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Faraday patterns in two-dimensional dipolar Bose-Einstein condensates
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We analyze the physics of Faraday patterns in dipolar Bose-Einstein condensates. Faraday patterns can be
induced in Bose-Einstein condensates by a periodic modulation of the system nonlinearity. We show that
these patterns are remarkably different in dipolar gases with a roton-maxon excitation spectrum. Whereas for
nondipolar gases the pattern size decreases monotonously with the driving frequency, patterns in dipolar gases
present, even for shallow roton minima, a highly nontrivial frequency dependence characterized by abrupt pattern
size transitions, which are especially pronounced when the dipolar interaction is modulated. Faraday patterns
constitute, hence, an excellent tool for revealing the onset of the roton minimum, a key feature of dipolar gases.
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I. INTRODUCTION

Pattern formation in driven systems constitutes a general
phenomenon observed in disparate scenarios ranging from
hydrodynamics and nonlinear optics to liquid crystals and
chemical reactions [1]. A paradigmatic example of pattern
formation is provided by the Faraday patterns (or waves),
which in their original formulation [2] refer to standing waves
arising through a parametric instability on the surface of a
vertically oscillated fluid. The equivalent of Faraday patterns
may be observed in Bose-Einstein condensates (BECs) by
modulating the nonlinearity arising from the interatomic inter-
actions [3], either by time-dependent Feshbach resonances [4]
or by a time-dependent confinement [5]. The latter method has
been recently used for realizing these patterns in BECs [6,7].
Faraday patterns offer important insights about elementary
excitations in BECs since the pattern size is determined by the
Bogoliubov mode resonant with half of the driving frequency.
For typical BECs the energy of elementary excitations grows
monotonously as a function of their corresponding momenta.
As a result, the pattern size decreases monotonously with the
driving frequency [8].

Recent experiments on atoms with large magnetic moments
[9,10], polar molecules [11,12], spinor BECs [13], and optical
lattices [14] are opening the rapidly developing area of dipolar
gases. In these gases, the dipole-dipole interactions (DDIs)
play a significant or even dominant role compared to the short-
range interactions (SRIs). Dipolar BECs present a wealth of
new physics [15–18] due to the long-range and anisotropic
character of the DDI. A major difference between nondipolar
and dipolar BECs is provided by the dispersion of elementary
excitations, which, due to the momentum dependence of the
DDI, may show a roton-maxon character [18] similar to that
encountered in helium [19]. Sufficiently deep rotonlike minima
may significantly influence the critical superfluid velocity [18]
and the finite temperature BEC physics [20] and may even lead
to instability [21].

The rotonlike minimum has not yet been observed exper-
imentally, and it remains still an open question how to probe
easily the onset of rotonization. In this article, we show that
pattern formation is crucially modified in dipolar BECs with
an, even shallow, roton minimum in the excitation spectrum.
Remarkably, contrary to the case of nondipolar BECs, the first
unstable mode does not necessarily determine the emerging

pattern, which may be dominated by harmonics of the driving
frequency with energies close to the roton minimum. As a
result of that and of the multivalued character of the roton-
maxon spectrum, the pattern size presents a highly nontrivial
dependence with the driving frequency characterized even for
shallow roton minima by abrupt transitions in the pattern
size. These transitions, which are especially pronounced
for modulated DDI, may be employed to reveal easily the
appearance of a roton minimum in experiments on dipolar
BECs.

The article is structured as follows. In Sec. II we present
the physical system and the effective 2D model analyzed. In
Sec. III we discuss the rotonlike Bogoliubov excitations in a 2D
dipolar BEC. In Sec. IV we study Faraday patterns in dipolar
gases with modulated SRIs. Section V is devoted to the physics
of Faraday patterns when the DDI is modulated. Finally, in
Sec. VI we comment on possible experimental realizations
and summarize our conclusions.

