �E − 1

c2

∂2 �E
∂t2

= µ0
∂2 �P
∂t2

+ µ0
∂ �JF

∂t
. (3)

Here c is the speed of light in a vacuum and �E is the
electric field that satisfies the condition �∇ · �E = 0 [27]. On the
right-hand side of Eq. (3) are the two source terms where �P is
the total polarization and represents the optical contribution
of bound charges, while �JF is the free-current density
and represents the optical contribution of free carriers. The
nonlinear polarization, �PNL, is considered to be a perturbation
to the linear polarization, �PL, such that �P = �PL + �PNL.

A. The nonlinear envelope equation

Equation (3) is expressed in terms of a linear displacement
field �DL = ε0 �E + �PL. The resulting expression is Fourier

transformed into the frequency domain where �̃DL(ω) =
ε0(c2/ω2)κ̃2(ω) �̃E(ω) and κ̃(ω) = k̃(ω) + iα̃(ω)/2 is the com-
plex linear wave vector, k̃ is the real part of the wave vector,

and α̃ is the intensity-based absorption coefficient.

∇2 �̃E + κ̃2 �̃E = −µ0ω
2 �̃P NL − iωµ0 �̃JF . (4)

Next, all vectors are expressed in complex notation and in
terms of their respective complex envelope functions:

�E(�x, t) = 1
2 [ξ (�x, t) ei(k0z−ω0t) + c.c.]x̂, (5a)

�PNL(�x, t) = 1
2 [pnl(�x, t) ei(k0z−ω0t) + c.c.]x̂, (5b)

�JF (�x, t) = 1
2 [jf (�x, t) ei(k0z−ω0t) + c.c.]x̂, (5c)

where ω0 is the carrier frequency, k0 is the real part of
the complex wave vector, that is, Re[κ̃(ω0)], and z is the
propagation axis. Equations (5a)–(5c) are Fourier transformed
to the frequency domain and substituted into Eq. (4). The
derivatives along the propagation axis are then taken, the
backward propagating elements are neglected, and the scalar
product with the x̂ direction is taken to yield a scalar expression
in terms of the envelope functions.[∇2

⊥ + ∂2
z + 2ik0∂z + κ̃2(ω) − k2

0

]
ξ̃ (�x, ω − ω0)

= −ω2µ0p̃nl(�x, ω − ω0) − iωµ0j̃f (�x, ω − ω0). (6)

κ̃(ω) is Taylor expanded about the carrier frequency ω0, and
Eq. (6) is inverse Fourier transformed back into the time do-
main. The equation is then further transformed into the retarded
time frame traveling at the group velocity vg = 1/∂ωk̃(ω0) of
the pulse; that is, z′ = z is the transformed propagation axis
and τ = t − z/vg is the retarded time coordinate. The equation
is now rearranged to read(∇2

⊥ + ∂2
z′ + 2ik0Û∂z′ + 2k0ÛD̂b + D̂2

b

)
ξ (�x, τ )

= −µ0ω
2
0T̂

2pnl(�x, τ ) − iµ0ω0T̂ jf (�x, τ ), (7)

where D̂b is the bound charge linear dispersion operator, and
Û and T̂ are steepening operators defined by

D̂b = i
α0

2
− α1

2
∂τ +

∞∑
m=2

km + iαm/2

m!
(i∂τ )m (8a)

Û = 1 + i
k1

k0
∂τ (8b)

T̂ = 1 + i
1

ω0
∂τ , (8c)

where km = ∂mk̃/∂ωm|ω0 and αm = ∂mα̃/∂ωm|ω0 . The slowly
varying-wave approximation (SVWA) is now applied, that
is, |∂z′E| � k0|E|, allowing us to neglect the second-order
derivative along the propagation axis [9]. The equation is then
rearranged to read

Û
∂ξ

∂z′ = i

[
∇2

⊥
2k0

+
(

Û + D̂b

2k0

)
D̂b

]
ξ (�x, τ )

+ i
ω0 T̂ 2

2n0ε0c
pnl(�x, τ ) − T̂

2n0ε0c
jf (�x, τ ). (9)

In principle, this equation may now be solved for the
pulse envelope ξ once pnl and jf are specified. Equation
(9) is in fact the nonlinear envelope equation used by
some authors in the literature [7,21,29–31]. However, it is
common to make additional approximations that simplify this
expression. In transparent materials, it is generally the case
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that (D̂b/2k0)ξ � ξ . Furthermore, the SVWA requires that the
condition |1 − ω0k1/k0| � 1 be satisfied in order to describe
propagation of pulses with temporal durations approaching the
limit of one optical cycle [9]. If this criterion is satisfied, then
the approximation Û ≈ T̂ becomes applicable. In fused silica,
for example, ω0k1/k0 ≈ 1.0095 for 800-nm light and the above
condition is sufficiently satisfied. Once these approximations
are applied, the equation is multiplied by the inverse steepening
operator T̂ −1 and takes the simpler form:

