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Optical injection in semiconductor ring lasers
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We theoretically investigate optical injection in semiconductor ring lasers and disclose several dynamical
regimes. Through numerical simulations and bifurcation continuation, two separate parameter regions in which
two different injection-locked solutions coexist are revealed, in addition to a region in which a frequency-locked
limit cycle coexists with an injection-locked solution. Finally, an antiphase chaotic regime without the involvement
of any carrier dynamics is revealed. Parallels are drawn with the onset of chaos in the periodically forced Duffing
oscillator.
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I. INTRODUCTION

Optically injected laser systems generally consist of two
laser sources, a “master” laser whose output light is coupled
into the cavity of a second “slave” laser. A simple model
for this type of system is a nonlinear oscillator (slave) which
is periodically driven (master). Although these systems are
relatively simple, they exhibit a wealth of dynamical behavior
which has been widely studied for different types of lasers
[1–10].

A class of semiconductor lasers for which the nonlinear
dynamics induced by optical injection have not yet been
investigated in depth are the semiconductor ring lasers (SRLs).
A SRL is a semiconductor laser in which the light is confined
in a circular waveguide structure. As a result, SRLs generate
light in two opposite directions referred to as the clockwise
(CW) and the counterclockwise (CCW) mode (see Fig. 1).
SRLs have received increasing attention in recent years [11],
because they are suitable candidates as key components in
photonic integrated circuits [12]. The bistable character of
their directional mode operation allows them to be used in
systems for all-optical switching and as all-optical memories
[12,13]. Optical injection can be particularly important in
SRLs as a control mechanism for the dynamics in optical
switching applications [14,15] or when a holding beam is used
to enforce unidirectional operation in the injected direction
[16]. However, optical injection can also give rise to very
intricate dynamics, which may obstruct the desired dynamical
behavior. The particular Z2 symmetry of the SRL and its
resulting phase-space structure has already led to results
such as alternative switching mechanisms [15,17], multistable
regimes [18], and non-Arrhenius mode hopping [19]. The
different dynamical regimes resulting from forcing the SRL
through optical injection will be disclosed in this article.

Given the interest in SRLs, we will investigate the behavior
of this two-mode device when subjected to unidirectional
optical injection. Optical injection in other two-mode semi-
conductor lasers such as VCSELs [9] and two-color lasers [10]
has also recently been investigated. The bimodal character of
these devices gives rise to more intricate dynamical behavior,
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such as bistable operating regimes governed by optical
injection.

In this article we will perform an extensive bifurcation
analysis using the software continuation package AUTO [20],
complemented by numerically solving the rate equation model.
This approach allows us to compute the bifurcation diagrams
for optically injected SRLs and to reveal the stability of the
invariant structures in the phase space of the mathematical
model which will be introduced in the next section. Keeping
in mind the all-optical memory and switching applications,
we focus on unidirectional optical injection. This means we
optically inject only one of the two counterpropagating modes,
chosen to be the CW mode. This will also facilitate comparison
of our results with future experiments. We will further assume
that the SRL is biased in the bistable unidirectional regime.

This article is organized as follows. The rate equation model
of the optically injected SRL is described in Sec. II, where we
also point out the differences between the SRL model and that
of other two-mode lasers. The analysis starts in Sec. III, in
which we reveal some of the characteristic behavior of the
optically injected SRL obtained by numerically solving the
rate equation model. In Sec. IV, we complement this analysis
by presenting the bifurcation curves of stationary points
and point out the differences with other optically injected
semiconductor lasers. This allows us to give a bird’s eye view
of the dynamics exhibited by the optically injected SRL for
different values of the detuning and injection powers. For a
certain parameter range, the optically injected SRL exhibits a
novel antiphase chaotic regime, described in Sec. V. We finally
draw conclusions of our analysis and point to future work in
Sec. VI.