II. MODEL

In the following we consider a BEC of N particles with
mass m and electric dipole d (the results are equally valid for
magnetic dipoles) oriented in the z direction by a sufficiently
large external field. The dipoles interact via a dipole-dipole
potential: Vd (�r) = d2[1 − 3 cos2(θ )]/r3, where θ is the angle
formed by the vector joining the interacting particles and
the dipole orientation. We assume a strong harmonic con-
finement V (z) = mω2

zz
2/2 along the z direction, whereas for

simplicity of our discussion we consider no xy trapping. At
sufficiently low temperatures the BEC wave function �(�r)
is given by the nonlocal nonlinear Schrödinger equation
(NLSE):

ih̄
∂

∂t
�(�r) =

[
Ĥ0 +

∫
d3r ′U (�r − �r ′)|�(�r ′)|2

]
�(�r), (1)

where Ĥ0 = −h̄2∇2/2m + V (z) and U (�r) = gδ(�r) + Vd (�r −
�r ′), with g = 4πh̄2a/m, where a is the s-wave scattering
length (we consider in the following a < 0) and m the particle
mass. Note that the DDI introduce a nonlocal nonlinearity
in Eq. (1). If the chemical potential (introduced later in this
article) µ2d � h̄ωz, the system can be considered “frozen” into
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the ground state φ0(z) of V and hence the BEC wave function
factorizes as �(�r) = ψ( �ρ)φ0(z). Employing this factorization,
the convolution theorem, the Fourier transform of the dipole-
potential and integrating over the z direction, we arrive at the
2D NLSE [22],

ih̄
∂

∂t
ψ( �ρ) =

[
− h̄2

2m
∇2 + g2D|ψ( �ρ)|2

+ 4π

3
βg2D

∫
d2k

(2π )2
ei�k· �ρñ(�k)h2D

(
klz√

2

)]
ψ( �ρ),

(2)

where �k is the xy wave number, lz ≡ √
h̄/mωz is the oscillator

length, g2D ≡ g/
√

2πlz is the 2D short-range coupling con-
stant, ñ(�k) is the Fourier transform of |ψ( �ρ)|2, and h2D(�k) =
2 − 3

√
πkek2

erfc(k), with erfc(k) the complementary error
function. The parameter β = d2/g characterizes the DDI
strength compared to the SRI.

III. BOGOLIUBOV SPECTRUM OF A 2D DIPOLAR BEC

The homogeneous solution of (2) is ψ( �ρ, t) =√
n2D exp [−iµ2Dt/h̄], with n2D the 2D homogeneous density

and µ2D = g2Dn2D(1 + 8πβ/3) the chemical potential. The
elementary excitations of the homogeneous 2D BEC are plane
waves with 2D wave number �k and dispersion [23]

ε(k)2 = T (k)

{
T (k) + 2g2Dn2D

[
1 + 4πβ

3
h2D

(
klz√

2

)]}
,

(3)

where T (k) = h̄2k2/2m is the kinetic energy. If β = 0 and
since a < 0, then ε(k → 0)2 < 0 and phonon instability
occurs, followed by the well-known collapse for attractive
short-range interacting BECs. This instability is prevented
for sufficiently large DDI such that g + 8πd2/3 > 0. At
moderate d values, and due to the k dependence of the DDI
(h2D function), ε(k) may develop a rotonlike minimum for
intermediate k values (an example for typical experimental
values in 52Cr is shown in Fig. 1). The excitation spectrum
presents hence a maximum and a minimum (roton-maxon
spectrum), constituting one of the most relevant novel features
in dipolar gases. We show below that this rotonlike minimum
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FIG. 1. Dispersion of a 2D homogeneous BEC of 52Cr
with a = −0.54 nm (β = −0.375), a 3D density n2D/

√
2πlz =

1014 cm−3, h̄ωz = µ2D/2, and ζ = h̄/
√

2mµ2D = 0.59 µm. The
excitation energies split into regimes A, B, and C (see text).

may be easily probed even for shallow rotonlike minima by
modulating the system nonlinearity.