∂ξ

∂z′ =
(

i

2k0
T̂ −1∇2

⊥ + iD̂b

)
ξ (�x, τ )

+ i
ω0 T̂

2n0ε0c
pnl(�x, τ ) − jf (�x, τ )

2n0ε0c
. (10)

Equation (10) is now identical to the nonlinear envelope
equation derived in Ref. [9], but in System International (SI)
units and with the addition of a free-current density term. It
is notable that no steepening operators act on the free-current
density envelope.

This does not mean to imply that there are no temporal
corrections necessary to correctly account for ultrashort pulses
propagating through a free-carrier plasma, as per the zeroth-
order approximation of Eq. (1). However, if such corrections
are necessary, Eq. (10) predicts that they must arise from within
the free-current density envelope itself. Such corrections will
depend explicitly on the model one uses to calculate the
free-current density. Also, if multiple sources of free-current
densities exist (e.g., a free-electron gas or an ionization
current) then jf represents the sum of all of their individual
contributions. As specific examples, envelopes for a Drude-
type free-current density as well as a photoionization current
will be derived in the following subsections.

B. The photoionization current density envelope

An important process in high-intensity laser pulse propa-
gation is photoionization, which often produces the first free
charges in an otherwise neutral, nonconducting material [13].
In a strongly insulating medium this may require the simulta-
neous absorption of multiple photons to excite an electron from
the valence band to the conduction band. If the instantaneous
intensity within the pulse is in excess of ∼1014 W/cm2, then
ionization processes can become strongly dependent on the
absolute phase of the pulse, thereby invalidating an envelope
treatment in this regime [8]. However, at lower intensities
a time-averaged photoionization absorption is ubiquitous in
the modified NLSEs of the literature. Here, there also exists
some ambiguity in the form of this contribution (see, e.g.,
Refs. [5,21,23,32]). We therefore derive an expression for the
complex envelope of a time-averaged photoionization current
density �JPI(�x, t).

The optical power loss per volume from photoionization
is �JPI · �E. This quantity, when time-averaged, is expressed in
complex envelope notation and directly related to the energy
required for valence electrons to cross the forbidden gap U at a
number per volume photoionization rate of WPI; (1/2)j ∗

pi ξ =
WPIU [33], where jpi is the photoionization current den-
sity envelope. In terms of the intensity I = (1/2)n0ε0c|ξ |2,
the resulting current density envelope in the retarded time

frame is

jpi(�x, τ ) = n0ε0c
WPIU

I
ξ (�x, τ ). (11)

Equation (11), when substituted into Eq. (9) or Eq. (10), is in
agreement with the form of the photoionization contribution
to the modified NLSE most commonly used in the literature
[7,21,22,24–27,29–31,34].

C. The Drude free-current density envelope

An expression for a plasma fluid contribution to the
free-current density envelope jf (�x, t) will now be derived.
A current density vector for a free-carrier fluid �JFC in an
electrically neutral medium can be described by an equation
of force density according to the Drude model [27],

∂

∂t
�JFC(�x, t) + 1

τc

�JFC(�x, t) = q

m
�F (�x, t). (12)

Here, τc is the characteristic free-carrier collision time, m

and q are the respective mass and charge of the individual
free carriers, �F (�x, t) = qρ(�x, t) �E(�x, t) is the applied force
density, and ρ is the free-carrier number density. Also, it
is convenient to define �F in complex envelope notation
where f (�x, t) = qρ(�x, t)ξ (�x, t) is the applied force density
envelope function. Equation (12) is Fourier transformed into
the frequency domain, the complex envelope expressions are
substituted and phase matched, the scalar product with the x̂

direction is taken, and the free-carrier current density envelope
jf c is related to the force density in frequency space.

j̃f c(�x, ω − ω0) = q

m

(
τ−1
c − iω

)−1
f̃ (�x, ω − ω0). (13)