II. FORMULATION OF THE MODEL

We consider a typical master-slave setup in which we
neglect coupling from the slave to the master laser (see
Fig. 1). In this setup, the SRL is assumed to operate in
a single transverse and single longitudinal mode and can
sustain two counterpropagating directional modes. Following
Refs. [21,22] with a straightforward modification to account
for the optical injection as in Ref. [15], we can write
the following rate equations for an optically injected SRL;
neglecting spatial variations within the laser and adiabatically
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FIG. 1. (Color online) Schematic setup of the optically injected
SRL (m is assumed to be the amplitude coupling coefficient of the
straight output waveguide into the ring cavity).

eliminating the medium’s polarization dynamics:

dE1

dt
= κ(1 + iα)[N (1 − s|E1|2 − c|E2|2) − 1]E1

− keiφkE2 − i�E1 + 1

τin
Ei, (1a)

dE2

dt
= κ(1 + iα)[N (1 − s|E2|2 − c|E1|2) − 1]E2

− keiφkE1 − i�E2, (1b)
dN

dt
= γ [µ − N − N (1 − s|E1|2 − c|E2|2)|E1|2

−N (1 − s|E2|2 − c|E1|2)|E2|2]. (1c)

Here t is time, E1 and E2 are the slowly varying complex
envelopes of the counterpropagating waves, N is the carrier
population inversion, µ is the renormalized injection current
(µ = 0 at transparency and µ = 1 at lasing threshold), κ is the
field decay rate, γ is the carrier decay rate, α is the linewidth
enhancement factor, and τin is the cavity round-trip time. The
two control parameters are the injected field amplitude Ei > 0
and its detuning � from the longitudinal mode frequency
of the SRL. A detuning � > 0 corresponds to a higher
master than slave frequency. The two counterpropagating
waves saturate both their own and each others gain through
spectral hole burning and carrier heating effects. These self-
and cross-saturation phenomena occur on faster time scales
than the photon lifetime of the SRL [23], allowing them to
be added phenomenologically, modeled by s and c. Note
that the cross-saturation is stronger than the self-saturation
(c ≈ 2s) [24]. In addition to this nonlinear coupling there
also exists a linear coupling between the counterpropagating
waves, referred to as backscattering. It is caused by reflections
inside the cavity at the interface with the coupling waveguide
and at the cleaved end facets of the output waveguide. They
result in a linear coupling between the two fields, modeled
by an amplitude k and a phase shift φk . Finally, note that the
reference frame of the equations is chosen to corotate with the
phase of the master laser so that fixed points of this system
correspond to injection-locked states.

In a typical experimental setup, the photon lifetime τp =
κ−1 and the carrier lifetime τc = γ −1 are respectively of the
orders 10 ps and 5 ns, yielding two different time scales in the
system. The other parameters are fixed to realistic values α =
3.5, s = 0.005, c = 0.01, k = 0.4412 ns−1, φk = 1.4966, and
τin = 0.6 ps [21]. The value of the bias current µ is chosen such
that the SRL operates in the bistable unidirectional regime, but
still relatively close to the alternate oscillation regime [17]. The

detuning is varied up to 7 ns−1 (angular frequency), while the
values used for the injection amplitude Ei span several orders
of magnitude, ranging from O(10−7) up to O(10−2).

For future reference, we will briefly highlight the character-
istic time scales of the solitary SRL. The principal time scale
in any semiconductor laser is the relaxation oscillation time
scale. For our set of equations (1), the relaxation oscillation
angular frequency can be approximated by

ωR ≈
√

2(µ − 1)γ κ ≈ 5.307 ns−1. (2)

In the case of SRLs there is also a second important time
scale regarding intensity oscillations, the alternate oscillation
frequency. It characterizes a particular operating regime of the
solitary SRL in which two coupling mechanisms—the cross-
gain saturation and the backscattering—compete with each
other, inducing intensity oscillations at an angular frequency
given by [21]

ωAO = 2k
√

− cos(2φk) − α sin(2φk) ≈ 0.606 ns−1. (3)