IV. TIME MODULATION OF s-WAVE
SCATTERING LENGTH

A. Mathieu equation and Floquet exponent

We consider a temporally periodic modulation of s-wave
scattering length: a(t) = a0[1 + 2α cos(2ωt)] about its mean
a0, where α is the modulation amplitude and 2ω is the
driving frequency. The homogeneous 2D solution becomes
ψH ( �ρ, t) = √

n̄2D exp {−i[t + γ

ω
sin(2ωt)]µ2D/h̄}, with γ =

α/(1 + 8πβ/3). The driving may induce a dynamical insta-
bility breaking the translational symmetry of the homoge-
neous solution. This destabilization is best studied with an
ansatz ψ( �ρ, t) = ψH (t)[1 + w(t) cos(�k · �r)], where w(t) is the
complex perturbation amplitude. Inserting this ansatz into (2)
and linearizing in w(t), we obtain a Mathieu equation for
u = Re(w):

d2u

dt2
+ 1

h̄2 [ε(k)2 + 2b(ω, k, α)(h̄ω)2 cos(2ωt)]u = 0, (4)

with

b(ω, k, α) ≡ 2αg2Dn2DT (k)/(h̄ω)2, (5)

where g2D is calculated from the mean a0. Following the
Floquet theorem [24], the solutions of (4) are of the form u(t) =
c(t) exp σ t , where c(t) = c(t + 2π/ω) and σ (k, ω, α) is the
so-called Floquet exponent. If Re(σ ) > 0, the homogeneous
BEC is dynamically unstable against the formation of Faraday
patterns, whose typical wavelength is dominated by the most
unstable mode [that with the largest Re(σ ) > 0]. For vanishing
modulation the system becomes unstable at the parametric
resonances ε(kn) = nh̄ω, where n = 1, 2, . . ..

B. Nondipolar condensates

We discuss first for comparison the case of a nondipolar
BEC (β = 0) with g > 0 (note that a nondipolar BEC with
g < 0 is always unstable under the conditions discussed
in this article). In that case, the BEC presents a spectrum
ε(k)2 = T (k)[T (k) + 2g2Dn2D], characterized by phononlike
excitations at low k and single-particle excitations at large k

with a smooth transition between them in the intermediate
momentum of the order of 1/ζ , where ζ = h̄/

√
2mµ2D is

the corresponding healing length. Hence, the spectrum of
nondipolar BEC is constituted by a monotonously increasing
nature. As discussed in [3,7], for any given driving frequency
the most unstable mode is always provided by the first
resonance ε(k) = h̄ω, and hence k = ε−1(h̄ω) determines the
typical inverse size of the Faraday pattern. Figure 2 shows
the most unstable wave number as a function of the forcing
frequency for the case of a nondipolar BEC. It is clear that
the most unstable k increases with an increasing ω, resulting
in a monotonously decreasing pattern size, as shown in recent
experiments [6,8]. From Fig. 2, it is interesting to note that the
most unstable modes simply map the Bogoliubov spectrum of
nondipolar BECs. In the following we show that the physics
of Faraday patterns is remarkably much richer and involved in
dipolar BECs.
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FIG. 2. Most unstable k as a function of forcing frequency ω for
modulated s-wave scattering length with α = 0.2 for a nondipolar
BEC (β = 0).