The (τ−1
c − iω)−1 quantity in Eq. (13) is Taylor expanded

about ω0 and the entire equation is inverse Fourier transformed
back into the time domain. An investigation of the analyticity
of the expansion in frequency space shows that it will converge
for pulses as short as one optical cycle in duration as well as for
all values of τc, making the result applicable in any situation
where Eq. (10) is valid. After a transformation into the retarded
time frame the final result is

jf c(�x, τ ) = q2τc

m

(
1 + iω0τc

1 + ω2
0τ

2
c

)
Ĝ−1[ρ(�x, τ )ξ (�x, τ )], (14)

where

Ĝ−1 =
∞∑

m=0

(−i

ω0
g∂τ

)m

=
(

1 + i

ω0
g∂τ

)−1

(15)

is the inverse free-charge dispersion operator in Eq. (2),
and g = (−iω0τc)/(1 − iω0τc) is a dimensionless complex
constant that distinguishes the operators T̂ and Ĝ. Substituting
Eq. (14) into Eq. (10) gives the stated result of Eq. (2),
where the cross section of inverse Bremsstrahlung absorption
σ = q2τc/n0cε0m(1 + ω2

0τ
2
c ) and n0 = k0c/ω0 is the linear

index of refraction.
The dispersion corrections for free carriers as predicted by

Ĝ are clearly distinct from the other steepening operators T̂

and Û , in that the time derivative coefficient of Ĝ contains
both real and imaginary parts. This distinguishing trait is
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FIG. 1. The magnitude of the real (solid line) and the imaginary
(dashed line) parts of the dimensionless constant g as a function of
the characteristic free-carrier collision time τc scaled by the optical
cycle Toc of the applied field.

ultimately traceable to the different physical origins of the
respective operators. The operator T̂ originates from residual
time derivatives on the right-hand side of Eq. (3), the operator
Û originates from linear dispersion relations of bound charges
and a coordinate transformation, while Ĝ originates from
dispersion relations of free charges according to the Drude
model.

Since it has already been established that the approximation
Û ≈ T̂ is widely applicable then perhaps the same is true
of Ĝ. This, however, would require that the constant g ≈ 1,
which is clearly not the case for collision times on the order
of the optical cycle, Toc = 2π/ω0, or less. Figure 1 shows the
magnitude of the real and imaginary parts of g as a function
of τc/Toc. It is therefore worth examining whether collision
times on the order of one optical cycle have been published
in the recent literature. Table I shows a list of free-carrier
collision times measured in experiment or used in simulation
for a variety of materials in the recent literature. Note that
many of these collision times are indeed on the order of one
optical cycle or less.

It should be emphasized, however, that if one examines the
Ĝ operator in the limit of τc � Toc then Ĝ → T̂ and Eq. (1) is
recovered. More importantly, in the same limit Eq. (14) reduces
to the result derived in Ref. [27], which uses an operator
expansion in time that requires the condition ω0τc � 1 to
converge. Note that such a condition would not be satisfied
for the lower collision times listed in Table I. Additionally,
in the extreme limit of zero dissipation (i.e., τc → ∞),
then jf c(�x, t) → i(q/mω0)T̂ −1[ρ(�x, t)ξ (�x, t)], which is the
limiting case for a plasma of noninteracting particles [38].

D. The modified NLSE

To fully characterize Eq. (10), a form for the nonlinear
polarization envelope must be specified. In this work the non-
linear polarization derived in Ref. [20] is selected. Combining
this with the free-carrier and photoionization currents derived

TABLE I. A list of electronic collision times τc provided in
recent literature for experiments and simulations using 800-nm light.
Collision times are shown in units of fs as well as number of optical
cycles for the 800-nm wavelength. Also shown is the specific material
for each collision time and references from which the collision times
are taken or calculated.

τc (fs) τc/Toc Materials References

0.2 0.075 Fused silica [35]
0.4 0.15 Fused silica, epithelium [36]
0.7 0.26 Stroma [36]
1.0 0.37 Fused silica [25]
1.27 0.48 Fused silica [5]
1.7 0.64 Fused silica [37]
2.12 0.79 Sapphire [32]
3.0 1.12 Water [21]
10 3.8 Fused silica [7,22]
20 7.5 Fused silica [27]
23.3 9.4 Fused silica [24]
350 112 Air [23]

in Secs. II B and II C a modified NLSE is obtained,

∂ξ

∂z′ = i

2k0
T̂ −1∇2

⊥ξ + iD̂bξ + i
k0ε0cn2

2
(1 − fr ) T̂ |ξ |2ξ

+ i
k0ε0cn2

2
fr T̂

[∫ τ

−∞
dτ ′R(τ − τ ′)|ξ (τ ′)|2

]
ξ

− σ

2
(1 + iω0τc)Ĝ−1 [ρξ ] − WPIU

2 I
ξ. (16)

Here, n2 is the intensity-based nonlinear index of refraction,
fr is the fraction of the Raman contribution to the nonlinear
polarization, and R(τ ) is the Raman response function derived
in Ref. [20],