In the bistable unidirectional regime, the SRL has four different
steady-state solutions in the absence of optical injection.
Two of them are stable quasiunidirectional solutions with
the power concentrated in either the CW or the CCW mode.
The other two are unstable bidirectional solutions with equal
power in both modes, with the counterpropagating fields
respectively in-phase (IP) and out-of-phase (OP). They are
each characterized by a particular optical frequency ωX, with
X={CW,CCW,IP,OP}. This is due to the different carrier
densities associated to each of these solutions. The carrier
densities are influenced by the optical intensity, in which the
backscattering also plays a role by altering the effective gain of
both modes. This frequency corresponds to a certain detuning
with respect to the cavity resonance frequency ω0 which can
be calculated numerically and is given by

�CW = �CCW ≈ 0.225 ns−1 (4)

�OP = −�IP ≈ 0.326 ns−1. (5)

with �X = ωX − ω0. Note that �CW must be equal to �CCW

due to the symmetry properties of our system (E1 and
E2 may be exchanged). The fact that �OP = −�IP follows
immediately from the equations (1).

Contrary to two-color lasers where the mode spacing is
highly nondegenerate [10], the mode spacing in SRLs is
degenerate since the counterpropagating modes have identical
frequencies. For this reason, the counterpropagating modes in
SRLs have a significant phase coupling. On the other hand,
the phases of the two modes in two-color lasers are decoupled
and only the intensity of the uninjected mode influences the
dynamics [10]. Moreover, contrary to SRLs, saturation effects
in two-color lasers are such that self-saturation is stronger
than cross-saturation [10], affecting the relative stability of
the modes. Both the SRL model and the spin-flip model for
VCSELs [25,26] account for a phase coupling between the
modes. However, in the spin-flip model, the optical injection
studied in Ref. [9] corresponds to injection in both modes when
the VCSEL is lasing in both circular modes simultaneously.
Finally, the SRL model does not need an extra dimension for
a second carrier population as the VCSEL model does.
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FIG. 2. (Color online) Orbit diagram depicting the local extrema
of the intensity |E1|2 of the CW mode versus the injection amplitude
Ei . Black (gray) dots indicate local maxima (minima). µ =
1.704, φk = 1.4966, k = 0.4412 ns−1, α = 3.5, c = 0.01, s = 0.005,
κ = 100 ns−1, γ = 0.2 ns−1, � = −1 ns−1.

III. NUMERICAL SIMULATIONS

We start our analysis by numerically solving (1) for
different values of the detuning � and the injected field
amplitude Ei , using a fourth order Runge-Kutta algorithm with
a fixed time step of 1 ps. We have constructed orbit diagrams
for different values of the detuning using Ei as a parameter.
These orbit diagrams plot the local extrema of the system’s
attractor as a function of the injection amplitude (or only a
part of the attractor if its basin of attraction is not the whole
phase space).

The orbit diagram for � = −1 ns−1, only depicting the
local extrema of the intensity of the CW mode, is shown in
Fig. 2. For low injection amplitudes the output power starts
to oscillate around the former steady state, due to the beating
between the injected signal and the optical fields inside the
SRL. When increasing Ei , the amplitude of the oscillation
grows and eventually the SRL switches mode (at point A)
due to the optical injection in the CW mode (the solitary SRL
was assumed to reside in the CCW mode prior to the optical
injection).

At point B the attractor changes from a limit cycle to a
more complicated structure, yielding a sudden burst of local
extrema. The time trace corresponding to this particular region
is shown in Fig. 3. In Sec. V, we will later show that it
corresponds to a chaotic regime. However, this regime has a
different origin than those observed in other optically injected
laser systems. From point B up to point C, the orbit diagram
reveals chaos interspersed with periodic windows.

For higher Ei (C → D), the system relaxes to a stable
limit cycle which eventually dies out in a Hopf bifurcation
at point D. At that point, the SRL locks to the injected
signal. In the next section, we will reveal that this particular
injection-locked solution is only one out of three different
injection-locked solutions (the bidirectional one). The other
two (unidirectional) injection-locked solutions have the same
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FIG. 3. (Color online) Representative time trace of the respective
intensities of the CW (dark gray, red online) and the CCW mode (light
gray, green online), and the total intensity (black) inside the cavity of
the SRL when operating in the chaotic regime. Transient behavior
has been eliminated. µ = 1.704, φk = 1.4966, k = 0.4412 ns−1,
α = 3.5, c = 0.01, s = 0.005, κ = 100 ns−1, γ = 0.2 ns−1,
Ei = 6 × 10−5, � = −1 ns−1.

route to locking as the regular injection problem, which
happens through a saddle-node bifurcation for low injection
powers [2,4,7].

