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Passive linear nanoscale optical and molecular electronics device synthesis from nanoparticles
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Arrays of nanoparticles whose interactions can be characterized by hopping Hamiltonians can serve as
excitation transmission lines. Here we show, that in addition suitable arrangements of nanoparticles can form
beam splitters, phase shifters, and crossover splitters. With these elements, any discrete unitary transformation
can be implemented on input modes via a network of nanoparticles in which all the components lie in the same
plane. These nanoparticle networks can produce optical functionalities at a length scale much smaller than 1 µm.
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I. INTRODUCTION

The development of techniques for fabrication at the
nanoscale level has made it increasingly easy to fabricate
systems consisting of nanoscale components precisely posi-
tioned with respect to each other. Such components, properly
arranged, could form signal-processing devices and systems
with high component density that operate at high speeds.
One-dimensional arrays consisting of chromophores, quantum
dots, or metal nanoparticles, spaced within nanometers of each
other, have been fabricated. Such arrays have been proposed
for use as transmission lines to transport electromagnetic
energy in the form of plasmons or excitons either by coherent
or diffusive means [1,2]. Such light guides can confine electro-
magnetic energy to length scales smaller than the diffraction
limit, a feature that is attractive for high-component-density
optical devices. Arrays of nanoparticles or molecules can also
serve as wires to transport charge, especially if the particles
are strongly coupled through close proximity or via molecular
interconnections. A feature in common among these diverse
transmission lines is that their signal propagation behavior
often can be characterized usefully by hopping Hamiltonians.
However, to make signal-processing devices, generally more
than transmission lines are needed. Passive linear devices,
such as beam splitters and phase shifters, are desired for
the construction of devices that transform and route signals
among transmission lines. Active and nonlinear devices are
also desired for amplification and switching. Construction
of such passive and active devices via appropriately spaced
nanoparticles has received considerably less attention than
that of transmission lines. Here we show how linear passive
devices, which can be interconnected via transmission lines,
can be constructed via suitable arrangements of nanoparticles
or molecular constituents.

A brief summary of prior theoretical and experimental
work on passive and active devices based on the arrangement
of metal nanoparticles, quantum dots, or chromophores in
close proximity to each other is provided here. The co-
herent propagation of electromagnetic energy via plasmon
transmission lines consisting of arrays of metal nanoparticles
has been discussed by a number of authors [3–12], and
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some experimental work has been performed [10]. Electro-
magnetic energy propagation for the case when the metallic
nanoparticle arrays contain corner and T-shaped structures
has also been investigated [9,13,14]. Theoretical work on
exciton energy transfer between quantum dots has been
performed [15–18], and experimental work has been re-
ported on gain-enabled transmission lines consisting of arrays
of quantum dots [19,20]. Chromophore-based transmission
lines on which exciton energy is diffusively transported
via fluorescence resonance energy transfer (FRET) between
donor and acceptor dyes [21] have been experimentally
investigated [22–24]. The possibility that exciton energy can
be coherently propagated between donor and acceptor dyes,
provided the chromophores are sufficiently closely spaced, has
been theoretically investigated [25–32]. There is substantial
experimental evidence that exciton energy is coherently
propagated in the light-harvesting complex of photosynthetic
organisms [33–35], and transmission lines that propagate ex-
citon energy coherently along an array of chromophores have
been devised [36]. Coherent electron transport can also occur
between strongly coupled nanoparticles, such as quantum
dots [37,38], or between atoms in conjugated hydrocarbon
molecules.