R(τ ) = τ 2
1 + τ 2

2

τ1τ
2
2

e−τ/τ2 sin(τ/τ1),

where the constants τ1 and τ2 are adjustable parameters
chosen to provide an adequate fit with the Raman-gain
spectrum [16]. The nonlinear polarization term in Eq. (16) now
accounts for self-focusing, self-steepening (nonlinear shock),
and stimulated Raman scattering. It should be emphasized
that some recent works suggest that saturation of nonlinear
refractive effects may occur via fifth-order processes at in-
tensities approaching 1018 W/cm2, particularly in air [39,40].
In such cases higher-order effects should be included in the
nonlinear polarization envelope. However, this article will
henceforth give special consideration only to materials where
the nonlinear polarization of Ref. [20] has demonstrated good
agreement with experiment. For such materials, Eq. (16) is the
modified NLSE we propose as the generally correct choice for
ultrashort pulse propagation through regions of dense plasma.
The remainder of this article will explore the significant
differences that arise from using Eq. (1) as the free-carrier
contribution to the modified NLSE instead of Eq. (2) and how
such differences might arise in experiment.
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III. ANALYSIS OF FREE-CARRIER CONTRIBUTIONS
TO THE MODIFIED NLSE

This section will explore the predictions of Eqs. (1)
and (2) as descriptions of free-carrier optical effects. It is
instructive to examine the corrections to absorption and phase
separately when time derivatives of the complex field envelope
are present. Therefore, by taking the free-carrier temporal
correction operators T̂ −1 and Ĝ−1 to first order, the changes in
intensity, I , and spatio-temporal phase, φ, with respect to the
propagation axis are:[

∂I

∂z′

]
f c

= −σρI − σβτc

[
ρ̇I + ρ

İ

2

]
− σρIη

φ̇

ω0
(17a)

[
∂φ

∂z′

]
f c

= −σ

2
ω0τcρ + ση

2ω0

[
ρİ

2I
+ ρ̇

]
− σ

2
βτcρφ̇, (17b)

where all dotted terms indicate time derivatives, and β and
η are dimensionless constants that again distinguish between
the descriptions of Eqs. (1) and (2). Table II lists the values
for the constants η and β for three different descriptions of
free-carrier effects. If Eq. (1) is chosen as a description of
free-carrier effects then these constants are simply β = η = 1
and this description will henceforth be referred to as model
I. If instead Eq. (2) is chosen as a description of free-carrier
effects then the two constants are related by η = β + 1 where
β = (ω2

0τ
2
c − 1)/(1 + ω2

0τ
2
c ) and this will be referred to as

model II. Additionally, a zeroth temporal order approximation
of both models I and II (T̂ −1 = 1 and Ĝ−1 = 1, respectively)
is shown for comparison and will be referred to as model III.
In this case there are no time derivative corrections to the free-
carrier contribution and the constants are therefore η = β = 0.
Table II also introduces a color scheme (online) that will be
used to distinguish between the three models in the data to
be presented throughout this article: model I shown in blue,
model II shown in red, and model III shown in black.

Figure 2 shows the numerical value of β as a function
of τc/Toc for model II. As expected, for collision times of
one optical cycle or less, the value of β for model II shows
considerable deviation from unity, and thus models I and
II are not in agreement in this regime. For collision times
greater than two optical cycles, Fig. 2 shows that models I
and II will be in very good agreement on the value of β = 1.
However, agreement between the models for the constant η is
a very different matter. In fact, models I and II only agree
on the value of η at a single collision time of τc = ω−1

0 ,
which is only a fraction of an optical cycle and simultaneously
where β = 0 for model II. Furthermore, models I and II will
disagree on the value of η by a factor of two for any collision

TABLE II. Three different models of free-carrier effects used in
this article and their respective values for the constants η and β in
Eq. (17).

Model I Model II Model III
(red online) (blue online) (black online)

Eq. (1) Eq. (2) Eq. (1), T̂ −1 = 1
η = 1 η = β + 1 η = 0
β = 1 β = (ω2

0τ
2
c − 1)/(1 + ω2

0τ
2
c ) β = 0

FIG. 2. (Color online) The dimensionless constant β for model II
as a function of the collision time scaled by the optical cycle of the
applied field. The dotted red line represents model I, the dashed blue
line represents model II, and the solid black line represents model III,
shown for comparison. The grey dot indicates the collision time at
which models II and III are in exact agreement for the value of β = 0.

time greater than two optical cycles, thereby extending the
range of collision times where such differences could be
significant. Here it is important to recall that the cross section
of inverse Bremsstrahlung absorption, σ , is also a function
of the collision time and will decay as the imaginary part of
g decays for increasing τc (see dashed line in Fig. 1). This
ensures that differences between the respective calculations of
η will become gradually less significant as one approaches the
limit of small dissipation (i.e., τc � Toc).