Figure 2 shows a Hopf route to locking of the bidirectional
injection-locked solution. There is also a Hopf route to
locking in other optically injected semiconductor lasers [4],
but it occurs only for much higher injection powers. In that
case, considering that for a fixed value of the detuning one
would continuously raise the injection power from zero, the
slave laser would first injection-lock through a saddle-node
bifurcation, after which it unlocks because of the undamping
of relaxation oscillations and finally locks again through a
Hopf bifurcation. In our scenario, the very first locking event
happens through a Hopf bifurcation.

IV. BIFURCATION ANALYSIS

The dynamical behavior of the solutions of (1) will
generally vary for different values of the injected field
amplitude Ei and the detuning �. Qualitative changes in the
dynamical behavior of the system, so-called bifurcations, can
be numerically detected and continued in this two-dimensional
parameter space using for example the bifurcation continuation
package AUTO [20]. Figure 4 shows different regions in the
(�,Ei) plane bounded by bifurcation lines, with each region
corresponding to different dynamical behavior.

Two of these bifurcation lines, SN1 and H1, are familiar.
They arise in many other optically injected lasers for small
injection amplitude and detuning [2,3,7,27,28]. The SN1 line
represents a saddle-node bifurcation on a cycle (infinite-
period bifurcation), while the H1 line represents a Hopf
bifurcation. The region confined between these two lines is
the stable locking region, where the SRL is phase-locked to the
injected signal, yielding an injection-locked solution scw. The
transformation of this solution near the boundaries of the stable
locking region is identical to other optically injected laser
systems [2,28]. For injection powers higher than H1, the SRL
exhibits intensity oscillations at approximately the relaxation
oscillation frequency ωR . For injection powers just below SN1,
the SRL also exhibits a periodic solution which lengthens
its oscillation period when raising the injection power. This
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FIG. 4. (Color online) Bifurcation diagram in the (�,Ei) plane,
generated using the rate equations (1). Saddle-node (Hopf) bifur-
cations are depicted in black (light gray, red online). Supercritical
(subcritical) bifurcations are depicted in full (dashed) lines.

period becomes infinite when crossing SN1, where it locks to
the injected signal.

So far standard optical injection behavior has been de-
scribed. However, the bifurcation diagram in Fig. 4 reveals
the presence of bifurcation lines which are not present for
a single-mode semiconductor laser [2]. The H2 line is a
Hopf bifurcation which has a different origin than the one
encountered in VCSELs [9] and two-color lasers [10]; while
the SN2, SN3, and SN4 lines in Fig. 5 are saddle-node
bifurcations, which to the best of our knowledge have not
been encountered in other optically injected laser systems.
The H2 Hopf bifurcation is supercritical for values of the
detuning close to zero and subcritical for more negative values
of the detuning (see Fig. 5). The stable periodic solution �H

associated to the supercritical part of H2 disappears when
crossing the H2 line upward, where it turns into an injection-
locked steady state sbi. This injection-locked solution sbi differs
from scw which is generated in the saddle-node bifurcation.
Both solutions are phase-locked to the master laser, but
their power distribution among the counterpropagating modes
differs; scw has the optical power concentrated in the mode in
which we optically inject (CW), while sbi has approximately
equal powers in both modes. In Fig. 5 it can be seen that there
is a parameter region in which scw and sbi coexist. However,
when raising the injection power, sbi disappears at the SN2 line
while scw only disappears at the H1 line. For certain detunings,
the H2 line is located at lower injection power than the SN1

line, yielding a slightly earlier injection-locking (sbi appears at
lower injection power than scw).

