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Two-dimensional gap solitons in elliptic-lattice potentials
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We study two-dimensional (2D) matter-wave gap solitons trapped in an elliptically deformed concentric lattice
potential, within the framework of the Gross-Pitaevskii equation (GPE) with self-attraction or self-repulsion.
For a fixed eccentricity of the lattice, soliton families are found in both the repulsive and attractive models. In
the former case, the analysis reveals two kinds of gap solitons trapped in the first oval trough (the ring-shaped
potential minimum closest to the center): elliptic annular solitons (EASs), and double solitons (DSs), which are
formed by two tightly localized density peaks located at diametrically opposite points of the trough, with zero
phase difference between them. With the decrease of the norm, the density distribution in the EAS along the
azimuthal direction changes from nearly uniform to double-peaked and, eventually, to the DS. In the attractive
model, there exist only DSs in the oval trough, while EASs are not found. All such solitons without the angular
momentum (l = 0) are fully stable. For l �= 0, vortical solitons—both EASs with a sufficiently large norm (in the
repulsive model) and DSs (in models with both signs of the nonlinearity)—are quasistable, exhibiting rocking
motion in the elliptic trough (we consider the cases of l = 1 and l = 2). At smaller values of the norm, the vortical
annular solitons (in the repulsive model) are unstable. Stable fundamental solitons trapped in the central potential
well are investigated, too, in both the attractive and repulsive models, by means of the variational approximation
and numerical methods.
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I. INTRODUCTION

Techniques that make it possible to manipulate matter-wave
beams by means of specially designed trapping and stirring
potentials are important ingredients in many applications of
atom optics, such as inertial sensors [1] and atomic holography
[2]. One of the essential topics appearing in that context is the
control of the dynamics of Bose-Einstein condensates (BECs)
trapped in toroidal magnetic [3] and optical waveguides [4].

Optical lattices (OLs) (i.e., periodic potentials induced by
laser beams illuminating the experimental field), are a versatile
tool in the studies of ultracold quantum gases [5–11]. In
particular, matter-wave solitons of the gap type (i.e., those
whose chemical potential falls into a bandgap of the linear
spectrum induced by the OL), were predicted [5] and created
[6] in BECs with repulsive interactions between atoms. An
especially promising application of the OLs is the stabilization
of multidimensional solitons in BEC [7]. In the latter context,
it was also predicted that two-dimensional (2D) solitons and
solitary vortices can be stabilized by a revolving rectangular
or quasi-one-dimensional (1D) OL, for either sign if the
intrinsic nonlinearity, attractive or repulsive [8]. Previously,
it had been demonstrated, in the case of the self-attraction,
that axisymmetric lattice potentials of the Bessel type support
stable tightly localized 2D rotary solitons, which may perform
circular motion in an annular potential trough [9]. The same
model supports stable three-dimensional (3D) solitons [10].
If the nonlinearity is repulsive, the Bessel radial potential
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maintains 2D ring solitons in the form of azimuthal dipoles and
quadrupoles [11]. Similar settings are possible in nonlinear
optics. In particular, spatial optical solitons localized at the
center or forming a ring, as well as rotating ones, were
created in photoinduced concentric lattices in a photorefractive
material [12].

It is pertinent to mention that various complex (delocal-
ized) multidimensional patterns based on vortices were also
theoretically investigated in BEC models based on the Gross-
Pitaevskii equations (GPEs) with the repulsive nonlinearity
[13]. Another ramification of these studies has demonstrated
that an axisymmetric lattice potential, periodic along radial
variable r (rather than decaying at r → ∞, as in the case of
the above-mentioned Bessel lattice), gives rise to stable 2D
localized modes, in the form of both fundamental gap solitons
trapped at the center of the potential, and vortex solitons
trapped in lattice rings [14]. A somewhat similar model was
elaborated in nonlinear optics, for annular gap solitons in the
case of the radial light transmission in a disk-shaped nonlinear
waveguide equipped with the circular Bragg grating [15].

In addition to circular solitons and vortices, their nonax-
isymmetric (elliptically shaped) counterparts were theoreti-
cally predicted and for the first time experimentally observed in
a photorefractive medium with an anisotropic nonlocality [16],
and later created in the local photorefractive material [17].
Modes of this kind were also investigated in BECs [18].

