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Clock shifts in a Fermi gas interacting with a minority component: A soluble model
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We consider the absorption spectrum of a Fermi gas mixed with a minority species when majority fermions
are transferred to another internal state by an external probe. In the limit when the minority species is much
more massive than the majority one, we show that the minority species may be treated as static impurities and
the problem can be solved in closed form. The analytical results bring out the importance of vertex corrections,
which change qualitatively the nature of the absorption spectrum. It is demonstrated that large line shifts are not
associated with resonant interactions in general. We also show that the commonly used ladder approximation
fails when the majority component is degenerate for large mass ratios between the minority and majority species
and that bubble diagrams, which correspond to the creation of many particle-hole pairs, must be taken into
account. We carry out detailed numerical calculations, which confirm the analytical insights, and we point out
the connection to shadowing phenomena in nuclear physics.
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I. INTRODUCTION

The spectroscopy of spin excitations in atomic systems is
important for basic science as well as being technologically
relevant to atomic clocks. The subject has a long history, going
back to studies of spin-exchange optical pumping [1] and
of line shifts in hydrogen masers [2]. In recent years it has
acquired renewed interest following experiments on ultracold
atomic gases that have played an important role in probing
effects of interatomic interactions in these systems [3–6]. In a
typical experiment, one induces transitions of atoms from one
hyperfine state of the ground-state manifold, denoted by 1, to
a second hyperfine state, 2, in the presence of atoms in a third
state, 3. Particular interest has focused on situations where the
interatomic interactions are strong, for example, for 6Li for
which scattering lengths have magnitudes ∼103a0 for a large
range of magnetic fields.

The quantity measured in experiment is basically a two-
particle correlation function that is difficult to calculate when
interactions are strong. Many effects have to be considered,
including particle self-energies, vertex corrections, pairing,
and the inhomogeneity of the atomic cloud [7–16]. In this
article we consider a simple model where the mass of the
bystander atom, 3, is much larger that of states 1 and 2. This
allows us to include self-energy and vertex corrections to all
orders in a conserving approximation which becomes exact
when the system is highly polarized, in the sense that the
density of the bystander atoms is much smaller than the density
of the 1 atoms. For brevity, we shall refer to an atom in state
i (i = 1, 2, 3) as an i-atom. Throughout most of the article
we shall neglect the interaction between 1- and 2-atoms which
does not give rise to shifts in the absence of interactions with
3-atoms. For densities of 3-atoms low enough that they are
nondegenerate, the statistics of these atoms plays no role, so
our calculations apply to both bosons and fermions.

Our formalism enables us to derive analytic results, and
for the case of nondegenerate majority atoms these agree
with ones obtained previously [1,2]. The calculations bring
out the important role of the processes analogous to those

considered by Aslamazov and Larkin [17] in studies of
fluctuation contributions to response functions close to the
transition temperature in superconducting metals.

We find that vertex corrections can qualitatively change
the clock shift compared with the prediction without vertex
corrections. We also show that large line shifts are not
associated with resonant interactions. For instance, when one
interaction, e.g., 1-3, is on resonance, the clock shift has
the same magnitude but the opposite sign compared with
its value when the 1-3 interaction is zero. Our analytical
results are confirmed by numerical calculations. Another
conclusion of the work is that for the case of massive
bystander atoms, the common approximation of including only
ladder diagrams is inadequate, since particle-hole correlations
must be considered on the same footing at particle-particle
and hole-hole correlations. We also discuss the relationship of
the physics of the clock shift problem to the phenomenon of
“shadowing” in nuclear physics, the fact that, e.g., the total
cross section for scattering of a pion from the deuteron is not
equal to the sum of the cross section for scattering from a
proton and that for scattering from a neutron [18].

This article is organized as follows. In Sec. II we describe
the basic formalism for calculating the transition rate, and in
Sec. III we describe the calculation of the line shape under
the assumption that the massive atoms may be treated as static
impurities. After deriving analytical result we present results of
numerical calculations. Section IV is devoted to showing from
diagrammatic perturbation theory that for a mobile minority
species with a large mass, the problem reduces to that of
scattering from static impurities. There we also consider the
relationship of our calculations to the x-ray edge problem and
the phenomenon of “shadowing” in nuclear physics. Finally,
Sec.V contains concluding remarks.