In the limit cycle �H the phase of the laser field is bounded.
This means that the phase variables φ1 and φ2 are trapped
inside a 2π -wide interval, never crossing its boundaries (as
opposed to an unbounded or running phase solution which
freely runs around the phase circle). Because the reference
frame of our equations is chosen to corotate with the phase
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FIG. 5. (Color online) Bifurcation diagram in the (�,Ei) plane.
This is a blow-up of Fig. 4 in order to show the three new
saddle-node bifurcations (SN2, SN3, and SN4), which correspond
to three additional resonance tongues. The curves SN2 and SN4

have their origin symmetrically around � = 0 (originating from the
bidirectional solutions), while the SN3 curve has the same origin as
the SN1 curve of Fig. 4 (originating from the unidirectional solutions).
The notations scw, sccw, sbi, and �H indicate where these respective
solutions (co-)exist. The shaded area indicates regions of chaotic
behavior. Conventions as in Fig. 4.

of the master laser this implies that although the intensities
oscillate, the emitted optical frequency is centralized around
the master laser frequency. The SRL fields are frequency-
locked to the master laser in �H but not phase-locked. The
parameter region in which �H exists is partly bounded by H2

where it turns into a phase-locked (injection-locked) solution
sbi. When moving toward more positive values of the detuning
�H disappears in a global infinite-period bifurcation (which
originates from the TB point, see further on), which is not
depicted in Fig. 5. When lowering the injection power �H

disappears in a chaotic attractor, approximately at the SN2 line.
This transition can be seen in Fig. 2. There is a clear overlap
between the region where �H exists and the region confined
between SN1 and H1 where scw exists, yielding the coexistence
of an injection-locked solution and a frequency-locked limit
cycle.

The SN2, SN3, and SN4 lines are three resonance tongues.
In the case of an optically injected single-mode semiconductor
laser we are only faced with a single resonance tongue,
corresponding to our SN1 line. The occurrence of four different
resonance tongues in the case of a SRL can be explained by
the presence of four different steady-state solutions for the
solitary semiconductor ring laser at the bias current value we
have chosen [17]. In the unidirectional regime the solitary
SRL has two stable unidirectional solutions and two unstable
bidirectional solutions. The frequencies of these unperturbed
solutions, which we calculated in Sec. II, can now be matched
to each resonance tongue since the origin of a resonance tongue
is located at the frequency of the original noninjected solution.
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For weak injection, the SN1 and SN3 lines are located at a
detuning � = �CW = �CCW [this can be verified in Fig. 5,
see Eq. (4) for the numerical value], indicating that these
bifurcation curves are related to the two unidirectional modes.
The SN1 line corresponds to the CW solution in which we
inject and yields the stable locking boundary, while the SN3

line corresponds to the CCW solution. In the same way a
detuning � = �IP and � = �OP [see Eq. (5)] indicates that
the SN2 and SN4 lines respectively correspond to the in-phase
and the out-of-phase bidirectional solution. Note that these
bidirectional solutions are both unstable for the solitary SRL,
so for low injection powers the SN2 and SN4 lines correspond
to bifurcations of unstable structures. Nevertheless part of
the SN2 line is a bifurcation of a stable structure, more
precisely a bifurcation in which the injection-locked solution
sbi disappears, as mentioned before.

The presence of the SN3 line confirms the intuitive
reasoning that due to the symmetry of the solitary SRL
(stable CW and CCW states) and the phase-coupling between
the fields, two separate injection-locked states should originate
from the CW and the CCW solution at low injection power.
When crossing the SN3 line from below, an injection-locked
solution sccw appears near the original CCW solution through
a saddle-node bifurcation. It is the CCW equivalent of the scw

solution associated to the SN1 line, but it has a much smaller
basin of attraction. The SN3 line is both steeper and truncated
at the top compared to the SN1 line. The increased steepness
can be understood from the backscattering phenomenon. The
optically injected light that effectively couples into the CCW
mode does so through backscattering. Therefore, the amount of
optically injected light coupled into the CCW mode is smaller
than that coupled into the CW mode, increasing the amount of
optically injected light needed to phase-lock the CCW mode.
For higher injection powers (higher Ei), sccw becomes unstable
because of the increased effective gain of the CW mode when
optically injecting it. Finally, the SN4 line is a bifurcation of
the out-of-phase bidirectional solution, which is an inherent
unstable structure. Crossing the SN4 line does not lead to a
readily observable change in the system dynamics.