Equation (17) allows one to determine which pulse at-
tributes will accentuate the differences between models I
and II. For example, a strongly chirped pulse (φ̇ ∼ ±ω0)
will make contributions to the spatio-temporal phase [the
third term on the right-hand side of Eq. (17b)] equal in
magnitude to that of the zeroth temporal order [first term on
the right-hand side of Eq. (17b)]. However, in the case where
τc = ω−1

0 this entire contribution is eliminated in model II
because β = 0 under that description. The same is true for the
plasma generation and pulse steepening term of Eq. (17a), the
second term on the right-hand side. If instead collision times
greater than one optical cycle are adopted, then β ≈ 1 for
models I and II while their respective values for the constant
η differ by a factor of two. Here, strongly chirped pulses
will make contributions to plasma absorption [Eq. (17a)] of
similar magnitude to the zeroth temporal order, but the chirp
contribution of model II will be twice as strong as the model
I contribution. Analogously, the same is true for the plasma
generation and pulse steepening terms of Eq. (17b).

It should be emphasized that any dissimilarities between the
models of free-carrier effects will be comparatively stronger
on the trailing edge of the pulse, because the plasma density ρ

has had more time to accumulate. Note that on the trailing
edge of the pulse, İ will be negative by definition, while
the sign of the plasma generation rate ρ̇ will depend on the
description one uses to calculate ρ as a function of time. Also,
it will often be the case that φ̇ will be negative on the trailing
edge of the pulse due to self-phase modulation (φ̇ ∼ n2İ ) and
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plasma-induced blue shifting [23,41]. Under such conditions,
Eq. (17) predicts that model I will significantly mischaracterize
the effects of plasma absorption and defocusing on the trailing
edge of the pulse. It is notable that the value of the collision
time has been interpreted as a measure to characterize the
balance between plasma absorption and plasma defocusing [7].
This being the case, model I will significantly mischaracterize
the balance of plasma absorption and defocusing for a large
range of collision times currently used in the literature. These
effects are detectable by examining phase accumulation and
energy absorption during ultrashort pulse propagation, which
is addressed using numerical simulation as described in the
next section.

IV. DESCRIPTION OF SIMULATIONS

In order to explore how the different models of free-
carrier effects compare with other ultrashort optical processes,
simulations have been performed solving Eq. (16) in fused
silica at a peak laser wavelength of 800 nm. This material and
wavelength were chosen because the optical properties of fused
silica are well characterized in the literature for 800-nm light.
Additionally, Table I shows that the values of the collision time
for fused silica used in the literature span over three orders of
magnitude, encompassing collision times much less than, on
the order of, and much greater than a single optical cycle for
an 800-nm field, making it an ideal material for this study.
Table III lists the optical and material parameters that are used
for every simulation reported in this article.

Discrepancies between models I and II are examined
by simulating the propagation of ultrashort pulses through
100 µm of fused silica. These simulations have been organized
to search for such differences over a variety of pulsewidths
and collision times. Differences in the results predicted by
models I and II should scale inversely with the pulsewidth.
Therefore, simulations are performed for pulses with full
width half-maximum (FWHM) pulsewidths of τfwhm = 10, 20,
and 40 fs. For each value of the pulsewidth, simulations
are performed at 15 free-carrier collision times ranging from
0.2–16.0 fs (i.e., 0.075–6 optical cycles), thus encompassing

TABLE III. A list of the optical and material parameters used for
all the simulations reported in this article. Material parameters are
those for fused silica [5].

Symbol Description Value Units

λ Initial wavelength 800 nm
wr Initial beam waist 75 µm
I0 Initial peak intensity 5.3 × 1013 Wcm−2

Lz Sample length 100 µm
n0 Linear refractive index 1.45
k2 GVD coefficient 361 fs2 cm−1

n2 Nonlinear refractive index 2.48 × 10−16 cm2 W−1

fr Raman response fraction 0.18
τ1 Raman sinusoidal time 12.2 fs
τ2 Raman decay time 32 fs
U Material band gap 9 eV
m Reduced electron-hole mass 0.5 me

e0 Free-carrier charge 1.602 × 10−19 C

most of the collision times found in Table I. Finally, for each
pulsewidth and collision time category, three simulations are
performed using models I, II, and III, respectively, to describe
free-carrier effects, making a total of 135 simulations. The
initial energy for each pulse was appropriately selected to
obtain an incident peak intensity of 5.3 × 1013 Wcm−2. Under
the assumption of a flat spatio-temporal phase and cylindrical
beam symmetry our initial electric field envelope is then
assigned the form,

ξ (r, τ, z = 0) = ξ0 exp

(
− r2

w2
r

− 2ln(2)τ 2

τ 2
fwhm

)
, (18)

where ξ0 = √
2I0/n0ε0c.