II. TRANSITION RATE

We consider a gas of fermions in an internal state 1 with
density n1 and mass m which interacts with a gas of fermions
or bosons of mass m3 and density n3 which is assumed to be
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much smaller than n1. The gas is subjected to a homogeneous
probe that flips the fermions from state 1 to state 2 at a rate
which within linear response theory is proportional to

∑
i,f

(Pi − Pf )

∣∣∣∣
∫

d3r〈f |ψ†
2(r)ψ1(r)|i〉

∣∣∣∣
2

δ(ω − Ef + Ei),

(1)

where initial states are denoted by i and final ones by f and
their energies by Ei and Ef . The frequency of the applied
field is ω. (We put h̄ and the Boltzmann constant equal to
unity throughout.) The probability of occupation of the initial
(final) state is denoted by Pi (Pf ). The operator ψ†

σ (r) creates
a fermion in state σ at position r. In terms of correlation
functions, the rate is proportional to

ImD(ω) ∝
∫

drdr′ImD(r, r′, ω), (2)

where D(r, r′, ω) is the Fourier transform of the quantity
−iθ (t − t ′)〈[ψ†

2(r, t)ψ1(r, t), ψ†
1(r′, t ′)ψ2(r′, t ′)]〉 which may

be regarded as the correlation function for the pseudospin
operator that describes atoms in the states 1 and 2.

III. STATIC IMPURITIES

In this section, we consider the case when m3 � m so that
the 3-atoms may be treated as static impurities, as we shall
demonstrate in Sec. IV. We shall work at nonzero temperature
T , in which case the frequencies are to be regarded initially as
Matsubara frequencies, odd multiples of πT for fermions and
even multiples for bosons. The real-time correlation function
is then obtained in the standard way by analytically continuing
from the imaginary time domain. The fermion propagators in
the presence of the impurities are

Gσ (p, z)−1 = G0
σ (p, z)−1 − �σ (z), (3)

where

G0
σ (p, z)−1 = z − p2/2m − εσ + µσ (4)

is the bare propagator and �σ (z) the self-energy. Here εσ is
the energy of a noninteracting σ -fermion (σ = 1, 2) at rest
and µσ the chemical potential. In Eq. (3) it is understood
that the propagator is averaged over a random distribution of
impurities [19], but we shall not indicate this explicitly in the
notation. A similar remark applies to the correlation function
D(ω).

To lowest order in n3, the self-energy has the form

�σ (z) = n3Tσ (z). (5)

Here Tσ (z) is the T matrix for scattering of a σ -fermion on an
impurity, which is given in a matrix notation by

Tσ (z) = Vσ + Vσ Gσ (z)Tσ (z), (6)

= +

= +

(a)

(b)

=

= +

(c)
22

1 1
1

2
2

1

FIG. 1. (a) The propagator G for the fermions scattering on
impurities. (b) The correlation functionD(ω). (c) The vertex function.
Thick solid lines indicate G, thin solid lines G0, and dashed lines
scattering on a impurity marked by •.

where the momentum sums are implicit. We have assumed
that the range of the interaction Vσ between the impurities
and the fermions is much shorter than the lesser of the
typical interparticle distance and the thermal de Broglie
wavelength, (2π/mT )1/2. In this case, for the momenta of
interest, the scattering amplitude depends only on the energy.
Equations (3)–(5) are shown diagrammatically in Fig. 1(a).