In Fig. 5 we can also see that the Hopf curve H2 and the
saddle-node curve SN2 become tangent to each other at two
different points, so-called codimension-2 bifurcation points.
An analysis of the eigenvalues near these points reveals that the
TB point above the stable locking region is a Takens-Bogdanov
point, yielding a double-zero bifurcation at that point [29].
It follows from the local theory that there must be a global
(homoclinic) bifurcation line originating from the TB point
somewhere between H2 and the subcritical part of SN2. This
bifurcation line is not visible in Fig. 5, but it is responsible for
the disappearing of the limit cycle �H , as mentioned before.

The GG point is a Gavrilov-Guckenheimer point, yielding
a fold-Hopf (or zero-pair) bifurcation [29], only involving the
SN2 and the H2 bifurcation lines (the SN1 line in Fig. 5 only
seemingly crosses the GG point). The nature of the GG point,
which is located at �GG ≈ −1.645 ns−1, implies that the H2

Hopf bifurcation changes stability when passing GG while
increasing � [29]. In our case this means that for � < �GG,
the limit cycle created by (and below) H2 is unstable, while for
� > �GG it is stable. Moreover, the unstable cycle originates
from the unstable node generated by SN2 (not from sbi, from

which the stable limit cycle is generated) [29]. This implies that
sbi does not disappear when crossing the H2 line for � < �GG

but only when crossing the SN2 line, which is confirmed by
the numerical simulations.

V. ANTIPHASE CHAOS

The occurrence of chaotic regimes in optically injected
laser systems and photonic integrated circuits is a well-known
phenomenon and has been found both experimentally and by
numerical simulation [1,8,9,30–33]. For the optically injected
SRL we want to focus on a particular chaotic regime (see
Fig. 3). It is located below the stable locking boundary and
at detunings significantly lower than the relaxation oscillation
frequency ωR. The parameter region in which this behavior
can be found is indicated in Fig. 5 by the shaded area. This
parameter region has been constructed by interpolating points
obtained by numerical simulation of equations (1). Both the
CW and the CCW mode exhibit purely chaotic behavior but
nevertheless act in antiphase. This is illustrated in Fig. 3 by the
approximately constant value of the total optical power inside
the SRL (black line).

We can distinguish two qualitatively different regimes,
denoted by X and Y in Fig. 3. Regime X is an oscillation of the
counterpropagating modes at a fundamental frequency ωAO,
making it similar to the alternate oscillation regime observed
in solitary SRLs [see Eq. (3)] [21]. Regime Y is characterized
by the suppression of the noninjected mode (CCW) by the
injected mode (CW) while oscillating at the double frequency
2ωAO. The time that the SRL resides in either of these regimes
also seems to be chaotically distributed.

Unlike other chaotic regimes in optically injected semi-
conductor lasers, the antiphase chaotic regime in an optically
injected SRL shows no involvement of any carrier dynamics.
The variation in carrier inversion is less than 0.4%, which
is consistent with the constant total power in Fig. 3. Hence,
the chaos is purely due to the bistable character of the SRL
and relaxation oscillations do not play a role in the onset
of chaos as it is the case in other optically injected laser
systems [8,9,30–33].

In order to get more insight in the appearance of the strange
attractor responsible for the chaotic behavior, we investigate
the orbit in a different phase space. Reference [34] introduces
a reduced two-dimensional model for the solitary SRL which
is valid on time scales slower than the relaxation oscillations. It
consists of a variable θ ∈ [−π/2, π/2], a measure for the dis-
tribution of the optical power among the counterpropagating
modes, and a phase variable ψ ∈ [0, 2π ], the phase difference
between the counterpropagating CW and CCW waves. A value
of θ = −π/2 corresponds to unidirectional CW operation,
while a value of θ = π/2 corresponds to unidirectional CCW
operation. The validity of this two-dimensional phase space
has been confirmed by experiments on a solitary SRL [18,19].