In this article, we show how beam splitters and phase
shifters can be synthesized from discrete components whose
interactions can be described by hopping Hamiltonians. For
the case of exciton hopping, these components could consist
of chromophores, such as dye molecules, or quantum dots.
The propagation of plasmon excitations between metallic
nanoparticles is also often adequately described by hopping
Hamiltonians, as are electrons propagating from carbon atom
to carbon atom in conjugated hydrocarbons. We present a
general formalism for the synthesis of linear, passive, lossless
devices that is applicable to all of these cases, and we refer to
the devices generically as excitation devices. In addition, we
show that it is possible to construct crossovers or pass throughs
for which all the components lie in the same plane, thereby
allowing excitation signals to pass through each other without
scattering into each others’ channels. Since it is known that
any discrete unitary transformation can be implemented via
a suitable network of beam splitters and phase shifters [39],
these pass throughs allow the construction of such networks in
which all the components lie in the same plane. This possibility
should greatly simplify the task of fabricating complex passive
linear networks.
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Loss and decoherence are challenging problems for the
construction of nanoscale devices. However, we hope that
continued improvements in materials and nanofabrication will
allow the construction of systems in which coherent effects
can outrun decoherence long enough for the work presented
here to serve as a useful guide for the engineering of passive
linear devices; we do not include such effects in the present
analysis.

II. GENERAL FORMALISM

As a way of establishing notation, here we consider the gen-
eral behavior of systems governed by hopping Hamiltonians.
First, consider the Hamiltonian

H =
∑
m

h̄ωmσ̂+
m σ̂−

m +
∑
[m,n]

h̄gmn(σ̂+
m σ̂−

n + σ̂+
n σ̂−

m ), (1)

which models two-level systems that interchange excitons via
a hopping interaction. The first sum on the right is a sum over
the Hamiltonians for each individual two-level system. The
energy difference between the excited state and the ground
state of the mth two-level system is h̄ωm. The second sum is
over all pairs of two-level systems that interact via a hopping
interaction. The strength of the hopping interaction between
the mth and nth two-level system in energy units is h̄gmn.
Letting |gm〉 and |em〉 denote, respectively, the ground state
and the excited state of the mth two-level system, the operators
σ+

m and σ−
m are given by

σ̂+
m = |em〉〈gm| (2)

σ̂−
m = |gm〉〈em|. (3)

Since the Hamiltonian conserves exciton number, the
Hamiltonian block diagonalizes according to exciton number.
Here we restrict our attention to the single-particle sector of
the Hilbert space; that is, we consider the case where a single
exciton hops from two-level system to two-level system. Let
|0〉 denote the state for which all the two-level systems are
in their ground state. Then an arbitrary state vector in the
single-exciton sector can be written in the form

|ψ〉 =
∑
m

αmσ̂+
m |0〉, (4)

where αm is the probability amplitude that the mth two-level
system is excited. Equations (1) and (4), substituted into the
Schrödinger equation,

ih̄
∂

∂t
|ψ〉 = H |ψ〉, (5)

yields the following differential equation for the probability
amplitude αm(t):

i
dαm

dt
= ωmαm +

∑
n

gmnαn. (6)

Before proceeding with device synthesis using Eq. (6), it is
worth noting several other contexts in which such an equation
arises. Consider the Hamiltonian

H =
∑
m

h̄ωmâ†
mâm +

∑
[m,n]

h̄gmn(â†
mân + â†

nâm) (7)

where âm is an annihilation operator. For the moment, we
leave unspecified whether it is a boson or fermion annihilation
operator. A state vector in the single-particle sector has the
general form

|ψ〉 =
∑
m

αmâ†
m|0〉. (8)

Equation (6) is applicable to fermion systems, such as electrons
hopping from carbon atom to carbon atom in conjugated
hydrocarbon molecules.

It is also applicable to boson systems, such as plasmon
excitations hopping from metal particle to metal particle. The
electromagnetic energy transport among metal nanoparticles
relies on the near field interaction between metal particles that
can be approximated by coupled dipole modes. The lossless
interaction between closely spaced dipoles can be described
by the equation of motion [14,40],

d2pm

dt2
= −ω2

0pm −
∑

n

ω2
mnpn, (9)

where pm is the oscillating dipole moment at a point m

in the chain and ω2
mn is the coupling strength between the

adjacent dipoles m and n. The energy relaxation due to
interactions with phonons and impurity is ignored as well as
the energy relaxation due to the radiation into the far field.
Equations (6) and (9) differ only in their relationship with the
resonant frequency ω0. It is worth noting that by introducing

am =
√

ωm

2h̄

(
i

ωm

dpm

dt
+ pm

)
, (10)

Eq. (9) can be expressed as

dam

dt
= −iωmam − i

2

∑
n

ω2
mn√

ωmωn

an (11)

when the coupling is much smaller than the characteristic
dipole osicllation frequency. Note that Eq. (11) has the same
form as Eq. (6).