The correlation function D(ω) is shown diagrammatically
in Fig. 1(b) and the vertex function in Fig. 1(c). The importance
of vertex corrections may be illustrated by considering the case
when the interaction between an impurity and a fermion is the
same for the two fermion species. The Hamiltonian is then
SU(2) symmetric with respect to rotations between the states
1 and 2 and the correlation function D(ω) is unaffected by
interactions [8]. However, the self-energy corrections to the
single-particle propagator are nonzero and they must therefore
be canceled by the vertex corrections. To recover the SU(2)
invariance and to satisfy conservation laws, it is necessary
when calculating the correlation function to use as the vertex
in the particle-hole channel the quantity δ�/δG (� and G are
two-dimensional matrices in the Hilbert space spanned by the
states 1 and 2) [8,20]. The structure of the vertex corrections
is shown in Fig. 1(c). We now perform such a conserving
calculation of D(ω) which takes the effects of the impurities
into account exactly to lowest order in n3.

The vertex corrections correspond to processes in which
a 2-particle and a 1-hole scatter from the same impurity.
The resulting effective interaction [the “bow-tie” part of the
diagram in Fig. 1(c)] is given by

Veff = n3T1(iων)T2(iων + iωγ ), (7)

since for a static impurity the energy transfer between particles
and the impurity is zero. Because the scattering on an impurity
is independent of momentum, the inclusion of the vertex
corrections simplifies significantly, and the diagrams for the
correlation function may be summed. The result is

D(iωγ ) = T
∑
ων

(2π )−3
∫

d3pG1(p, iων)G2(p, iων + iωγ )

1 − n3T1(iων)T2(iων + iωγ )(2π )−3
∫

d3pG1(p, iων)G2(p, iων + iωγ )
(8)
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with ων being a fermion Matsubara frequency and ωγ a boson
one. The momentum integral yields

M(z1, z2) =
∫

d3p

(2π )3
G1(p, z1)G2(p, z2)

= iπ
d2(z2)sgn(Imz2) − d1(z1)sgn(Imz1)

z2 − z1 + µ2 − µ1 − � + �1(z1) − �2(z2)
(9)

with dσ (z) = m3/2√z + µσ − εσ − �σ (z)/
√

2π2 and � =
ε2 − ε1 the hyperfine splitting between the two fermionic
states. For � = 0, d is the free particle density of states.
We evaluate the sum over Matsubara frequencies in (8) by
converting it to a contour integration in the usual way by
multiplying the integrand by the Fermi function f (z1) =
[exp(βz1) + 1]−1 and choosing a contour that encircles the

poles of the Fermi function. The integration contour may be
deformed to lie above and below the cuts of the functions d1 and
d2, which are located at z1 = ε and z1 = ε − iωγ , respectively,
where ε is real. After the analytic continuation iωγ → ω̃ + iη,
with the physical frequency given by ω = ω̃ + µ2 − µ1, we
obtain

D(ω) = −
∫ ∞

−∞

dε

2πi
f (ε) [S(ε + iη, ε + ω̃ + iη)

− S(ε − iη, ε + ω̃ + iη) + S(ε − ω̃ − iη, ε + iη)

− S(ε − ω̃ − iη, ε − iη)] , (10)

where

S(z1, z2) = M(z1, z2)

1 − n3T1(z1)T2(z2)M(z1, z2)
. (11)

The imaginary part of the correlation function becomes

ImD(ω) =
∫

dε

2
(f2 − f1)Im

[
d2 − d1

ω − � + n3[T1 − T2 − iπT1T2(d2 − d1)]
− d2 + d∗

1

ω − � + n3[T ∗
1 − T2 − iπT ∗

1 T2(d2 + d∗
1 )]

]
.

(12)

In (12), f1 = f (ε), f2 = f (ε + ω̃), and d1 andT1 are evaluated
at the energy ε + iη and d2 and T2 at the energy ε + ω̃ + iη.
The T matrix, given by Eq. (6), has the form

Tσ = Tσvac

1 + iπdσTσvac
, (13)

where Tσvac is the T matrix for σ fermions scattering at
zero energy in a vacuum. From this it follows that Eq. (12)
reproduces the unshifted ideal gas result when the interaction is
SU(2) symmetric with identical scattering between an impurity
and the two fermionic species. Note that it is crucial to use full
propagators to recover this symmetry.

