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Dynamical creation of complex vector solitons in spinor Bose-Einstein condensates
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By numerical simulations of the Gross-Pitaevskii mean-field equations, we show that the dynamical creation of
stable complex vector solitons in a homogeneous spin-1 Bose-Einstein condensate can be achieved by applying
a localized magnetic field for a certain duration, with the initial uniform density prepared differently for the
formation of different vector solitons. In particular, it is shown that stable dark-bright-dark vector solitons,
dark-bright-bright vector solitons, and other analogous solutions can be dynamically created. It is also found
that the peak intensity and the group velocity of the vector solitons thus generated can be tuned by adjusting
the applied magnetic field. Extensions of our approach also allow for the creation of vector-soliton chains or
the pumping of many vector solitons. The results can be useful for possible vector-soliton-based applications of
dilute Bose-Einstein condensates.
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I. INTRODUCTION

In recent years, studies of spinor Bose-Einstein condensates
(BECs) have attracted great interest. Via far-off-resonance
optical trapping techniques, a spinor BEC can be realized
in 23Na [1,2] or 87Rb [3,4] systems. Alternatively, a spinor
BEC can be realized with an Ioffe-Pritchard magnetic trap by
adiabatically reducing the magnetic bias field along the trap
axis to zero [5]. In a spinor BEC, the spin comprises one
extra degree of freedom, so that the order parameter of a BEC
becomes a vector rather than a scalar quantity.

Because of the vector character of the order parameter and
the important role of spin-relaxation collisions, spin-1 BECs
can present two different ground-state phases; either a ferro-
magnetic phase or an antiferromagnetic (polar) phase [6,7].
This result has been extended to spin-2 BECs, which present
an even richer variety of ground-state phases including, for
example, the so-called cyclic phases [8,9]. Also due to the spin
degree of freedom, spinor BECs have been shown to have a
number of spin textures and topological excitations [10], in-
cluding the formation of spin domains and spin-mixing dynam-
ics [2], coreless vortices [6,7], and skyrmions or merons [11,
12]. More related to this work, we note that great efforts have
also been made to understand macroscopic nonlinear struc-
tures in spinor BECs, such as bright solitons [13–15], dark soli-
tons [16,17], gap solitons [18], as well as more complex vector
solitons that have both bright and dark components [19,20].

Given that the existence of at least one type of complex
vector soliton (CVS) in spinor BECs is theoretically shown
[19], it becomes interesting and useful to explore simple means
for the creation of different types of CVSs in a spinor BEC.
In this article, we consider the dynamical creation of stable
CVSs by applying a localized magnetic field in a homogeneous
spin-1 BEC in both ferromagnetic and antiferromagnetic cases.
Evidently, at each spatial point, the applied field will induce
internal Josephson tunneling between different components
of the spinor BEC, and as a result the profile of the applied
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field must be shaped appropriately to ensure the emergence of
CVSs. We obtain the appropriate profiles of the applied field
by an intuitive approach, which is based on a small-amplitude
expansion [19] of a static problem. As indicated by additional
variational principle calculations, it can be expected that once
a certain type of CVS is formed, it may continue to exist
even after the applied field is turned off. We confirm our
ideas by numerical simulations and linear stability analysis
of the full Gross-Pitaevskii (GP) equations for a spin-1 BEC.
In particular, we show the feasibility of creating different
kinds of CVSs, including dark-bright-dark vector solitons
(or analogously bright-dark-bright vector solitons) or dark-
bright-bright vector solitons (or analogously bright-bright-
dark vector solitons). We also find that we can easily tune
the group velocity and the relative amplitudes of the different
spin components of the CVS thus created by changing the
parameters of the applied field. Moreover, we show that it is
also possible to control the generated CVS number by creating
a CVS chain, or by tuning the strength of the applied field
periodically in time and hence pumping a controlled number
of CVSs to the condensate after each cycle. These results
should be useful for realizing a source of CVSs for future
soliton-based applications of dilute BECs.