Equation (6) also has relevance in the many-particle sector
provided particle-particle interactions are unimportant. A
boson many-body case particularly worthy of note is that for
which the state vector |ψ〉 consists of a product of coherent
states,

|ψ〉 =
∏
m

|αm〉, (12)

where

|αm〉 = e−|αm|2eαmâ† |0〉 (13)

is the coherent state for the mth site and αm is the mean field at
this site. This state vector is a solution of the Schrödinger equa-
tion, Eq. (5), provided Eq. (6) is satisfied. As a consequence,
Eq. (6) is also applicable to classical electromagnetic field
modes, such as coherently excited plasmon modes residing on
coupled metal particles.

As this discussion has shown, Hamiltonians of the forms
in Eqs. (1) and (7), in which hopping interactions between
sites play an important role, serve as useful models for a
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variety of physical systems. We refer to devices based on these
types of interactions as “excitation” devices, and although we
refer to the αm as probability amplitudes, one should remain
mindful that in certain contexts αm may represent the classical
amplitude of a field.

III. CONSERVATION OF EXCITATIONS AND
EXCITATION CURRENTS

The Hamiltonians Eqs. (1) and (7) conserve excitation or
particle number. The conservation of excitations is manifested
in the behavior of the αm. It is straightforward to show from
Eq. (6) that

d|αm|2
dt

= α∗
m

dαm

dt
+ αm

dα∗
m

dt

= −i
∑

n

gmn(α∗
mαn − α∗

nαm). (14)

Summing both sides of this equation over all m yields

d

dt

∑
m

|αm|2 = 0. (15)

The square of the magnitude of αm is the probability of finding
site m in the excited state. Equation (15) thus states that
the probability of finding an excitation somewhere remains
unchanged with time. In particular, in the single-particle sector
of the Hilbert space, one has∑

m

|αm|2 = 1. (16)

Given Eq. (15), it is natural to interpret the right-hand side of
Eq. (14) as a probability current, namely the rate with which
excitations flow to site m. Hence

Jmn = −igmn(α∗
mαn − α∗

nαm) (17)

is the rate with which excitations flow from site n to site m.

IV. EXCITATION TRANSMISSION LINES

The energy coupling between nanoparticles in a chain can
result in the waveguiding of excitation. In this section, an in-
finite chain of identical sites is considered. The nanoparticles,
having frequency ωm = ω0, are linked by nearest neighbor
interactions of the same strength: gmn = g. This chain of sites
forms a transmission line along which quanta can propagate.
The dispersion relation for the excitation transmission line is
now obtained. Let the sites be labeled with consecutive integers
r indicating the position of a given site in the chain, and let the
amplitude at the rth site be denoted by αr (t). From Eq. (6), it
follows that the time rate of change of the amplitude at the rth
site is

i
dαr

dt
= ω0αr + g(αr−1 + αr+1). (18)

When we write

αr = e−i(ωt−κr), (19)

where κ is a unitless propagation constant for the quanta
traveling over an equally spaced nanoparticle chain, and

κ = k1 + ik2, (20)

where k1 and k2 are real, Eq. (18) yields the dispersion relation

ω − ω0 = 2g[cos(k1) cosh(k2) − i sin(k1) sinh(k2)]. (21)

Similar results have also been derived for coupled plasmon
modes for a linear chain of equally spaced metal nanoparticles
[14], which can be considered as a subset of the work presented
here. For real frequencies ω and ω0, Eq. (21) can only be
satisfied if

sin(k1) sinh(k2) = 0. (22)

Consideration of Eqs. (21) and (22) yields three classes of
solutions. For

ω − ω0

2g
< −1, (23)

Eq. (21) reduces to

ω − ω0 = −2g cosh(k), (24)

obtained by setting cos(k1) = −1 and k2 = k. The general
solution to Eq. (18) at frequency ω in this case has the form