In solving Eq. (16) it is necessary to simultaneously solve a
rate equation for the free-carrier plasma density ρ as a function
of space and time [42],

∂ρ

∂t
= WPI(|ξ |). (19)

In this article photoionization is considered as the only
generator of free carriers, noting a recent work that found
avalanching (impact ionization) to be negligible in fused silica
for pulses as short as 90 fs at the intensities under consideration
[25]. In principle, however, impact ionization can also be
added. Additionally, our generated free-electron densities are
at least two orders of magnitude below the molecular density
of fused silica, 2.2 × 1022 cm−3 [5]. Therefore, a full valance
band is assumed throughout.

The choice of a model for the photoionization rate should
be made with great care. In this work, we choose the pho-
toionization rate for solids developed by Keldysh [43] because
in numerous studies it has provided good agreement with
experiments of ultrashort laser pulse propagation in fused silica
[5,7,24,25,29,44–48]. The photoionization formula WPI(|ξ |)
developed by Keldysh is [43]

WPI(|ξ |) = 2ω0

9π

(
mω0√
γ1 h̄

)3/2

Q(γ, x) exp (−� 〈x + 1〉).
(20)

Here, the Keldysh parameter γ = ω0
√

mU/e0|ξ |, γ1 =
γ 2/(1 + γ 2), γ2 = 1 − γ1, � = π (K(γ1) − E(γ2))/E(γ2),
and x = (2U/πω0)(

√
1 − γ 2/γ )E(γ2). The notation 〈·〉 de-

notes the integer part, and the functions K(x) and E(x) are
complete elliptical integrals of the first and second kind,
respectively, as defined in Ref. [49]. The function Q(γ, x)
is given by

Q(γ, x) =
√

π

2K(γ2)

∞∑
n=0

exp (−n� ) �
(√

ϑ(n + 2ν)
)

,

where ϑ = π2/4K(γ2)E(γ2), ν = 〈x + 1〉 − x, and �(z) =∫ z

0 exp(y2 − z2)dy is the Dawson function.
The solid line in Fig. 3 shows the Keldysh photoionization

rate as a function of the optical intensity in fused silica for
parameters listed in Table III. Note that the Keldysh parameter
γ is used to distinguish between the domains of multiphoton
ionization (MPI), γ � 1, and tunneling ionization, γ � 1.
In our simulations, the condition γ = 1 is satisfied at an
intensity of 2.7 × 1013 W/cm2. The dashed line in Fig. 3
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FIG. 3. Photoionization rate as a function of optical intensity in
fused silica according to the theory of Keldysh. The solid line shows
the full Keldysh expression, while the dashed line shows the common
multiphoton ionization approximation valid at low intensities. Optical
and material parameters used to calculate this rate are those from
Table III.

shows the Keldysh MPI rate: WPI = σ6I
6, where σ6 = 6.04 ×

10−47(cm2/W)6 s−1cm−3 for our chosen parameters. Because
our simulations never exceed their initial peak intensity of
5.3 × 1013 W/cm2, most of our pulses lay in the domain of
multiphoton ionization. However, our peak intensities are too
high to be accurately modeled by the MPI rate and yet too
weak to be in the tunneling regime. Therefore, the full Keldysh
photoionization formula is used throughout.

For our simulations it was sufficient to set the bound
charge dispersion operator D̂b = −i(k2/2)∂2

τ , as no linear
absorption from bound charges is assumed (αm = 0), and
higher linear dispersion terms were found to have no significant
effect when included. In fact, even group velocity dispersion
had only small effects, because the propagation distance of
100 µm is very small compared to the group velocity
dispersion (GVD) length LGVD = τ 2

fwhm/|k2| ∼ 1 cm for our
shortest pulse. Additionally, a relatively large beam waist of
75 µm was chosen for a peak intensity of 5.3 × 1013 Wcm−2.
This was done in an effort to reduce the influence of spatial
diffraction and allow us to concentrate on how ultrashort free-
carrier effects compare with other nonlinear optical processes.
Equation (16) is solved using a split step method, with the
first two terms of the right-hand side constituting a “linear”
step and the rest of the terms constituting a “nonlinear” step.
Equation (16) is solved simultaneously with Eq. (19) which is
in turn solved using a fourth-order Runge-Kutta method.