C. Dipolar condensates

For β �= 0 and g > 0, for a 2D system the dispersion is
similar to that of nondipolar BECs, and hence a monotonous
wave number selection as that of Fig. 2 is expected. The
situation is remarkably different when g < 0. As mentioned
previously, for g < 0 and intermediate d values ε(k) the
excitation spectrum shows a rotonlike minimum (with energy
h̄ωr ) and a maxon maximum (h̄ωm). Hence, as a function of
the modulation frequency 2ω we may distinguish three driving
regimes: (A) ω < ωr , (B) ωr � ω � ωm, and (C) ω > ωm (see
Fig. 1). The latter regime is relatively uninteresting, since, as
for nondipolar BECs, the spectrum is univalued and the most
unstable mode is provided by ε(k) = h̄ω [white region in Fig. 3
(top)]. Hence, similar to the nondipolar case, the larger the
driving frequency in regime C, the smaller the pattern size.
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FIG. 3. Stability diagram (dark regions are stable) for the param-
eters of Fig. 1 as a function of α and k. (Top) h̄ω/µ = 0.4 (regime C);
(middle) h̄ω/µ = 0.268 (regime B); (bottom) h̄ω/µ = 0.134 (regime
A). The most unstable modes are indicated by crosses.

Regime B on the contrary is multivalued, and the condition
ε(k) = h̄ω is satisfied by a triplet k(1)

1 < k
(2)
1 < k

(3)
1 . These three

resonant momenta lead to three instability tongues for growing
modulation amplitude α [white regions in Fig. 3 (middle)].
However, these three wave numbers are not equally unstable.
We may employ approximate expressions for the Floquet
exponent for small b stemming from celestial mechanics
(see [7,25] and references therein). The expression for σ up to
fourth order in b(ω, k, α) can be obtained as

σ = i

π
arccos

{[
1 − b4π2

32n2(1 − n2)2

]
cos nπ

+
[ −b2π

4n(1 − n2)
+ (15n4 − 35n2 + 8)b4π

64n3(1 − n2)3(4 − n2)

]
sin nπ

}
.

(6)

Hence, for the lowest resonance ε(k) = h̄ω, that is, for n = 1,
we obtain

σ1 	 b(ω,k,α)/2 ∝ k2/(h̄ω)2. (7)

It is clear that the most unstable mode in regime B is always
given by the largest momentum among the triplet, and is k

(3)
1 ,

which dominates the Faraday pattern formation and hence
determines the pattern size. For regimes B and C the Faraday
pattern is, as for nondipolar BECs, provided by ε(k) = h̄ω.
The situation is remarkably different for regime A. The latter
is better understood by considering the ratio σ2/σ1 between
the Floquet exponents for the second [ε(k) = 2h̄ω] and the
first [ε(k) = h̄ω] resonance condition. Again using Eq. (6), we
obtain,

σ2 =
√

5

48
b2. (8)

Hence, the ratio between σ1 and σ2 can be obtained as

σ2

σ1
=

√
5α

12(8π |β|/3 − 1)

(µ2D

h̄ω

)2
ζ 2 [ε−1(2h̄ω)]4

[ε−1(h̄ω)]2
. (9)

Not surprisingly, the first resonance dominates for α → 0.
However, contrary to the short-range interacting case, for α

surpassing a very small ω-dependent critical α, the situation
changes completely. Figure 4 (top) depicts the ratio σ2/σ1 as
a function of ω for a small α = 0.04. Note that σ2 < σ1 for
ω > ωr and, as expected, for regimes B and C the instability
is dominated by the resonance ε(k) = h̄ω. On the contrary, for
ω < ωr , σ2 > σ1, even for such a small value of α, and hence
the lowest resonance is no longer the most unstable one.

This surprising result is a direct consequence of the
dipole-induced roton-maxon dispersion, which allows for an
anomalously large ε−1(2h̄ω) compared to ε−1(h̄ω), which in
turn, due to (9), results in σ2 > σ1. Note, however, that this
effect cannot be directly extrapolated to other systems with
a nonmonotonous dispersion relation, in particular to those
presenting a nonmonotonous single-particle dispersion T (k)
induced by an external periodic potential. This is, for example,
the case of photonic crystals in nonlinear optics or condensates
in particular optical lattices. Note that in general Eq. (9)
becomes of the form σ2/σ1 ∝ αT (ε−1(2ω))2

/ω2T (ε−1(ω)).
Hence, the crucial condition σ2 > σ1 demands an appropri-
ate relation between T (k) and the many-body excitations
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FIG. 4. Ratio between the Floquet exponent σ1 for ε = h̄ω and σ2

for ε = 2h̄ω (top). Most unstable k as a function of ω in the regime
A. We use the same parameters as for Fig. 1 and α = 0.04 (bottom).
The dashed line indicates the roton frequency or momentum.