αr = (Ae−kr + Bekr )e−iωt , (25)

where A and B are constants. For

−1 <
ω − ω0

2g
< 1, (26)

Eq. (21) reduces to

ω − ω0 = 2g cos(k), (27)

obtained by setting sinh(k2) = 0 and k1 = k. The general
solution to Eq. (18) at frequency ω in this case has the form

αr = (Aeikr + Be−ikr )e−iωt . (28)

For
ω − ω0

2g
> 1, (29)

Eq. (21) reduces to

ω − ω0 = 2g cosh(k), (30)

obtained by setting cos(k1) = 1 and k2 = k. The general
solution to Eq. (18) at frequency ω in this case has the same
form as Eq. (25):

αr = (Ae−kr + Bekr )e−iωt . (31)

From Eq. (28), it is clear that the excitation transmission
line supports traveling waves when

|ω − ω0| < 2g. (32)

Outside of this frequency range, the solutions grow or decay
exponentially with respect to r . The focus here is on traveling
wave solutions because they allow propagation of signals over
large distances. However, even though signals at frequencies
outside the range given by Eq. (32) decay exponentially away
from the source, they can still be used to transmit information
over short distances and may serve useful functions in
excitation devices.

Restricting our attention to traveling wave solutions
[Eq. (28)], the velocity with which signals travel along the
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transmission line is given by the group velocity

vg = ∂ωk

∂k
. (33)

Note that this velocity has the unit of inverse time and indicates
the rate with which a signal transferred from one site to the
next. To convert this into a physical velocity, vg must be
multiplied by the distance between neighboring sites. From
Eq. (27), one obtains

vg = −2g sin(k). (34)

Note that when g is positive, the sign of the group velocity is
opposite that of the phase velocity

vp = ω

k
. (35)

The magnitude of vg takes on the maximum value

|vg| = 2|g| (36)

for

k = ±π

2
. (37)

The set of distinct solutions of the form in Eq. (28) is
obtained by restricting k to the range

0 < k < π. (38)

We note that the general solution to Eq. (18) for propagating
signals has the form

αr = 1√
2π

∫ π

0
dk [AR(k)e−i(ωkt−kx) + AL(k)e−i(ωkt+kx)],

(39)

where the AR(k) and AL(k) are the amplitudes of components
whose phase propagates, respectively, to the right or to the
left. By changing the integration variable from k to ω and
introducing the amplitudes

aR(ω) = 1√|vg(ω)|AR(k) (40)

and

aL(ω) = 1√|vg(ω)|AL(k), (41)

one obtains

αr (t) = 1√
2π

∫ ω0+2|g|

ω0−2|g|

dω√|vg(ω)| [aR(ω)e−i(ωt−kωr)

+ aL(ω)e−i(ωt+kωr)]. (42)

A rationale for choosing the amplitudes in Eqs. (40) and (41)
can be given by considering the excitation current flowing
along the transmission line. From Eq. (17), the current flowing
from site r to site r + 1 is

Jr+1,r = −ig(α∗
r+1αr − α∗

r αr+1). (43)

By substituting Eq. (42) into Eq. (43) and integrating both
sides of Eq. (43) over all time, we obtain∫ ∞

−∞
Jr+1,rdt = −sgn(g) ×

∫ ω0+2|g|

ω0−2|g|
dω[a∗

R(ω)aR(ω)

− a∗
L(ω)aL(ω)], (44)

2

1

r

1,0
1,1

1,2
1,3

s,0
s,1

s,2
s,3in

out

FIG. 1. Excitation device (in dashed circle) connected to hopping
transmission lines.

where sgn(g) denotes the sign of g. It is apparent that
a∗

R(ω)aR(ω) and a∗
L(ω)aL(ω) correspond to the power spectral

density of the excitation current for excitations with right-
going and left-going phase velocities, respectively.

V. GENERAL FORMULAS FOR DEVICE SYNTHESIS

In addition to the waveguides shown in Sec. IV, networks
of nanoparticles can be constructed that realize any discrete
unitary transformation on the input modes. In this section,
formulas for general nanoparticle network shown in Fig. 1 are
derived.