V. RESULTS

Figure 4 shows the total transmittivity as a function of
the free-carrier collision time after propagating through a
100 − µm sample of fused silica. For λ = 800 nm, one optical
cycle is ≈ 2.67 fs; the values of τc in Fig. 4 range from 0.075 to
6 optical cycles (0.2–16 fs), covering three orders of magnitude
in order to sample the wide range of collision times listed
for fused silica in Table I. The transmittivity plots are shown
for each of the three initial pulses with FWHM pulsewidths
of 10, 20, and 40 fs. Each plot in the figure shows results
from the free-carrier descriptions of model I (dotted line),

FIG. 4. (Color online) Total transmittivity after propagating
through 100 µm of fused silica shown for 10-, 20-, and 40-fs pulses.
Transmittivity is shown as a function of the free-carrier collision
time. The dotted red line represents model I, the dashed blue line
represents model II, and the solid black line represents model III
shown for comparison.

model II (dashed line), and model III (the zeroth temporal
order approximation of models I and II, shown for comparison
as a solid line). These are further distinguished by an online
color scheme of red, blue, and black, respectively (i.e., the
convention introduced in Table II). Note the discrepancies in
transmittivity on the order of 1% that occur between models
I and II for a 10-fs pulse. Equally notable is the fact that this
difference in transmittivity can be seen over the large range
of collision times ranging from approximately 1 fs and finally
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FIG. 5. (Color online) Selected results of a 10-fs pulse after
propagating through 100 µm of fused silica with a free-carrier
collision time of 0.42 fs. The dotted red line represents model I,
the dashed blue line represents model II, and the solid black line
represents model III. (a) and (b) show the spatial intensity and phase
at the trailing edge of the pulse (τ = 10 fs), (c) and (d) show the
temporal intensity and phase at the spatial center (r = 0), (e) and
(f) show the spectral intensity and phase at the spatial center (r = 0),
and (g) shows the peak plasma density as a function of the propagation
distance.

converging at about 16 fs. This range of discrepancy extends
over 5.5 optical cycles of collision time and is the direct result
of the pulse chirp term in Eq. (17a), which demonstrates that
only instantaneous frequency shifts can cause discrepancies of
this kind for collision times greater than one optical cycle.
These differences also occur for the 20- and 40-fs pulse
transmittivity plots. As expected, pulses with the same initial
intensity but a longer pulsewidth will ultimately decrease the
magnitude of all field time derivative corrections.

To show specific discrepancies arising in intensity and
phase at the trailing edges of the pulses, results from
some of the most instructive simulations are examined.

FIG. 6. (Color online) Selected results of a 10-fs pulse after
propagating through 100 µm of fused silica with a free-carrier
collision time of 1.0 fs. The dotted red line represents model I,
the dashed blue line represents model II, and the solid black line
represents model III. (a) and (b) show the spatial intensity and phase
at the trailing edge of the pulse (τ = 10 fs), (c) and (d) show the
temporal intensity and phase at the spatial center (r = 0), (e) and
(f) show the spectral intensity and phase at the spatial center (r = 0),
and (g) shows the peak plasma density as a function of the propagation
distance.

Figures 5–8 show selected intensity and phase profiles,
comparing the three aforementioned models of free-carrier
effects using the same graphing and online color convention
introduced in Table II. These figures are organized in an
identical manner to display the spatial intensity at the trailing
edge of the pulse, I (r, τ = +τfwhm); the temporal intensity
at the spatial center, I (r = 0, τ ); the spectral intensity at the
spatial center, S(r = 0, ω) = (1/2)n0ε0c|ξ̃ (r = 0, ω − ω0)|2;
and the corresponding phase for each intensity. Also shown is
the maximum plasma density as a function of the propagation
distance. Note that all maximum plasma densities are at least
an order of magnitude below the threshold of permanent
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FIG. 7. (Color online) Selected results of a 10-fs pulse after
propagating through 100 µm of fused silica with a free-carrier
collision time of 2.6 fs. The dotted red line represents model I,
the dashed blue line represents model II, and the solid black line
represents model III. (a) and (b) show the spatial intensity and phase
at the trailing edge of the pulse (τ = 10 fs), (c) and (d) show the
temporal intensity and phase at the spatial center (r = 0), (e) and (f)
show the spectral intensity and phase at the spatial center (r = 0), and
(g) shows the peak plasma density as a function of the propagation
distance.

structural damage in fused silica, and yet frequently above
a recently established value for reversible refractive index
modification [7].