ε(k). This point may be easily understood by considering
a nondipolar BEC (d = 0) with weak repulsive interactions
g2D > 0. If we consider momenta such that T (k) � g2Dn2D,
then ε(k) 	 T (k) and σ2/σ1 ∝ α/ω. Hence, the first harmonic
would remain the most unstable one regardless of whether
T (k) is nonmonotonic.

Our numerical Floquet analysis shows indeed [see Fig. 4
(bottom)] that for α > αcr (for the parameters of Figs. 3, αcr 	
0.027) the most unstable mode for all driving frequencies
within regime A is given by the largest momenta k compatible
with the first harmonic ε(k) = nh̄ω lying in regime B (or, if
none, the first harmonic lying in regime C). This has important
consequences for the wave-number selection as a function
of the driving ω, which, as shown in Fig. 4 (bottom), is
remarkably different than that for the nondipolar case (see
Fig. 2). The pattern size does not decrease monotonously with
growing ω, but on the contrary oscillates in the vicinity of
the roton momentum, presenting abrupt changes of the pattern
size at specific driving frequencies. These oscillations are the
result of the subsequent destabilization of higher harmonics in
regime B.

This distorted wave-number selection is directly mir-
rored into the spatial form of the corresponding patterns.
We have studied the dynamical instability induced by
the modulation and the emerging patterns by simulating
Eq. (2) numerically with periodic boundary conditions and
an overimposed random noise provided by a small random
local phase (<10−3π ) on the homogeneous solution. Our
direct numerical calculations are in excellent agreement with
our Floquet analysis. Figure 5 (top left) depicts the case of
a frequency ωr < ω0 < ωm, where as expected the Faraday
pattern is indeed given by the largest resonant momentum.
In Fig. 5 (top right) we consider ω = ω0/2, which is within
regime A [the corresponding stability diagram is depicted in
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FIG. 5. Faraday patterns for h̄ω/µ = 0.268 at t = 40.6 ms (top
left) and h̄ω/µ = 0.134 at t = 93.2 ms (top right) and the same
parameters as in Fig. 1. Note that the pattern size is basically the same
despite the very different driving frequencies. The corresponding
Fourier transforms of the densities of the top figures are shown in
the bottom panels. The white circle indicates the wave number of the
corresponding pattern.

Fig. 4 (bottom)]. Strikingly, due to the discussed selection of
higher harmonics, the Faraday pattern is basically the same
as for a double driving frequency ω0. This quasi-insensitivity
becomes quantitatively evident after Fourier transforming the
density pattern (Fig. 5, bottom panels).

V. TIME MODULATION OF DIPOLE-DIPOLE
INTERACTION

In the previous section we considered the modulation of the
s-wave scattering length a(t). A dipolar BEC offers, however,
an additional novel way of modifying the system nonlinearity
by a time-dependent DDI. This may be achieved by modulating
slightly the intensity of the polarizing field (e.g., the electric
field orienting a polar molecule) or by introducing a slight
precession of the direction of the external field (e.g., by
additional transversal magnetic fields in the case of atomic
dipoles). In the following we show that the Faraday patterns
obtained by means of a modulated DDI differ very significantly
from those obtained by modulating a(t).