This article is organized as follows. In Sec. II, we present
variational-principle considerations for CVSs in either an-
tiferromagnetic or ferromagnetic spin-1 BECs. In Sec. III,
we present and discuss a variety of results of the dynamical
creation of stable CVSs. By analyzing the linearized GP equa-
tions, we also analytically discuss the modulational stability
of each type of small-amplitude CVS. The particle-like nature
of the CVS thus created is also demonstrated numerically.
In Sec. IV, we summarize our findings. Some details in
Appendix may be of interest to some readers, because they
briefly explain how we reach a useful profile of a localized
field for the dynamical creation of CVSs.

II. MODEL AND VARIATIONAL ANALYSIS

We consider a quasi-one-dimensional spinor F = 1 BEC
confined by a cigar-shaped waveguide potential along the
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x axial direction; that is, by a highly anisotropic trap with
frequencies ωx � ω⊥. For such a spin-1 BEC, and at a
temperature much lower than the critical temperature Tc,
the mean-field description of the ultracold system with three
spin components needs a vector order parameter �(x, t) =
[ψ̃1(x, t), ψ̃0(x, t), ψ̃−1(x, t)]T , with each component corre-
sponding to the spin component mF = 1, 0,−1. Because
the transverse wave function ψ⊥(y, z) can be assumed to
be the ground state of a harmonic potential, the mean-field
wave functions can be taken as approximately separable [i.e.,
ψ̃0,±1(x, t) ≈ ψ0,±1(x, t)ψ⊥(y, z)]. One can then integrate out
the transverse coordinates (y, z) first and obtain the following
coupled one-dimensional GP equations [21],

ih̄∂tψ1 = − h̄2

2m

∂2ψ1

∂x2
+ Bψ0 + Bzψ1 + c

(1D)
0 (|ψ1|2

+ |ψ0|2 + |ψ−1|2)ψ1 + c
(1D)
2 (|ψ1|2

+ |ψ0|2 − |ψ−1|2)ψ1 + c
(1D)
2 ψ∗

−1ψ
2
0 , (1a)

ih̄∂tψ0 = − h̄2

2m

∂2ψ0

∂x2
+ B∗ψ1 + Bψ−1 + c

(1D)
0 (|ψ1|2

+ |ψ0|2 + |ψ−1|2)ψ0 + c
(1D)
2 (|ψ1|2

+ |ψ−1|2)ψ0 + 2c
(1D)
2 ψ−1ψ

∗
0 ψ1, (1b)

ih̄∂tψ−1 = − h̄2

2m

∂2ψ−1

∂x2
+ B∗ψ0 − Bzψ

∗
−1 + c

(1D)
0 (|ψ1|2

+ |ψ0|2 + |ψ−1|2)ψ−1 + c
(1D)
2 (|ψ−1|2

+ |ψ0|2 − |ψ1|2)ψ−1 + c
(1D)
2 ψ∗

1 ψ2
0 , (1c)

where m is the mass of the atom, B =(Bx, By, Bz), and B ≡
(Bx − iBy)/

√
2 is due to Zeeman coupling with the magnetic

field. In addition, in Eq. (1) the effective one-dimensional
nonlinearity coefficients are given by c

(1D)
0 = c0/(2πa2

⊥) and
c

(1D)
2 = c2/(2πa2

⊥), where a⊥ = √
h̄/(mω⊥) is the transverse

harmonic oscillator length that defines the size of the transverse
ground state and c0 and c2 account for spin-independent and
spin-dependent collisions between identical spin-1 bosons,
respectively. Specifically, c0 and c2 are given by

c0 = 4πh̄2(a0 + 2a2)

3m
, c2 = 4πh̄2(a2 − a0)

3m
, (2)

where a0 and a2 are the s-wave scattering lengths in the
symmetric channels with total spin of two colliding atoms
given by Ftot = 0 and Ftot = 2, respectively. Note that an
F = 1 spinor BEC may be either ferromagnetic (such as the
87Rb [22]), defined by c2 < 0, or antiferromagnetic (polar,
such as 23Na [23]), defined by c2 > 0.