The network within the circle constitutes an excitation
device. The sites are located at the nodes of the network,
and the edges of the network indicate which sites are coupled
via hopping interactions. The excitation device is connected
to excitation transmission lines, which are indicated as linear
chains of sites outside the circle. The sites within the circle are
labeled with integers 1 through N where N is the number of
sites contained within the device. The transmission line sites
are labeled by a pair of numbers, the first of which indicates
the transmission line number and ranges from 1 to M where M

is the total number of transmission lines. The second number
is an integer that, starting from zero, successively increments as
one moves from site to site away from the device. In particular,
in the figure, site r has transmission line s attached to it,
and successive sites along the transmission line are labeled
(s, 0), (s, 1), (s, 2), . . . The transmission lines carry signals
that propagate “in” toward the device or “out” away from the
device.

One would like to solve for the outgoing signals in terms of
the incoming signals in order to identify devices that perform
useful transformations on incoming signals. To perform such
an analysis, it is useful to distinguish three classes of sites. The
first class consists of those sites belonging to the device. From
Eq. (6), the amplitudes at these sites satisfy

i
dαr

dt
= ωrαr +

∑
r ′

gr,r ′αr ′ +
∑

s

gr,s0as,0, (45)

where gr,s0 is the strength of the hopping interaction between
device site r and the first site of transmission line s. (The
second sum need not be present for all nodes, because some
device sites need not be connected directly to a transmission
line.) Note that we are allowing for the possibility that more
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than one transmission line is connected to the same node.
The second class of sites consists of the first site of each
transmission line. The amplitudes at these sites satisfy

i
dαs,0

dt
= ωsαs,0 + gr,s0αr + gsαs,1, (46)

where gs is the hopping interaction strength between nearest
neighbors along transmission line s. The third class of sites
consists of those interior to the transmission line. These satisfy

i
dαs,m

dt
= ωsαs,m + gs(αs,m+1 + αs,m−1), (47)

where m > 0.
It is most convenient to work in frequency space. To this

end, we introduce the following Fourier decomposition for
the αr :

αr (t) = 1√
2π

∫ ∞

−∞
dω ar (ω)e−iωt . (48)

We follow Eq. (42) for the Fourier decomposition of the
amplitudes αr,m along the transmission lines. To simplify the
discussion, we restrict ourselves to the case when g > 0. In
this case, the group velocity [Eq. (34)] is opposite that of the
phase velocity. Hence, we write

αr,m = 1√
2π

∫ ω0+2gr

ω0−2gr

dω√|vgr (ω)|
[
ain

r (ω)e−i(ωt−kωm)

+ aout
r (ω)e−i(ωt+kωm)], (49)

where the “in” and “out” superscripts indicate whether the
signal is propagating toward or away from the device. For
the case when g is negative, the “in” and “out” labels have
to be interchanged, and the overall sign of the expression on
the right-hand side of Eq. (46) has to be changed as well.

To further simplify the analysis, we restrict ourselves to the
study of frequency components that fall within the passbands
of all the transmission lines. In this case, in terms of the
frequency components of Eqs. (48) and (49), Eqs. (45) and
(46) become

(ω − ωr )ar (ω) =
∑
r ′

gr,r ′ar ′ (ω) +
∑

s

gr,s0√|vgs(ω)|
× [

ain
s (ω) + aout

s (ω)
]

(50)

and

(ω − ωs)√|vgs(ω)|
[
ain

s (ω) + aout
s (ω)

]

= gr,s0ar (ω)+ gs√|vgs(ω)|
[
ain

s (ω)eikω+aout
s (ω)e−ikω

]
. (51)

Equation (47) is already satisfied by Eq. (50) and need not
concern us further. For device characterization, we would like
to solve this system of equations for the aout

s (ω) in terms of the
ain

s (ω). Solving Eq. (51) for aout
s (ω) yields

aout
s (ω) =

√|vgs(ω)|gr,s0

ω − ωs − gse−ikω
ar (ω)

− ω − ωs − gse
ikω

ω − ωs − gse−ikω
ain

s (ω). (52)

This can be used to eliminate the aout
s (ω) from Eq. (50).