A. A simple limit

Equation (12) satisfies the conservation laws regardless of
the magnitude of n3. We now study the interaction effects
on D(ω) to the lowest order in n3 and neglect all medium
effects except the factor n3 in front of the T matrices in the
denominator in (12). The T matrix is thus replaced by its value
in a vacuum given by

Tσ = i
e2iδσ − 1

2πd0
, (14)

where δσ is the scattering phase shift in a vacuum and d0 =
m3/2√ε/

√
2π2 is the free-particle density of states. For low

energies, the phase shift is given in terms of the scattering
length aσ by tan δσ = −kaσ , where k = √

2mε.
We make the variable change ε + µ1 − ε1 → ε, so that ε

is the kinetic energy of a 1-fermion. The 2-fermion has kinetic
energy ε + ω − �. In the limit of a low density of 3-atoms, the
line shifts are small. One may then neglect differences between
ω and �, and therefore the phase shifts of the two fermions

are to be evaluated at the same kinetic energy. In total, keeping
only the lowest order effects of n3 in (12) yields

ImD(ω) � Im
∫ ∞

0
dε

−d0f (ε + ε1 − µ1)

ω − � − in3[e2i(δ1−δ2) − 1]/2πd0
.

(15)

We have written Eq. (15) for the case where there are no
2-fermions present initially so that the first Fermi function in
Eq. (12) is zero. This corresponds to a typical experimental
situation. For equal interaction between the impurity and
the initial 1- and final 2-fermions, i.e., for δ1 = δ2, one
sees immediately that the interaction effects vanish in the
denominator of (15) and we recover the ideal gas result

D(ω) = − n1

ω − � + iη
. (16)

In general, ImD(ω) is the sum of Lorentzian lines, with the
energy-dependent frequency shift

�ω(ε) = n3
π

m

sin(2δ1 − 2δ2)

k
, (17)

and with full width at half maximum equal to

�(ε) = n3
4π

m

sin2(δ1 − δ2)

k
. (18)

Equations (17) and (18), which apply for arbitrary degree
of degeneracy of the 1-atoms, have a form similar to those
derived for a classical gas in Refs. [1], Eq. (82) and [2], which
studied the equation of motion for the density matrix. There is,
however, a difference, since to obtain the result in these articles
one must replace the term containing the phase shifts in the
denominator of Eq. (15) by its thermal average. Since � and
� are energy dependent, the line shape given by Eq. (15) will
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not be Lorentzian in general. The magnitude of deviations
from Lorentzian behavior will depend on the variation of
[e2i(δ1−δ2) − 1]/k, over the distribution of the momentum k

of 1-atoms.
For small phase shifts, δσ � kaσ and Eq. (17) reproduces

the low-density expression for the shift, �ω � n32π (a2 −
a1)/m, the factor of 2, rather than the usual factor of 4 for
the case of fermions of equal mass, being due to the fact that
we have taken the 3-atoms to be infinitely massive.

Equations (17) and (18) clearly illustrate the importance of
vertex corrections. When these are neglected, the correspond-
ing results are

�ω(ε)|no vertex = n3
π

m

sin 2δ1 − sin 2δ2

k
, (19)

and

�(ε)|no vertex = n3
4π

m

sin2 δ1 + sin2 δ2

k
. (20)

There are a number of important conclusions that may be
drawn from the above results. First, without vertex corrections
the shift and damping do not display the required SU(2)
symmetry for δ1 = δ2. Second, for small phase shifts the line
width is proportional to (a1 − a2)2, whereas without vertex
corrections the corresponding result is a2

1 + a2
2 . Thus, even in

the limit of small phase shifts it is important to include vertex
corrections, which give an interference term −2a1a2. Third, the
largest shifts are obtained for δ1 − δ2 ≈ π/4 + νπ/2, where
ν is an integer. Thus, resonant scattering is not particularly
favorable for producing large shifts. For example, take a typical
experimental situation where scattering of the fermions in
the initial state 1 with 3-atoms is resonant while that of final
state 2 fermions is not: the shift is then equal in magnitude
but of the opposite sign compared with what it would be in
the absence of 1-3 scattering, and therefore the magnitude
of the shift is determined completely by the nonresonant 2-3
interaction. Finally, large widths and large shifts do not go
hand in hand, since the largest widths occur when δ1 − δ2 is
an odd multiple of π/2.