It is convenient to rescale the time, length, and density by
units of h̄(c(1D)

0 n0)−1, h̄(mc
(1D)
0 n0)−1/2 and n0 (where n0 is the

peak density of a BEC), respectively. After such a procedure,
all variables below become dimensionless. We then obtain the
following dimensionless GP equations,

i∂tψ1 =
[
−1

2

∂2

∂x2
+ (|ψ1|2 + |ψ0|2 + |ψ−1|2

)]
ψ1

+ δ(|ψ1|2 + |ψ0|2 − |ψ−1|2)ψ1

+ δψ∗
−1ψ

2
0 + Bψ0 + Bzψ1, (3a)

i∂tψ0 =
[
−1

2

∂2

∂x2
+ (|ψ1|2 + |ψ0|2 + |ψ−1|2

)]
ψ0

+ δ(|ψ1|2 + |ψ−1|2)ψ0

+ 2δψ−1ψ
∗
0 ψ1 + B∗ψ1 + Bψ−1, (3b)

i∂tψ−1 =
[
−1

2

∂2

∂x2
+ (|ψ1|2 + |ψ0|2 + |ψ−1|2

)]
ψ−1

+ δ(|ψ−1|2 + |ψ0|2 − |ψ1|2)ψ−1

+ δψ∗
1 ψ2

0 + B∗ψ0 − Bzψ
∗
−1, (3c)

where we have defined

δ ≡ c
(1D)
2

c
(1D)
0

= a2 − a0

a0 + 2a2
. (4)

As such, δ < 0 and δ > 0 correspond to ferromagnetic and
antiferromagnetic spinor BECs, respectively.

To gain insights into the possibility of forming different
types of CVSs in the spin-1 BEC modeled above, we first
employ simple variational calculations; a technique proved to
be very useful in BEC soliton studies. The key step is to assume
an ansatz for the mean-field wave functions ψ0,±1 and then
examine if there is a local energy minimum as the variational
parameters vary.

Consider first the following ansatz:

⎛
⎜⎝

ψ1

ψ0

ψ−1

⎞
⎟⎠ =

⎡
⎢⎢⎢⎢⎢⎣

√
(1 − c) µ − 1

2a2 exp
(

−x2

b2

)

a exp
(

−x2

2b2

)
√

cµ + (
1
2 − 2c

)
a2 exp

(
−x2

b2

)

⎤
⎥⎥⎥⎥⎥⎦

, (5)

where a and b are two dimensionless variational parameters
that determine the amplitude and the width of the density
profile, µ can be regarded as a fixed parameter to account
for the homogeneous background associated with a dark-
soliton component, and c is another important parameter that
determines which type of CVS should be under consideration.
To be physically relevant, we require c � 1 and a � √

µ.
Clearly, if c = 0.5, Eq. (5) describes a dark-bright-dark
density profile, with the mF = 1 and mF = −1 components
displaying identical dark-soliton features, and the mF = 0
component representing a bright density profile. On the other
hand, if c = 0, then Eq. (5) evidently represents a dark-
bright-bright density profile, with the mF = 0 and mF = −1
components displaying bright soliton features with unequal
weights.

One may also propose similar ansätze to cover other types
of CVSs, such as the bright-dark-bright and bright-bright-dark
CVSs (as a matter of fact, a bright-bright-dark ansatz can be
obtained by a mapping of mF → −mF from a dark-bright-
bright ansatz). For example, we may consider the following
alternative ansatz:

⎛
⎜⎝

ψ1

ψ0

ψ−1

⎞
⎟⎠ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1√
2
a exp

(
−x2

2b2

)
√

cµ + (1 − 2c) a2 exp
(

−x2

b2

)
√

(1 − c) µ + (
c − 1

2

)
a2 exp

(
−x2

b2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (6)
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In this case, when c = 1, Eq. (6) indeed describes a bright-
dark-bright density profile; and when c = 0, Eq. (6) represents
a bright-bright-dark density profile.