Projecting the five-dimensional chaotic orbit onto this two-
dimensional (θ, ψ) phase plane yields a phase portrait which is
hard to interpret. However, when viewed as a Poincaré section,
it displays considerable structure. Since the phase φ1 of the
electric field of the CW mode is unbounded in this regime, we
construct the Poincaré section by strobing the system whenever
φ1 is a multiple of 2π (see Fig. 6). The points now fall on a
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FIG. 6. Poincaré section corresponding to an orbit of approx-
imately 100 µs (≈16 000 points) in the reduced two-dimensional
(θ, ψ) phase space of the solitary SRL, when operating in the regime
depicted in Fig. 3.

fractal set, which can be interpreted as a cross section of the
system’s strange attractor in the antiphase chaotic regime.

Note the topological resemblance of Fig. 6 to the Poincaré
section of the chaotic behavior of a periodically forced
Duffing oscillator (see, for example, Refs. [35,36]). A Duffing
oscillator is a nonlinear oscillator with a cubic stiffness term,
which corresponds to weakly damped motion on a double
well potential [36]. Hence, its symmetry is very similar
to the optically injected SRL. The periodic forcing is a
sinusoidal term in the Duffing equation which makes the
system nonautonomous, corresponding to the optical injection
in the SRL. Furthermore, the double well potential (with
two symmetric stable states) has its counterpart in the two
stable unidirectional solutions of the solitary SRL. Incited by
this resemblance in symmetry properties and strange attractor
topology, we conjecture that the way the optically injected SRL
evolves to the antiphase chaos is topologically identical to the
way the periodically forced Duffing oscillator evolves to chaos.
The fact that we observe a period doubling of the periodic
solution just before the onset of chaos seems to endorse this
hypothesis [36].

Since the periodically forced Duffing oscillator is an
extensively studied archetypical dynamical system, we expect
that the analogy with the optically injected SRL will allow in-
terpretation and prediction of dynamical regimes of operation
which are a consequence of the device symmetry.

VI. DISCUSSION AND CONCLUDING REMARKS

In this article, we have theoretically investigated optical
injection in SRLs. Starting from a single-longitudinal mode
rate equation model for SRLs, we have used numerical
simulations and a bifurcation analysis to reveal all the relevant
dynamical regimes that unfold for different parameter values.
We have focused on optical injection where power is injected
in only one of the two counterpropagating modes, as this is
the case in multiple experimental setups. The breaking of the
intrinsic Z2 symmetry of the SRL due to this optical injection
leads to remarkable differences in its dynamical behavior
compared to other optically injected laser systems.

Our bifurcation analysis in Sec. IV showed that the
behavior of one injection-locked solution is similar to the
injection-locking of other laser systems. It exists in the stable
locking region which is bounded by a saddle node (for low
injected power) and a Hopf bifurcation line (for high injected
power). This injection-locked solution has the modal power
concentrated in the CW mode in which we inject. Hence, it has
a high modal power suppression ratio. However, the intrinsic
bistability of the SRL leads to three separate parameter regions
in which this injection-locked state respectively coexists with
a bidirectional injection-locked state (which has a lower
suppression ratio), a CCW injection-locked state (in which
the power is concentrated in the noninjected CCW mode),
and a frequency-locked limit cycle. This frequency-locked
limit cycle bifurcates into the bidirectional injection-locked
solution through a Hopf bifurcation when raising the injected
power.

Our numerical analysis revealed a novel antiphase chaotic
regime at a value of the detuning which is much lower than
the relaxation oscillation frequency. It differs from chaotic
regimes observed in other optically injected semiconductor
lasers because it does not involve any carrier dynamics and the
total power emitted by the SRL remains constant. Furthermore,
parallels to the onset of chaos in the periodically forced Duffing
oscillator will be the subject of future research.
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