B. Numerical results

In Figs. 2 and 3 we present numerical results for ImD(ω) ob-
tained from Eq. (12). The propagators used in this calculation
are determined fully self-consistently. The frequency unit is
πn3/mkF with n1 = k3

F /6π2 [see (17) and (18)], and ImD(ω)
plotted in units of mkF . In Fig. 2, we show the transition rate for
T = 0 and with an impurity density n3/n1 = 0.1. The scatter-
ing length for the 2-3 interaction is a2 = −1/kF and the scat-
tering length for the 1-3 interaction varies from a1 = 0 to a1 =
−100/kF , which is very close to resonance. For kF a1 = 0, the
line shift and width are due solely to the self-energy of the
2-atom. We see that when the 1-3 interaction is resonant, the
main effect is to change the sign of line shift compared with
the result for zero 1-3 interaction. This confirms the discussion
in subsection III A. When kF a1 = kF a2 = −1, the unshifted
ideal gas result is recovered, as it should be, and the small
remaining width of the calculated signal is entirely due to a
small imaginary part we have added explicitly to the frequency
to facilitate the numerical calculations. For comparison, we
also plot the result obtained for kF a1 = kF a2 = −1 when
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FIG. 2. (Color online) The transition rate as a function of
frequency and interaction. The inset shows the transition rate for
varying impurity concentration.

vertex corrections are not included. We see that, although the
predicted line shift is small, the width is large and one does
not recover the unshifted narrow line when vertex corrections
are ignored.

In the inset, we compare the line shape for n3/n1 = 0.1
and n3/n1 = 0.3, keeping kF a1 = 0 and kF a2 = −1 fixed. To
ease comparison of the results for the two different impurity
concentrations, we have multiplied ImD(ω) by n3. The two
curves largely overlap which illustrates that the line shift and
width essentially scale with n3 in agreement with (17) and
(18). Note that higher-order medium effects coming from the
self-consistent determination of the propagators give rise to
the slight difference between the results for the two impurity
concentrations.

In Fig. 3, we plot the transition rate as a function of a1

keeping a2 = 0. The line shift is large, whereas the width
is small for kF a1 = −1. This is in agreement with the
conclusions reached in subsection III A from (17) and (18)
since kF a1 = −1 corresponds to a phase shift of δ1 = π/4.
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FIG. 3. (Color online) The transition rate as a function of
frequency for varying initial state interaction.
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Likewise, when the scattering is close to resonance with
kF a1 = −100 corresponding to δ1 ≈ π/2, the line shift is
small, whereas the width is large. Again, this agrees with the
discussion in subsection III A.

IV. MOBILE, MASSIVE IMPURITIES

In this section we show that in the limit m/m3 → 0, the
results we have employed in Sec. III for the self-energy
and vertex corrections may be derived from diagrammatic
many-body theory for particles of finite mass. An important
conclusion of this section is that the ladder approximation,
which is commonly employed in treating strongly interacting
systems is inadequate to describe systems with m3 � m

when the 1-fermions are degenerate. We begin by showing
this for low-order contributions in perturbation theory and
then generalize the considerations to arbitrary order. For
definiteness, we shall assume that the 3-atoms are fermions,
but the calculations may easily be generalized to the case of
bosons, the only difference being that the distribution function
for 3-atoms must be taken to be the Bose distribution. To lowest
order in the density of 3-atoms, the results are independent of
the statistics of the 3-atoms.