Let us now examine if the above ansätze of density profiles
can be stable in the absence of a magnetic field. Only if the
answer is yes can we then explore how to generate CVSs of
a particular type of density profile in the spin-1 BEC. To that
end, we calculate the total energy E of the spinor BEC system
without the magnetic field:

E =
∫

dx

⎡
⎣

⎛
⎝ 1∑

j=−1

1

2

∂ψ∗
j

∂x

∂ψj

∂x

⎞
⎠ + 1

2
(|ψ1|2 + |ψ0|2

+ |ψ−1|2)2 + δ

2
(|ψ1|2 + |ψ0|2 − |ψ−1|2)|ψ1|2

+ δ

2
(|ψ1|2 + |ψ−1|2)|ψ0|2 + δ

2
(|ψ−1|2 + |ψ0|2

− |ψ1|2)|ψ−1|2 + δ
(
ψ∗

1 ψ2
0 ψ∗

−1 + ψ1(ψ∗
0 )2ψ−1

)
⎤
⎦ . (7)

Directly plugging the above ansatz (5) or (6) into Eq. (7), an
expression for E may be obtained. However, this expression
is rather complicated and hence will not be presented here.
Nevertheless, by careful checking each term of E, we find that
E can be divided into the following three terms:

E = Ek + Ec + Es, (8)

where Ek is the kinetic energy term, Ec (Es) is a δ-independent
(δ-dependent) term due to the atom interaction. Interestingly,
for δ > 0, such as in the 23Na case, E is minimized by c = 0.5
(or 1) for the ansatz in Eq. (5) [or in Eq. (6)]. This suggests
that it is possible to have dark-bright-dark or bright-dark-bright
vector solitons for δ > 0. By contrast, for δ < 0, such as in the
87Rb case, E is minimized by requiring c = 0 for either the
ansatz in Eq. (5) or the ansatz in Eq. (6). This indicates that for
δ < 0, we should expect the existence of dark-bright-bright or
bright-bright-dark vector solitons.

The renormalized energy landscapes of the CVS (after
subtracting off the background fluid contribution) as a function
of the variational parameters a and b can be easily mapped
out numerically. If there is a local energy minimum, then it
can be expected that a certain type of CVS will be stable.
As an example, we present the energy profile associated with
the ansatz in Eq. (5). Figures 1(a) and 1(b) display typical
landscapes for the renormalized energy obtained from Eq. (7),
for both dark-bright-dark (c = 0.5) and dark-bright-bright
cases (c = 0). The divergence of the E curve at b = 0 in
both Fig. 1(a) and Fig. 1(b) is due to the nonlinear interaction
terms in Eq. (7). Clearly, there always exists a local energy
minimum in both Figs. 1(a) and 1(b). Such an energy minimum
is expected to trap a stable dark-bright-dark or a stable
dark-bright-bright density profile. Also noteworthy is that the
increasing rate of the renormalized energy with the width
parameter b in the case of a dark-bright-dark solution is
significantly slower than that for a dark-bright-bright solution.
However, in either case, if the parameter a is small, then
the dark-bright-dark or the dark-bright-bright solution shows
rather slow increase in E as b increases. This suggests that
the CVS with smaller a can suffer less excitation if b is not

FIG. 1. Renormalized energy landscape as a function of the CVS-
width parameter b, with the background intensity set at µ = 2, for
different values of the amplitude parameter a, obtained from Eq. (7).
Panel (a) is for a dark-bright-dark solution with different values of
a for an antiferromagnetic spin-1 BEC with c = 0.5 and δ = 3.14 ×
10−2 corresponding to 23Na. Panel (b) is for a dark-bright-bright
solution for a ferromagnetic case with c = 0 and δ = −4.66 × 10−3

corresponding to 87Rb. Here, and in all other figures, all variables are
scaled and thus are dimensionless.

optimized. In other words, during the dynamical creation of
such CVSs, a solution with a larger amplitude of the bright
component should be prepared more carefully than that with
a smaller amplitude. If not, large amount of matter-wave
“radiation” can be emitted because of possible excitation of
the BEC.

As seen below, the above results based on variational
principle calculations provide an important guidance as to what
initial mean-field wave function is needed for the creation of
different kinds of CVSs. We also point out that the stability of
different kinds of CVSs will be further elaborated below by a
linear stability analysis.