Recently, it has been demonstrated that elliptically shaped
vortex solitons in a defocusing nonlinear medium, with
composite “Mathieu lattices” imprinted into it, feature patterns
that are anisotropic both in the intensity and phase, provided
that their integral power exceeds a certain threshold value [19].
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FIG. 1. (Color online) Elliptic lattices with (a) δ = 0.1 and
(b) δ = 0.8.

In this work, we study 2D solitons supported by el-
liptic counterparts of the above-mentioned circular lattice
periodic along r, in cases of both the self-attraction and
self-repulsion. In terms of the 2D polar coordinates, (r, θ),
the respective elliptic-lattice potential with strength p may be
written as

V (r) = −p cos(2r
√

1 + δ cos(2θ )), (1)

where parameter δ, with 0 � δ < 1, determines the ellipticity
(eccentricity) of the potential. Examples of elliptic lattices are
displayed in Fig. 1. This setting can be readily created in the
experiment, by illuminating a “pancake”-shaped BEC layer
by an oblique radially structured optical beam (the same as
one that creates the axisymmetric radial OL [14], in the case
of the normal incidence). In optical media with an imprinted
material radial grating, its elliptic variety may be realized by
an anisotropic deformation of the sample.

Here, we demonstrate that the elliptic-lattice potential gives
rise to additional dynamical effects, such as rocking motion of
vortical annular solitons. This setting also makes it possible
to consistently introduce the concept of the vorticity in the
elliptic geometry, even though the latter does not provide for
the conservation of the angular momentum.

In the repulsive model, we demonstrate the existence of
a threshold value of the norm for a fixed ellipticity, above
and below which elliptic annular solitons (EASs) or double
solitons (DSs), are formed, respectively, in the first elliptic
(oval) potential trough. The DSs are built as pairs of in-phase
density maxima located at diametrically opposite points. In
EASs, the density distribution is almost uniform along the
trough if the norm is large enough, the distribution assuming
a saddle shape with the decrease of the norm. In the attractive
model, only DSs exist in the oval troughs. The fundamental
solitons (i.e., those with zero vorticity l) are fully stable. At
l = 1 and l = 2, both the vortical EASs with a sufficiently high
norm, in the model with the repulsive nonlinearity, and vortical
DSs, with the nonlinearity of either sign, are quasistable. Stable
fundamental solitons trapped in the central potential well are
analyzed in this work, too.

The article is organized as follows. The model is formulated
in Sec. II. Solitons of the EAS and DS types, trapped in the
first annular trough of the elliptic lattice are considered in
Sec. III—in detail for the repulsive model, and in a brief form
in the model with the self-attraction. Sec. IV is dealing with
solitons trapped in the center of the elliptic lattice, for both
signs of the nonlinearity. The article is concluded by Sec. V.

II. THE MODEL

We use the GPE for the 2D BEC for wave function u in the
usual scaled form [14,19],

i
∂u

∂t
=−

(
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2

)
u + v(x)u + α|u|2 u=0,

(2)

where α = +1 and α = −1 correspond to the repulsive and
attractive nonlinearity, respectively, and the potential is taken
as specified in Eq. (1). This elliptic-lattice potential is uniform
along elliptic rings, r2[1 + δ cos(2θ )] = const, which makes
it different from the Mathieu-lattice potential [19]. The latter
one is nonuniform, featuring minimum and maximum at the
minor and major axes, respectively. The diffraction of optical
beams inducing potential [Eq. (1)] in the case of the 2D BEC
model is not essential, as the respective diffraction length is
much larger than the thickness of the BEC layer in the possible
experiment [14]. In the application to nonlinear optics, Eq. (2)
is the nonlinear Schrödinger equation for the propagation of
light in a nonlinear bulk medium equipped with the elliptic
grating, variable t being the propagation distance.

Soliton solutions to Eq. (2) are looked for in the form of

u(r, θ, t) = φ(r, θ )e−iµt+ilθ , (3)

where real µ is the chemical potential, integer l is the vorticity
(we consider values 0 � l � 2), and radial function φ(r, θ )