A. Second order

In the Hartree approximation the self-energy and vertex
corrections are given by Eqs. (5) and (7) when the T matrix
is evaluated in the Born approximation, so the first term we
shall consider in detail is the second-order term, Fig. 4(a). For
m/m3 → 0 it is given by

�
(2)
1 (p,ω) =

∫
d3q

(2π )3

d3p′

(2π )3
|V1(q)|2

× f 3
p′
(
1−f 3

p′+q

)(
1−f 1

p−q

)+(
1−f 3

p′
)
f 3

p′+qf
1
p−q

ω−(p−q)2/2m
,

(21)

where Vσ (q) is the bare interaction between a 3-atom and a
σ -fermion and f i

p = f (p2/2mi + εi − µi). When the 3-atoms

(b)(a)

+

3 3 3

1 1 1

1

3
(c) (d)

1

2

3

a b
1 n−2

FIG. 4. Diagrams for the self-energy of a 1-fermion. (a) Second-
order contributions. (b) Third-order contributions. (c) A general term.
(d) A diagram with a general vertex correction. Solid lines are fermion
propagators, dashed lines interactions with • indicating the vertices.

are nondegenerate the 1 − f 3 factors may be replaced by unity,
and one then finds

�
(2)
1 =

∫
d3q

(2π )3

d3p′

(2π )3
|V1(q)|2 f 3

p′
(
1 − f 1

p−q

) + f 3
p′+qf

1
p−q

ω − (p − q)2/2m

= n3

∫
d3q

(2π )3
|V1(q)|2

(
1 − f 1

p−q

) + f 1
p−q

ω − (p − q)2/2m
= n3T (2)

vac ,

(22)

where

T (2)
vac (p,ω) = T (2)

lad (p,ω) + T (2)
bub(p,ω)

=
∫

d3q

(2π )3
|V1(q)|2 1

ω − (p − q)2/(2m)
(23)

is the T matrix in a vacuum (calculated to second order in V1).
Here

T (2)
lad (p,ω) =

∫
d3q

(2π )3
|V1(q)|2 1 − f 1

p−q

ω − (p − q)2/(2m)
(24)

is the contribution to the T matrix from ladder diagrams
(particle-particle scattering and hole-hole scattering) and

T (2)
1,bub(p,ω) =

∫
d3q

(2π )3
|V1(q)|2 f 1

p−q

ω − (p − q)2/(2m)
(25)

is the contribution from particle-hole scattering. This calcu-
lation leads to two important conclusions. First, the pres-
ence of the degenerate 1-fermions affects scattering in the
particle-particle and hole-hole channel and also scattering
in the particle-hole channel, but the effects of occupancy of
intermediate states cancel in the total, which to second order is
given in terms of the T -matrix in vacuo. Second, even though
the self-energy may be written in the form

�1 = TrT1G
0
3, (26)

with the T matrix calculated to second order in the ladder
approximation, it leads to an expression of the form (5) where
the T matrix contains both ladder and bubble contributions.
Only for nondegenerate 1-fermions are the bubble diagrams
unimportant compared with the ladder diagrams because f 1 
1. By extending the above arguments to higher-order terms,
one sees that the self-energy calculated from Eq. (26) with
T1 calculated in the ladder approximation agrees with Eq. (5)
only for nondegenerate 1-fermions.

B. Arbitrary order

In higher-order processes, a qualitatively new feature
appears: to obtain the result (5), with the T -matrix given by
Eq. (6), one cannot use Eq. (26) with the T -matrix calculated
in the ladder approximation. To obtain the correct result for
m/m3 → 0, the nth order contribution to the self-energy has
the form

�
(n)
1 (τb−τa) = −(−V1)n

∫ β

0
dτ1 · · · dτn−2G1(τb−τn−2)

×G1(τn−2−τn−3) · · · G1(τ1−τa)[G3(τb−τn−2)

×G3(τn−2−τn−3) · · · G3(τ1−τa)G3(τa−τb)

+ all τ permutations]. (27)
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The momentum sums are suppressed for the moment to high-
light the essential parts of the reasoning. We refer to this term as
an nth-order contribution, even though we use renormalized
propagators, which may give rise to contributions of higher
order in V1 when expressed in terms of bare propagators.
The first term in the square brackets corresponds to Eq. (26)
with T calculated is the ladder approximation, and it does not
give the result (5) for the self-energy in the limit m3/m � 1.
However, if one adds to it contributions corresponding to all
possible ways of attaching the interactions occurring at times
τ1 . . . τn−2 to the 3-bubble with vertices at τa and τb, one does
indeed recover the result (5). This procedure is indicated by
the last line of (27) and yields in third order the two diagrams
depicted in Fig. 4(b). The structure of a typical high-order
diagram generated in this way is illustrated in Fig. 4(c). To
show that (27) produces the correct impurity result, we use
the fact that the noninteracting 3-propagator for m/m3 → 0
becomes