Equation (50) can then be solved for the ar (ω) in terms
of ain

s (ω). Once the ar (ω) have been determined, they can
be substituted in Eq. (52) to determine the outgoing fields.
Because the set of Eqs. (50) and (51) is linear, the relation
between the aout

s (ω) and the ain
s (ω) can be written in scattering

matrix form as

⎛
⎜⎜⎜⎜⎜⎜⎝

aout
1 (ω)

aout
2 (ω)

·
·
·

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

S11(ω) S12(ω) · · ·
S21(ω) S22(ω) · · ·

· ·
· ·
· ·

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

ain
1 (ω)

ain
2 (ω)

·
·
·

⎞
⎟⎟⎟⎟⎟⎠

. (53)

Because the system conserves excitation number and because
the ain

s (ω) and aout
s (ω) have been normalized so that their

magnitudes squared represent the power spectral density of
the excitation current, the scattering matrix

S =

⎛
⎜⎜⎜⎜⎜⎝

S11(ω) S12(ω) · · ·
S21(ω) S22(ω) · · ·

· ·
· ·
· ·

⎞
⎟⎟⎟⎟⎟⎠

(54)

is unitary.

VI. BEAM SPLITTER

In this section, an excitation beam splitter is described
using the formulation derived in Sec. V. An excitation beam
splitter can be regarded as analogous to a radio frequency
hybrid coupler constructed from sections of quarter-wave
transmission lines [41]. The device is depicted in Fig. 2. The
labeling of the device and transmission line nodes are indicated
in this figure, as are the hopping interaction coupling strengths
between the various nodes.

Considering the case where all the site frequencies ωr are
equal to ω0, the set of equations corresponding to Eq. (50) for
this device is

(ω − ω0)a1(ω) = g2a2(ω) + g1a3(ω)

+ g√|vg(ω)|
[
ain

1 (ω) + aout
1 (ω)

]
, (55)

(ω − ω0)a2(ω) = g2a1(ω) + g1a4(ω)

+ g√|vg(ω)|
[
ain

2 (ω) + aout
2 (ω)

]
, (56)

(ω − ω0)a3(ω) = g2a4(ω) + g1a1(ω)

+ g√|vg(ω)|
[
ain

3 (ω) + aout
3 (ω)

]
, (57)

and

(ω − ω0)a4(ω) = g2a3(ω) + g1a2(ω)

+ g√|vg(ω)|
[
ain

1 (ω) + aout
1 (ω)

]
. (58)
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g1
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g2 g1

g2
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1,0
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1,2

a2
out

2,2

2,1

2,0

3,0

3,1

3,2

4,0

4,1

4,2

a4
out

a3
outa1

out

a1
in

a2
in

a4
in

a3
in

FIG. 2. Beam splitter for excitations. The device nodes are
labeled with the integers 1 through 4. The transmission line nodes
are indicated by pairs of numbers r, m where the first labels the
transmission line and the second labels a node along that transmission
line. The hopping interaction coupling strengths between pairs of
nodes within the device are labeled by gn, where n is 1 or 2. The
hopping interaction coupling strengths between neighboring nodes
along the transmission lines are all taken to be equal to g. The direction
of propagation of the incoming ain

r and outgoing aout
r amplitudes for

each of the transmission lines is also indicated.

Equation (52) for the rth transmission line becomes

aout
r (ω) =

√|vg(ω)|g
ω − ω0 − ge−ikω

ar (ω)

− ω − ω0 − geikω

ω − ω0 − ge−ikω
ain

r (ω), (59)

where r = 1, 2, 3, 4. Of particular interest here is the case
when ω is the midband frequency ω0. From the dispersion
relation [Eq. (27)], it follows that at this frequency k = π/2.
By imposing the further restriction

g2
1 = g2 + g2

2 (60)

and introducing

K = g

g1
, (61)