We consider a temporal modulation of the DDI d2 = gβ(t),
with β(t) = β̄[1 + 2α cos(2ωt)] about its mean value β̄.
Following a similar procedure as that discussed above for the
case of modulated a(t), we obtain the Mathieu equation for
the real part of the perturbation amplitude u. This equation is
of the same form as Eq. (4) but with

b(ω,k,α) = 8πα|β̄g2D|n2D

3(h̄ω)2
T (k)h2D

(
klz√

2

)
. (10)

The modified k dependence of b(ω,k,α) compared to Eq. (5),
has crucial consequences for the formation of Faraday patterns.
Similar to that described previously, we may employ the
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FIG. 6. Most unstable k as a function of ω for modulated β(t),
α = 0.12, and the same parameters as for Fig. 1. We indicate the
roton and maxon frequencies and momenta.

approximate expressions of the Floquet exponents [7,25].
Using Eq. (6), for the first resonance ε(k) = h̄ω, we obtain

σ1 ∝ k2h2D(klz/
√

2). (11)

Note that the k dependence of σ1 is modified. Again, regime
C is relatively uninteresting due to the univalued nature of
the Bogoliubov spectrum. However, in regime B, the modified
k dependence leads to a remarkably different selection rule
for k values. Contrary to the case of modulated a(t), it is
the intermediate momentum k

(2)
1 and not the largest one k

(3)
1 ,

the one with the largest σ1 value, and hence the most unstable
within regime B. This leads to a remarkably abrupt change
in the Faraday pattern size in the vicinity of ωm [26]. In
addition, and similar to the case of modulated a(t), driving with
ω < ωr may be dominated by higher harmonics. Figure 6
shows the most unstable k as a function of ω for a typical
case of modulated β(t). Note not only the aforementioned
abrupt jump in the vicinity of ωm but also at other ω values
within regime A. As for the case of modulated a(t), these
jumps represent abrupt transitions in the Faraday pattern size,
which are certainly much more marked than for those in the
modulated a case. Figure 7 shows the abrupt change in
the patterns for two driving frequencies right below and above
the transition close to ωm [26].

We stress that these abrupt transitions in Faraday patterns
in dipolar BEC are due to the rotonlike dispersion relation.
Notably, this behavior is absent in dipolar BECs exhibiting a
monotonous roton-free Bogoliubov spectrum. Hence, Faraday
patterns can be used to probe even shallow rotonlike minima
in dipolar gases. We mention at this point that alternative ideas
have been proposed for revealing the presence of a rotonlike
minimum, including the (experimentally rather involved)
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FIG. 7. Faraday patterns for h̄ω/µ = 0.32 at t = 97.3 ms (left)
and h̄ω/µ = 0.34 at t = 904.1 ms (right) and the same parameters as
in Fig. 6. Note that the pattern size is dramatically different despite
the very similar driving frequencies.

analysis of the reduced critical superfluid velocity [18] and
methods applicable for deep minima, such as the analysis of
the modified finite temperature physics [20] or roton instability
[20,21,27].

VI. EXPERIMENTAL REALIZATION AND SUMMARY

In our calculations we have assumed for simplicity no
trapping on the xy plane. A harmonic xy confinement
(with frequency ω⊥) leads to a finite momentum cutoff
kc = √

mω⊥/h̄. In a good approximation all features in the
excitation spectrum with momenta k � kc are not affected
by the inhomogeneous trapping. For typical roton momenta
kζ 	 0.5 and ζ 	 0.6 µm in our figures, k � kc demands
for 52Cr a transversal frequency ω⊥ < 130 Hz, which can be
considered a typical experimental condition. Finally, we stress
that Faraday patterns are a transient phenomenon and that for
the case discussed here (a < 0) pattern formation is followed
by collapse (and consequent violation of the two-dimensional
condition).

In summary, pattern formation is largely modified
in driven dipolar BECs in the presence of even shallow roton
minima. Whereas in nondipolar BECs the Faraday pattern size
decreases monotonously with the driving frequency 2ω, in
dipolar BECs the patterns show a ω dependence characterized
by abrupt changes in the pattern size, which are especially
remarkable when the dipole itself is modulated. Faraday
patterns constitute, hence, an excellent tool for probing the
onset of rotonization in ongoing experiments with dipolar
condensates.
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