G0
3(p, τ ) =

{
f 3

p e−(ε3−µ3)τ for τ < 0

−e−(ε3−µ3)τ for τ > 0,
(28)

where τ < 0 corresponds to the propagation of a 3-hole
and τ > 0 to the propagation of a 3-particle. Self-energy
contributions to G3 can be absorbed in the chemical potential
µ3 for low T and m/m3  1. The point is that for any value of
τa, τb, τ1, . . . , τn−2 between 0 and β, only one term inside the
square brackets in (27) will have one hole propagator and n − 1
propagators for the 3-particles. This term will scale as ∼ f 3

q .
All other terms have at least two hole propagators and will be
suppressed in the limit of low concentration of the 3-particles.
Note that the ladder diagram is not enough to obtain the leading
order diagram in f 3 for any value of τa, τb, τ1, . . . , τn−2: one
has to include diagrams corresponding to all possible ways of
attaching τ1, . . . , τn−2 to the 3-bubble. In the limit m/m3 → 0,
the momentum integrals in (27) decouple and the integral over
the 3-hole line yields the density n3. We obtain

�
(n)
1 (τb − τa) = n3V

n
1

∫ β

0
dτ2 . . . dτn−1G1(τb − τn−2)

×G1(τn−2 − τn−3), . . . ,G1(τ1 − τa). (29)

In frequency space this reads

�
(n)
1 (ω) = n3V1 [V1G1(ω)]n−1 . (30)

Summing all orders for � gives

�1(ω) = n3[1 − V1G1(ω)]−1V1 = n3T1(ω). (31)

This agrees with (5) and we have shown that one recovers the
correct impurity result for the self-energy in the limit of n3

small and m/m3 → 0, when all crossed diagrams of the type
illustrated in Fig. 4(c) are included.

The same argument applies to vertex corrections. Consider
1- and 2-fermions simultaneously scattering on a 3-particle.
A typical diagram needed to be included to recover the
correct impurity result is shown in Fig. 4(d): For an nth order
diagram, one has to include all possible ways of attaching the

interactions occurring at τ1, . . . , τn to the n propagators in the
3-loop. In this way, the term where there is only one hole in the
3-loop is included for any value of the time arguments. This
term scales as n3 whereas all other diagrams are suppressed
by higher powers of n3. When these diagrams are included to
all orders, the effective interaction between a 1-fermion and a
2-fermion both scattering on a 3-atom becomes

Veff = n3[1 − V2G2(ω2)]−1V2[1 − V1G1(ω1)]−1V1

= n3T1(ω1)T2(ω2). (32)

This agrees with the impurity scattering result given by (7).

C. Higher loops and the x-ray edge problem

So far we have considered diagrams in which there is a
single fermion loop containing fermions in states 1 and 2. We
now comment on the effect of including contributions with a
higher number of loops. The problem under consideration in
this paper has a number of points in common with the x-ray
edge problem, where the contributions from terms containing
many fermion loops change qualitatively the nature of the
threshold behavior [21,22] from a step function at the Fermi
surface when a single fermion loop is included to a power
law whose exponent depends on the phase shift for scattering
of an electron in the conduction band from a deep hole. In
the x-ray edge problem, conduction electrons scatter from a
deep hole, which is present only for times between that at
which the electron–deep-hole pair is created and that at which
it is destroyed. The complications in the x-ray edge problem
are due to the fact that the higher-order loop contributions
depend on the times at which the particle-hole pair is created
and destroyed. In the problem under consideration in this
paper, however, the heavy atoms in the state 3 are present
for all time. The effect of the higher-order loops is simply to
renormalize the propagator for a 3-atom. The self-energy of
a 3-atom depends on energy but, within the approximation
of a short-range potential made above, is independent of
momentum. When higher loop contributions are included,
the chemical potential of the impurities must be adjusted
so that the number of impurities is equal to the required
value.