Eqs. (55) through (59) yield the scattering matrix

S(ω0) =

⎛
⎜⎜⎜⎜⎝

0 0 iK
√

1 − K2

0 0
√

1 − K2 iK

iK
√

1 − K2 0 0√
1 − K2 iK 0 0

⎞
⎟⎟⎟⎟⎠

(62)
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FIG. 3. (Color online) Power transferred to each port (a) and the
corresponding phase (b) as a function of normalized frequency for
the 50:50 beam splitter described in Fig. 2. The input from port 1 is
evenly split in power between ports 3 and 4 at normalized frequency
of 1. A 3-dB bandwidth in the unit of 0.2ω0 is achieved. The phase
difference between the two ports is 90◦.
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⎞
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⎜⎜⎜⎝

ain
1 (ω0)

ain
2 (ω0)

ain
3 (ω0)

ain
4 (ω0)

⎞
⎟⎟⎟⎠ . (63)

It is apparent that a signal entering input port 1 or 2 is only
delivered to output ports 3 and 4. Likewise, a signal entering
input port 3 or 4 is only delivered to output ports 1 and 2. Hence,
the device functions like a beam splitter. The functionality
of a 50:50 beam splitter (or 3-dB coupler) is achieved when
K = 1/

√
2. This occurs, for example, when g1 = √

2g and
g2 = g. Plots of the square magnitudes of the scattering matrix
for this beam splitter, at frequencies away from ω0, is shown
in Fig. 3.

Assuming that the incident signal enters the beam splitter
from port 1, the output is evenly split between ports 3 and 4
with a normalized 3-dB bandwidth of 0.2. In the calculation,
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FIG. 4. (Color online) (a) Schematic of a crossover splitter. The
coupling strength between the adjacent nanoparticles is labeled on the
transmission line connecting the nanoparticles. The power transferred
to each port (b) and the corresponding phase (c) are calculated as a
function of normalized frequency. The input from port 1 is transmitted
to port 3 with an efficiency of 100% at the normalized frequency of
1. The phase difference between the input and output is 90◦ at the
same frequency. The plot for port 2 overlaps with that of port 1 in the
figure.

the coupling strengths are g2 = g = 0.10 and g1 = 0.14. If the
coupling strength g2 between nodes 1 and 2 and between nodes
3 and 4 were to increase simultaneously by the same amount,
a greater signal magnitude will emerge from output port 4
than from output port 3. Conversely, greater signal output
from port 3 than from port 4 is expected when the coupling
strength is reduced between nodes 1 and 2 and between nodes
3 and 4. For the former, it also gives rise to an increased
reflection from port 1. For the latter, it leads to an increase
in transmitted power to the output port 2 while the reflection
to port 1 is largely unchanged. In practice, this modification
of coupling strength can be achieved by physically reducing
the distance between the nanoparticles, a change of dielectric
constant in the vicinity of the nanoparticles, or through external
sources.

VII. CROSSOVER DEVICE FOR EXCITATIONS

Another useful device that can be achieved with nanoscale
photonics is a crossover splitter. Figure 4(a) shows an example
of such a device. The four input/output ports are connected
through a junction consisting of six nanoparticles labeled as
a–f . Through resonant coupling among the nanoparticles, this
planar device allows the input from port 1 to be channeled to
the opposing port, port 3. All nanoparticles shown in Fig. 4(a)
have a normalized resonant frequency of 1. The coupling
strengths between the adjacent nanoparticles are labeled on
the transmission lines connecting the nanoparticles.

The crossover splitter can be viewed as a two 50:50 beam
splitters, of the type as shown in Fig. 2, in cascade. Figure 4(b)
shows the power-transfer efficiency for the device and the cor-
responding phase at the output port as a function of normalized
frequency. In the calculation, the coupling strengths are g1 =
g = 0.10, g2 = 0.14, and g3 = 0.20. The energy-transfer effi-
ciency at the normalized frequency of 1 is 100%. The normal-
ized bandwidth of 3-dB power transfer is approximately 0.25.