Figure 5 shows results from 10-fs pulse propagation for
a collision time of 0.42 fs. The collision time of 0.42 fs
(τc = ω−1

0 ) is of special significance, as the constant β in
Eq. (17) equals zero for model II. As discussed in Sec. III,
this collision time results in a significant disagreement between
the two free-carrier dispersion descriptions on the contribution
from plasma generation and pulse steepening to energy absorp-
tion, as well as the contribution of instantaneous frequency

FIG. 8. (Color online) Selected results of a 20-fs pulse after
100 µm of propagation in fused silica with a free-carrier collision
time of 0.42 fs. The dotted red line represents model I, the dashed
blue line represents model II, and the solid black line represents model
III. (a) and (b) show the spatial intensity and phase at the trailing edge
of the pulse (τ = 20 fs), (c) and (d) show the temporal intensity and
phase at the spatial center (r = 0), (e) and (f) show the spectral
intensity and phase at the spatial center (r = 0), and (g) shows the
peak plasma density as a function of the propagation distance.

shift (pulse chirp) to the spatio-temporal phase at this collision
time. Plots (a) and (b) of Fig. 5(f) show how strong this
disagreement becomes at the trailing edge of the pulse where
the plasma density is highest. Although the differences in the
spatial intensity are indeed noticeable, it is the spatial phase
that displays the largest discrepancy between the descriptions
of free-carrier effects in Fig. 5. It is evident from the temporal
phase in Fig. 5(d) (due largely to self-phase modulation) that
there is an average temporal chirp of φ̇ ≈ −ω0/4 on the trailing
edge of the pulse. The last term in Eq. (17b) explains how the
presence of such a strong temporal chirp at the trailing edge
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of the pulse leads to better agreement between models II and
III than with model I in spatial phase, because β = 0 for both
models II and III, whereas β = 1 for model I.

Figures 6 and 7 show results from 10-fs pulse propagation
in a material with electron collision times of 1.0 and 2.67
fs, respectively. For both of these collision times, Figs. 6(b)
and 7(b) show little or no difference between the free-carrier
models in the spatial phase at the trailing edge of the pulse.
However, these figures do reveal very subtle differences
between the free-carrier descriptions in the plots of temporal
intensity, temporal phase, and spectra and maximum plasma
densities.

Figure 8 shows selected profiles for 20-fs pulse propagation
with collision times of 0.42 fs. Comparison of Figs. 5(b) and
8(b) demonstrates how doubling the pulsewidth dramatically
reduces the discrepancies between the three free-carrier de-
scriptions. Although a small difference in spatial intensity is
retained in Fig. 8(a), all other intensity and phase profiles,
as well as the maximum plasma densities, of models I and
II are in very good agreement with the zeroth temporal
order approximation description of model III. This makes the
discrepancies between the free-carrier descriptions at higher
pulsewidths and collision times in Fig. 4 most interesting
because such differences, though difficult to detect in an
individual profile will, upon integration over the entire pulse
intensity, yield noticeable changes in the total pulse energy.
At longer pulsewidths or higher intensities, plasma densities
sufficient to cause permanent optical damage will occur,
increasing the magnitude of these discrepancies. A study of
such effects, however, would likely necessitate the inclusion
of avalanching in the temporal evolution of the free-carrier
plasma. The process of impact ionization depends sensi-
tively on the description of free-carrier absorption [12,50,51],
which in turn can be significantly influenced by ultrashort
effects, as demonstrated by Eq. (17a). The significance of
temporal corrections to the avalanching contribution have
yet to be addressed in the literature to our knowledge.
Such an investigation is currently planned as a future
study.

VI. CONCLUSION

A modified nonlinear Schrödinger equation has been
derived that includes a free-carrier contribution calculated
from the Drude model. Intrinsic to this calculation is an inverse
free-charge dispersion operator whose expansion converges
for all values of the free-carrier collision time, as well
as for laser pulses as short as a single optical cycle in duration.
It therefore retains all of the specified information about
free-charge dispersion contributions without resorting to a
limiting case, and will provide an accurate description of
a Drude free-carrier current density wherever the modified
NLSE is valid. Our derived free-carrier current density and the
dispersion relations contained therein are shown to converge
to the other descriptions of ultrashort free-carrier current
densities currently in use in the literature for the limiting case
in which the collision time is much greater than an optical
cycle. If, however, the free-carrier collision time is on the
order of one optical cycle or less, then significant differences
in plasma absorption and defocusing may arise for pulses that
are strongly chirped or steepened.

Collision times in the range of one optical cycle or less
are frequently cited or measured in the literature, while the
use of ultrashort pulses with steep edges and large frequency
shifts are ubiquitous. Our simulations suggest that strongly
chirped ultrashort pulses, with an instantaneous frequency
shift comparable to the carrier frequency, may effect changes
to energy absorption and phase accumulation that only the
free-carrier dispersion relations derived in this article are
adequate to explain. As the study of laser-induced damage and
laser-plasma interactions further engages the use of ultrashort
pulses that approach the domain of a single optical cycle, this
work should provide a more general and complete method for
describing free-carrier dispersion relations in the context of a
nonlinear envelope propagation equation.
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