D. Analogy with “shadowing” in nuclear physics

The result (15) has a simple interpretation, since it is
equivalent to the statement that the self-energy of a particle-
hole pair due to interaction with an impurity is proportional
to e2i(δ2−δ1) − 1. Since the self-energy is proportional to the
T matrix for scattering of a pair from an impurity, which is
in turn proportional to S − 1, where S is the corresponding S

matrix, this implies that S = e2i(δ2−δ1). In physical terms, this
says that the extra phase acquired by the pair is the sum of the
phase changes experienced by a particle in state 2 and a hole in
state 1. The reason that vertex corrections, which correspond to
interference terms, are so important in the present problem is
that the external field creates a particle and the hole at the same
point in space. Thus, if, say, the particle is close to an impurity,
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the hole will also be close to an impurity. If only self-energy
corrections are included, this is equivalent to assuming that the
particle and the hole are uncorrelated in space.

Insight into the result for the line shift may be obtained by
making use of the identity

sin 2(δ1 − δ2) = sin 2δ1(1 − 2 sin2 δ2) − sin 2δ2(1 − 2 sin2 δ1),

(33)

which implies that the energy shift is given by the real parts
of the self-energy of a 1-fermion and a 2-hole, multiplied by
factors 1 − 2 sin2 δ. To interpret this result, we observe that the
total cross section for scattering of a 3-atom by a σ -fermion
is proportional to sin2 δσ /k2, where k is the wave number
of the atom. If one changes ones perspective and regards
the process as the interaction of an impurity fermion with
a particle-hole pair, this equation implies that the amplitude of
an impurity fermion at the position of the 2-hole is reduced by
an amount ∼sin2 δ1 due to scattering from the 1-fermion, and
likewise for the amplitude of the impurity at the 2-hole. This
is reminiscent of the experimental observation that the total
cross section for scattering of pions from deuterons is less
than the sum of the cross sections for scattering of a pion from
a single neutron and a single proton, a phenomena referred
to as “shadowing.” It reflects the fact that the neutron and
proton in the deuteron are correlated, and therefore the pion
field incident on, e.g., the proton is reduced by scattering from
the neutron [18]. The analogy between the two situations is
not complete, however, since in the problem considered by
Glauber the wavelength of the pion is small compared with
the separation of the neutron and proton in the deuteron, while
in the problem under investigation here the wavelength of the
particle and the hole is large compared with their separation,
which is initially zero. As a consequence, where k2 appears in
the present problem, this is replaced by a factor ∝〈1/r2〉, the
average of the inverse square of the separation of the neutron
and proton in the deuteron.

V. CONCLUDING REMARKS

In this article we have solved a simple model for clock shifts
for hyperfine transitions between states of a fermionic atom in
the presence of a low density of much more massive atoms.
The calculation shows the importance of vertex corrections,
which completely change the dependence of the shift and the
width of the clock transition on the scattering phase shifts. The
calculations are valid for bystander atoms, either fermionic
or bosonic, which are much more massive than the majority
fermions, and an important problem for the future is to study
a finite mass ratio.

Throughout, we have have neglected the interaction be-
tween 1-atoms and 2-atoms. When there are no bystanders,
the transition has no shift and no width, and this result
also holds in the presence of bystanders, provided the 1-3
and 2-3 interactions are identical, since in that case the
SU(2) invariance still holds. However, when the 1-3 and 2-3
interactions are different, the line shift and width can be
affected by the 1-2 interaction, which is an unexplored effect
in the cold atomic gas context.

The calculations indicate that experiments on clock shifts
in mixtures of atoms with different masses would be useful.
Since pairing correlations are suppressed when species have
very different concentrations, these would enable one to obtain
information about correlations in a state less complicated than
a paired superfluid.

An important theoretical result of our calculations is that it
is generally not sufficient to include just ladder diagrams, since
in the case considered, particle-hole correlations are necessary
in order to recover the correct result for a low density of the
minority component.
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