FIG. 2. Existence regions of annular gap solitons in the first oval
trough of the elliptic potential, shown in the plane of norm N and
ellipticity δ of lattice potential [Eq. (1)] with p = 30, in the model
with the self-repulsive nonlinearity. Double solitons (DSs) exist only
in region A, while elliptic annular solitons (EASs) exist in regions
B, C, and D. There are no solitons at N > Ncr for all vorticities
considered, l = 0, 1, and 2 (if the repulsive nonlinearity is too strong,
the solitons cannot be held in the single annular trough). All zero-
vorticity solitons, with l = 0, are stable, and EASs are quasistable in
region D for both l = 1 and l = 2, developing the rocking motion, as
explained in the text. EASs are unstable in region B for l = 1, and
in regions B and C for l = 2, suffering radiation losses due to the
rotational motion, and eventually splitting (see further details in the
text).
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FIG. 3. (Color online) Examples of stable gap solitons localized
in the first oval trough, in the repulsive model with p = 30 and l = 0.
Strong ellipticity (δ = 0.8): EASs with norm N = 1900 (a) and N =
658 (b), and DS with N = 26 (c). Weak ellipticity (δ = 0.2): EASs
with norm N = 950 (d) and N = 100 (e), and DS with N = 2 (f).

obeys the equation,

∂2φ

∂r2
+ 1

r

∂φ

∂r
+ 1

r2

(
∂

∂θ
+ il

)2

φ

+
[
µ + p cos(2r

√
1 + δ cos(2θ ))

]
φ − α|φ|2φ = 0.

(4)

The norm of the solution, which is proportional to the total
number of atoms in the BEC, or total power carried by the
beam in the optical model, is N = ∫ 2π

0 dθ
∫ ∞

0 rdr|φ(r, θ )|2.
Solutions for solitons and solitary vortices were obtained by
means of the well-known method based on beam-propagation
simulations of Eq. (2) in imaginary time.

III. ANNULAR AND DOUBLE ELLIPTIC SOLITONS

A. The repulsive model

In the repulsive model, with α = +1, the elliptic lattice can
support fundamental and vortical EASs and DSs in the first
ring-shaped trough, as shown in Fig. 2. They may be regarded
as counterparts of the radial gap solitons, which were studied
in the circular lattice potential [14]. The gap character of such
solitons is established by verifying (not shown here in detail)
that the corresponding values of chemical potential µ [see
Eq. (3)] belong to the first finite bandgap of the 1D linear
spectrum induced by the quasiflat OL potential far from the
central region (cf. Ref. [14]).

Typical examples of the solitons are displayed in Fig. 3.
Note that the local density is nearly uniform along the

oval trough in the EASs whose norm is large enough [see
Figs. 3(a) and 3(d)], while vortex solitons supported by the
elliptic Mathieu-lattice potential feature an anisotropic annular
distribution, irrespective of the norm [19]. The same is true
concerning the local phase gradient (superfluid velocity),
which is nearly uniform along the annulus in the present
model (not shown here in detail), and strongly anisotropic
in the case of the Mathieu lattice. The latter model features
the largest and smallest tangential phase gradients near the
minor and major elliptic axes, respectively, which implies
a possibility of the creation of vortices via a bifurcation
from dipole modes. This does not occur in the present
model; as seen in Fig. 2, the type of soliton is mainly
determined by the interplay of norm N and ellipticity δ of the
lattice potential.

With the decrease of the norm, the EASs exhibit a transition
to DSs via saddle-shaped distributions of the density along the
azimuthal direction [see Figs. 3(b) and 3(e)], with maxima and
minima collocated, respectively, with major and minor axes of
the elliptic potential. Indeed, it is obvious that segments of
the oval trough close to the major axis, which feature the
largest curvature, may locally trap a larger norm. Continuing
this trend, a distinct feature of the DS is that the local density
vanishes at points where the minor elliptic axis intersects the
oval trough, while two density peaks coincide with the position

FIG. 4. (Color online) Further results for the annular and double
solitons (EASs and DSs) with zero vorticity (l = 0) in the model
with the self-repulsion and δ = 0.4. (a) The DSs and EASs exist,
respectively, in regions A and B, in the plane of the lattice strength, p,
and chemical potential, µ. Examples of the stable evolution of various
solitons in the lattice with strength p = 40: (b) EAS with µ = −11.4;
(c) EAS with µ = −21.5; (d) DS with µ = −54.4.
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FIG. 5. (Color online) Annular and double vortical gap solitons
with l = 1 in the repulsive model with δ = 0.4. (a) In the plane of
(p,µ), stable DSs and EASs exist, respectively, in regions A and C,
while unstable EASs are found in region B. (b) The evolution of a
quasistable EAS with µ = −20.3. (c) An example of an unstable EAS
with µ = −23.5. (d) A quasistable DS with µ = −55.7. (e) Contour
plots of the DS evolution corresponding to (d) that display the rocking
motion of the vortical soliton, which periodically switches between
the anticlockwise and clockwise directions in the oval trough. The
rocking range is between points A and B in (e). All examples of the
evolution are shown here and in Fig. 6 for p = 40.

of the major elliptic axis. With the increase of the ellipticity at a
fixed norm, the EAS also transforms into the DS. The critical
values of the ellipticity and norm that may be identified as
corresponding to the transformation of the soliton from EAS
to DS are indicated by the boundary between areas A and B in
Fig. 2. As shown in Figs. 4, 5, and 6, the existence and stability
regions for the EASs and DSs with vorticities l = 0, 1, and 2,
respectively, were also identified in the plane of (p,µ).