Further, through a lengthy but straightforward analysis,
similar to that done to obtain Eq. (62), it can be shown that
the crossover splitter can always deliver 100% power transfer
as long as the coupling strength g2 among a, b, and c and
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FIG. 5. Bandwidth of the crossover splitter as a function of
coupling strength g3, in units of ω0.
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FIG. 6. (Color online) (a) Schematic of a phase shifter consisting
of a modified 50:50 beam splitter with two detuned nanoparticles.
(b) Reflected power from port 1 and the transmitted power to port 2
as a function of normalized frequency. (c) Phase-frequency relation
for the reflection from port 1 and the transmission to port 2. The
power incident from port 1 shifted in phase by 50◦ when it exits port
2. The output intensity is nearly unchanged for a bandwidth in the
unit of 0.1 ω0.

among d, e, and f ; coupling strength g3 between b and e;
and the remaining coupling strength g1 satisfy the following
relationship:

g2 = √
g1g3. (64)

Under this condition, the bandwidth for 3-dB power transfer
can be calculated as a function of g3. Figure 5 shows that the

bandwidth always increases with a stronger coupling. In prac-
tice, the coupling strength is limited by the fabrication capa-
bility, for example, the minimum distance where the nanopar-
ticles can be reliably placed, and other nonradiative loss.

VIII. PHASE SHIFTER

As a final example of a nanophotonic device constructed
from nanoparticles, a phase shifter is shown in Fig. 6(a). The
phase shifter is a two-port network derived from the 50:50
beam splitter, shown in Fig. 2, by replacing the transmission
lines of ports 3 and 4 with two nanoparticles whose resonant
frequency is slightly detuned from the rest of the nanoparticle
network.

In Fig. 6(b) and 6(c), the intensity and phase at the output
port 2 are shown as functions of frequency. The detuning
nanoparticles, labeled as ∗ and #, have a normalized resonant
frequency of 1.05. The coupling strength between the adjacent
nanoparticles is labeled on the corresponding link. In this
case, the phase shift experienced at output port 2 is 310◦ at
a normalized frequency of 1. The amount of phase shift is
controlled by either the coupling strengths between a and d and
between b and c or the detuning frequency. Increasing these
values leads to an increase of phase shift. However, an increase
of detuning frequency leads to a decrease of transmitted power
at output port 2.

IX. DISCUSSION AND CONCLUSIONS

The networks of nanoparticles described in this article
are characterized by normalized coupling strengths between
the neighboring nanoparticles for the sake of generality. It
is necessary to make a brief discussion on its value in a
practical system. As shown in Sec. II, the discussion of
excitation transfer also applies for plasmons coupling in a
chain of metal particles. Considering coupled plasmon modes
in a metal nanoparticle chain, for instance, the interaction
between adjacent nanoparticles is dominantly the near field
coupling. By approximating the plasmon mode on each metal
nanoparticle as a Hertzian dipole, we give the coupling strength
as

√
qe/4πmε0n2d3 [42], where q is the magnitude of the

oscillating charges, m is electron mass, n is the refractive
index of the dielectric surrounding the metal nanoparticles, and
d is the distance between the adjacent nanoparticles. For an
array of 10-nm-diameter Ag particles in vacuum, the coupling
strength is 4 × 1014 rad/s when they are spaced by 35 nm.
For the resonant frequency ωm of 3 × 1015 rad/s, or 0.6 µm,
the normalized coupling strength is approximately 0.1. It is
worth noting that a small change in distance can significantly
modify the coupling strength since it is −3/2 power of
the distance. For example, the normalized coupling strength
increases to 0.14 when the distance between the adjacent
nanoparticles is reduced by 6 nm. Hence, an accurate control
of fabrication with nanometer precision is required for such
devices.

In conclusion, a generic formulism is presented for the
design of passive lossless linear devices from components
interacting via hopping interactions. A nanoparticle network
was presented as a solution for sub-diffraction-limit energy
propagation. We have also illustrated the use of this formalism

033814-8



PASSIVE LINEAR NANOSCALE OPTICAL AND . . . PHYSICAL REVIEW A 81, 033814 (2010)

for constructing functional optical devices, such as beam
splitters, phase shifters, and crossover splitters. These three
components are primatives, from which networks performing
a given unitary transformation can be constructed. Notably,
all the components of these networks can lie in the same
plane, a feature that is particularly convenient when devices
are fabricated on a planar surface.
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