III. DYNAMICAL CREATION AND LINEAR STABILITY
ANALYSIS OF COMPLEX VECTOR SOLITONS

In this section, we shall show how to dynamically create
different types of three-component CVSs by turning on a
properly localized magnetic field for a certain duration. We
shall also numerically reveal the particle-like nature of the
CVS thus created after the magnetic field is turned off. In
addition, when necessary, we will analytically discuss the
linear stability of the dynamically created CVS. For simplicity,
we choose a magnetic field along the x axis, such that in Eq. (3)
Bz = 0 and B = Bx . To seek a useful profile of the magnetic
field, our procedure is as follows: First, we ask what profile
of an always-on weak field is beneficial in forming CVSs.
This can be done by applying a small-amplitude asymptotic
approximation, detailed in Ref. [19] for dark-bright-dark
CVSs, to Eq. (3). Second, we intuitively assume that the field
profile found this way can efficiently create a CVS if it is
switched on for a certain duration.

For δ > 0, our calculations, briefly outlined in Appendix,
suggest that the following spatial dependence of a magnetic
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field B (as one example) will help form CVSs. That is,

Bδ>0=β
√

β ′
(

ν7/4

4µ3/4

)
sech(x

√
β ′ν) cos

[
x

(√
µ−

√
ν

2

)]
,

(9)

where β = 2β ′ − 1 and ν = 16δµ/5. This special field profile
reflects that, to form a CVS, the internal Josephson tunneling
at each spatial point should be appropriately engineered. Inter-
estingly, for δ < 0, an analogous small-amplitude expansion
procedure with a similar choice of free parameters suggests
that the following profile of B can be used to support a CVS.
Specifically,

Bδ<0 = β
√

β ′
[

ν7/4

(2µ)3/4

]
sech(x

√
β ′ν) cos

[
x

(√
µ−

√
ν

2

)]
,

(10)

where β = β ′ + 1 and ν = 8|δ|µ/3. Note that for both δ > 0
and δ < 0, the absolute amplitude of the field found is not
essential because the turn-on time of the field is also a
free parameter. Under a realistic experimental situation, the
transverse harmonic oscillator frequency ω⊥ = 2π × 230 Hz,
and the peak density n0 = 1 × 108 m−1. Hence, for a 87Rb
(23Na) condensate with F = 1 [22,23], our space and time
units defined before correspond to 2.5 (1.8) µm and 2.4
(1.2) ms. The parameter δ defined in (4) takes values δ =
−4.66 × 10−3 and δ = +3.14 × 10−2, for F = 1 87Rb and
F = 1 23Na atoms, respectively. Below, we further choose
µ = 2, which accounts for the homogeneous background for
the dark soliton component, which is the same choice as in
Ref. [19].

The next issue is how to choose the appropriate initial mean-
field wave function before we apply a localized magnetic field.
To that end our early variational analysis becomes useful. In
particular, for δ > 0, if our goal is to create a stable dark-
bright-dark CVS, then we may choose the following spatially
uniform wave function:

⎛
⎜⎝

ψ1(0)

ψ0(0)

ψ−1(0)

⎞
⎟⎠ =

⎡
⎢⎢⎣

√
µ

2

0√
µ

2

⎤
⎥⎥⎦ . (11)

This is because the ansatz in Eq. (5) reduces to the above state
for a = 0 and c = 0.5. On the other hand, for δ < 0, if our
goal is to form a stable dark-bright-bright soliton, then the
following initial state should be used:⎛

⎜⎝
ψ1(0)

ψ0(0)

ψ−1(0)

⎞
⎟⎠ =

⎡
⎢⎣

√
µ

0

0

⎤
⎥⎦ , (12)

which can be obtained by setting a = 0 and c = 0 in Eq. (5). In
the following we will focus on the above two initially uniform
states as our initial conditions. Similar considerations apply to
the creation of bright-dark-bright and bright-bright-dark vector
solitons.