The stability of the solitons was tested by way of direct
simulations of Eq. (2) with initial conditions perturbed by a
random noise at the level of 10% of the soliton’s amplitude
(actually, this is strong noise). The simulations demonstrate
that the fundamental EASs with l = 0 are stable in the entire
region of their existence, while for l �= 0, EASs need the

FIG. 6. (Color online) Annular and double vortical solitons with
l = 2 in the repulsive model with δ = 0.4. The meaning of (a) is the
same as in Fig. 5(b). The evolution of a quasistable EAS with µ =
−24.7. (c) An example of an unstable EAS with µ = −30.5. (d) A
quasistable DS with µ = −57.4. (e) The same as in Fig. 5(e).

norm large enough to maintain their effective stability [see
examples in Figs. 4(b), 4(c), 5(b), 5(c), 6(b), and 6(c)]. The
minimum norm necessary for the stability of the vortical EASs
increases with the ellipticity (see regions B and C in Fig. 2).
The stabilization of the annular solitons with the increase of
N (i.e., the effective strength of the self-repulsion) is quite
natural [14,15]. Actually, the character of the stability of the
elliptic annular gap solitons is similar to that reported for the
circular lattice in Ref. [14]. In particular, the vortical EASs
with l = 1 and l = 2, whose norm is large enough, do not
maintain an exactly stationary shape. Instead, they exhibit
rocking motion in the elliptic ring, periodically switching
between the anticlockwise and clockwise directions, similar
to the motion of the DSs presented in Figs. 5(e) and 6(e).
In the circular geometry, slightly deformed annular vortex
solitons rotate in one direction [14], the rocking in the present
case being caused by bounces from “narrow necks” in the
oval trough. In regions B and C of Fig. 2, unstable EASs
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FIG. 7. The maximum norm admitting the existence of DSs with
l = 0, 1, and 2 in the attractive model, as a function of ellipticity δ, for
the lattice depths (strengths) p = 10 and 30, respectively. The upper
limit, determined by the onset of the collapse, is the same for all these
values of l.

with l = 1 and l = 2 suffer strong losses due to the rotational
motion, and eventually split into fragments (two fragments in
the case of l = 1, and several of them, if l = 2).

As said above, the diagram shown in Fig. 2 indicates a
transition to DSs with the further decrease of the norm. The
DSs trapped in the oval trough are stable for l = 0, and exhibit
a quasistability, in the form of the above-mentioned rocking
motion, for l �= 0 [see Figs. 5(e) and 6(e)]. We stress that
the density maxima in the DS have zero phase difference, in
contrast with formally similar dipolar modes trapped in the
Mathieu lattices [19], in which the phase difference between
the maxima is π .

B. The attractive model

In the model with the self-attraction (α = −1), the oval
trough supports DSs only, while solutions of the EAS type
could not be found, irrespective of the norm. There is a
maximum critical value of the norm, beyond which solitons
do not exist due to the possibility of the collapse (see Fig. 7).
Two examples of DSs are shown in Fig. 8 for different depths
of the lattice. In particular, stronger lattices support the DSs
with narrower and taller profiles [see Fig. 8(b)]. These DSs turn
out to be stable and quasistable for l = 0 and l �= 0, respectively.
In the latter case, the DSs exhibit the rocking motion, similar
to that in the repulsive model [cf. Figs. 5(e) and 6(e)]. In terms
of the 1D linear spectrum induced by the quasiflat OL potential
far from the center, all the solitons found in the attractive model
belong to the semi-infinite gap.

FIG. 8. (Color online) Examples of stable double solitons in the
attractive model with N = 4.3, δ = 0.4, and l = 0, for different depths
of the lattice: (a) p = 10 and (b) p = 30.