After choosing the initial conditions just described, we then
simulate Eq. (3) under a periodic boundary condition, with a
large grid size of L = 100. The discrete steps in time and space
used in our calculations are 	t = 0.001 and 	x = 0.098. A

localized magnetic field as described in Eqs. (9) or (10) is
suddenly turned on at time t = 0 and later switched off at time
t = tf . Our results confirm that the applied field can induce
the formation of different types of stable CVSs. Below, we
discuss our results in terms of the mass of each spin component
as well as the spatial profile of different spin components.
Here, the mass of one spin component is defined as the
renormalized atom number after subtracting the background
fluid contribution. That is, for a bright component, the mass
of that component is just the scaled total atom number in that
component. But for the mass of a dark component, it is defined
as

NmF
=

∫
(nmF

− |ψmF
|2) dx, (13)

where mF refers to the spin of a dark component and nmF
is

the background density.

A. Creation of dark-bright-dark vector solitons

Figure 2(a) shows the time dependence of the mass of
each spin component, with the initial state given by Eq. (11)
and the applied localized field given by Eq. (9). The time
evolution of the density profile shown in Figs. 2(b) and 2(c)
clearly indicates that a dark-bright-dark CVS pair moving in
opposite directions is created. The propagation of the CVS
thus created is seen to be highly stable—the distortion of the
spatial profile can be hardly seen over a long time scale, and
they can also undergo quasielastic collisions at t = 170, 340,
etc. It is interesting to note that here a CVS pair, not just
one single CVS, emerges from the dynamics. This is beyond
a naive expectation from our small-amplitude expansion for
a static problem (see Appendix). Although we are unable to
fully explain such CVS-pair generation, we believe it is largely
because our intuitive approach does not capture the inherent
topological stability condition of the dark component of a CVS
or the periodic boundary condition we used in our numerical
simulations. Note that the mass of each spin component

FIG. 2. (Color online) Dynamical creation of a dark-bright-dark
vector soliton pair by applying a localized magnetic field satisfying
Eq. (9) with δ = 3.14 × 10−2 (corresponding to 23Na), β ′ = 10, and
tf = 5. Panel (a) shows the time dependence of the soliton mass for
each spin component. Panels (b) and (c) depict the time evolution of
the particle density for mF = ±1 and mF = 0.
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displays small oscillations, suggesting that the applied field
does not have to completely balance the internal Josephson
tunneling between different spin components. Note also that
the properties for the mF = 1 and mF = −1 components re-
main completely the same during the time evolution. As such,
the total magnetization of the BEC system remains absolutely
zero.

We have also simulated analogous situations with different
values of β ′ and tf , which may be tuned in experiments. It
is found that we can extensively manipulate the properties
of the CVS thus created, such as the amplitude of the
bright component as compared with the background density
associated with the dark component, as well as the group
velocity of the soliton. For example, for the CVS shown in
Fig. 2(c), the ratio of the peak density of the bright component
and the background fluid nd (which is set to be 1) is ∼0.94.
But if we set tf = 2.0 instead, then such a ratio reduces to
about 0.4. The group velocity of the vector-soliton pair is also
increased by 1.4 times if we set tf = 2.0. The insignificant
radiation of the matter wave in the course of CVS formation
[see Fig. 2(b)] may be further suppressed by decreasing β ′
and tf . It is also interesting to examine if the profile of the
applied magnetic field can be made simpler; for example, using
a profile proportional to the sech(x

√
β ′ν) factor but without

the cos[x(
√

µ − √
ν/2)] factor in Eq. (9). It is found that the

larger peak intensity of the created CVS, the more important
this cosine factor would be.

To end this subsection, we note that the linear stability of
the dark-bright-dark CVS for δ > 0 has been demonstrated in
detail in Ref. [19]. As such, it will not be repeated here. The
same analysis for δ < 0 predicts modulational instability for
dark-bright-dark CVSs. However, as we shall see in the next
subsection, for δ < 0, dark-bright-bright CVSs can still have
modulational stability.