IV. FUNDAMENTAL SOLITONS TRAPPED AT THE
CENTER OF THE ELLIPTIC LATTICE

Next, we use the variational approximation (VA) to analyze
the existence of localized modes trapped in the central potential
well (around r = 0), in the repulsive and attractive models
alike. To this end, we introduce an elliptical ansatz,

u(r, t) = A(t) exp

{
−[r

√
1 + δ cos(2θ )]2

2[a(t)]2

+ i

2
b(t)[r

√
1 + δ cos(2θ )]2 + iφ(t)

}
, (5)

with amplitude A, width a, chirp b, and overall phase φ.
Inserting the ansatz into the Lagrangian of Eq. (2) with
potential [Eq. (1)], and applying the VA procedure, similar
to that which was used for the solitons in the circular-lattice
model [14], we arrive at the following evolution equation for
the width of the localized state:

d2a

dt2
= 4(1 − χ )

a3
+ 2p exp(−a2)[−2a exp(a2)

−√
πerfi(a) + 2

√
πa2erfi(a)], (6)

where erfi(a) ≡ erf(i a)/i, with erf the standard error function,
and

χ ≡ −αN
√

1 − δ2/(4π ), (7)

while the amplitude is expressed in terms of the width,
A2 = N

√
1 − δ2/(πa2). Recall that, as above, α = +1 and

α = −1 correspond to the repulsive and attractive nonlinearity,
respectively.

Equation (6) is tantamount to the equation of motion for a
unitary-mass particle in the following external potential,

u(a) = 2(1 − χ )

a2
+ 2p

√
πa(t) exp(−a2)erfi(a). (8)

For different values of the lattice depth, p, the effective
potential is plotted in Figs. 9(a) and 9(b), which correspond
to the attractive and repulsive models, respectively. It is
concluded from these results that, in the attractive model
with p = 0.5, the solitons can be localized around r = 0
in the range of 0.45 � χ < 1 (χ = 1 is the critical value,
beyond which the fixed point of the potential vanishes, like
in the circular lattice [14]). According to Eq. (7), this range
may be translated into a respective interval of values of
the norm. In the repulsive model, with p = 6, the solitons

FIG. 9. The variational potential with δ = 0.1, as given by Eq. (8),
for different values of χ . The strength of the elliptic lattice, p, is
indicated in the panels.
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FIG. 10. (Color online) Fundamental solitons trapped at the
center of the elliptic potential with δ = 0.1, in the attractive (a) and
repulsive (b) models. The other parameters are p = 0.5, χ = 0.9, and
µ = −3.4168 in (a), and p = 6, χ = −0.23, and µ = 1.2 in (b). Panel
(c) displays the evolution of the stable soliton from (b) perturbed by
random noise.

trapped at the center exist in the range of 0 < |χ | � 1.5.
Examples of numerically found stable fundamental solitons
trapped at the center are shown in Fig. 10 for both signs of the
nonlinearity.

V. CONCLUSIONS

We have studied 2D localized states in the model combining
the cubic self-attraction or self-repulsion and the elliptic-lattice
potential in the framework of the Gross-Pitaevskii equation.

This potential, which can be used in experiments with
matter-wave patterns in BEC, is different from the previously
considered Mathieu lattice. The same model describes the
propagation of light in bulk media with an imprinted and
deformed circular grating. The existence and stability regions
for fundamental and vortical annular gap solitons (with
vorticity l = 1 and 2), trapped in the first oval trough of
the lattice potential, have been identified in the repulsive
model. All the fundamental annular solitons (l = 0) are stable,
while the vortical solitons are quasistable (unless their norm
is too small), featuring the rocking motion in the trough. With
the decrease of the norm, the shape of the annular solitons
changes from almost uniform to saddle-shaped, and eventually
to the DS (the double soliton, which consists of two separated
in-phase peaks). The minimum value of the norm necessary
for the (quasi)stability of the vortical annular solitons with
l �= 0 increases with the eccentricity of the underlying lattice
structure. All solitons in the repulsive model belong to the first
finite bandgap, in terms of the 1D linear spectrum induced by
the flat periodic lattice potential far from the center.

In the attractive model with the elliptic-lattice potential,
only DS solutions exist in the first annular trough. All such
solitons carrying zero vorticity are stable, whereas, for l =
1 and 2, the DSs exhibit the quasistability, similar to that in the
repulsive model. Stable elliptic-shaped fundamental solitons
trapped in the central potential well have been found, too, by
means of the variational approximation and in the numerical
form.
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