B. Creation of dark-bright-bright vector solitons

For δ < 0, our numerical simulations also confirm that
other types of CVSs, such as dark-bright-bright vector solitons,
can be successfully created by applying a localized magnetic
field as prescribed in Eq. (10). The results are depicted
in Fig. 3. From the time evolution of the spatial intensity
profile of the BEC system, it is seen that a dark-bright-
bright CVS pair with opposite velocity is formed from an
initially uniform density described by Eq. (12). The CVS
pair thus created can also propagate with little distortion, and
can undergo a series of quasielastic collisions at t = 155,

310, 465, etc. As seen clearly from Fig. 3(a), here the
oscillation in the soliton mass is much more significant than
those seen in Fig. 2(a). Interestingly, it is seen that this
does not much affect the stable propagation of the created
CVS pair. This is a strong indication of the stability of the
dynamically created CVS. Also interesting is that the mass
of the bright component with mF = 0 is always larger than
that of the dark component with mF = −1. This is because
the latter is generated by the former through spin-exchange
collisions. Analogous to the above-mentioned generation
of dark-bright-dark CVSs, the properties of dark-bright-
bright CVSs can also be extensively manipulated by tuning
β ′ and tf .

FIG. 3. (Color online) Dynamical creation of a dark-bright-bright
vector soliton pair by applying a localized magnetic field satisfying
Eq. (10) with δ = −4.66 × 10−2 (which is ten times as much as
the natural value of 87Rb), β ′ = 10, and tf = 2. Panel (a) shows
the time dependence of the soliton mass for each spin component.
Panels (b), (c), and (d) depict the time evolution of the particle density
for mF = 1, 0, −1.

To better understand the stability of dark-bright-bright
CVSs created here, we now calculate the linear spectrum
for a general small-amplitude excitation relative to a uniform
background. Similar to the procedure in Ref. [19], we start our
analysis by adopting the following ansatz:

ψ+1 =
√

n(x, t) exp[−iµ(1 + δ)t + iϕ(x, t)],

ψ0 = φ0(x, t) exp[−iµ(1 + δ)t], (14)

ψ−1 = φ−1(x, t) exp[−iµ(1 − δ)t],

where n(x, t) and ϕ(x, t) are real functions that represent the
density and phase of the fields ψ+1, and φ0 and φ−1 are
complex functions. Such an ansatz solution is motivated by
a uniform solution to Eq. (3) in the absence of a magnetic
field. Substituting Eq. (14) into Eq. (3) for B = Bz = 0, one
obtains

i

2
[∂tn + ∂x(n∂xϕ)] − n[∂tϕ − (1 + δ)µ + (1 + δ)n

+ (1 + δ)|φ0|2 + (1 − δ)|φ−1|2] − n

[
1

2
(∂xϕ)2

− 1

2
√

n
∂2
x

√
n + 1√

n
δφ2

0φ−1e
−iϕ−2iδµt

]
= 0, (15a)

i∂tφ0 + 1

2
∂2
xφ0 − 2δ

√
nφ∗

0φ−1e
iϕ+2iδµt − [(1 + δ)n

− (1 + δ)µ + (1 + δ)|φ−1|2 + |φ0|2]φ0 = 0, (15b)

i∂tφ−1 + 1

2
∂2
xφ−1 − δ

√
nφ2

0e
−iϕ−2iδµt − [(1 − δ)n

− (1 − δ)µ + (1 + δ)|φ−1|2 + (1 + δ)|φ0|2]φ−1 = 0.

(15c)

As a common procedure of linear stability analysis, we
now linearize the above equations around the continuous wave
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solution of Eq. (12):

n = µ + εñ,

ϕ = εϕ̃,
(16)

φ0 = εφ̃0,

φ−1 = εφ̃−1,

where ε is a small real parameter. Keeping only the O(ε) terms,
Eqs. (15a)–(15c) lead to

i
(
∂t ñ + µ∂2

x ϕ̃
) − 2µ

[
∂t ϕ̃ + (1 + δ)ñ − 1

4µ
∂2
x ñ

]
= 0,

(17a)

i∂t φ̃0 + 1

2
∂2
x φ̃0 = 0, (17b)

i∂t φ̃−1 + 1

2
∂2
x φ̃−1 = 0. (17c)

By further defining

φ̃0 = φ̃0,R + iφ̃0,I,
(18)

φ̃−1 = φ̃−1,R + iφ̃−1,I,

Eqs. (17a)–(17c) can be rewritten as the following:

∂t ñ + µ∂2
x ϕ̃ = 0,

∂t ϕ̃ + (1 + δ)ñ − 1

4µ
∂2
x ñ = 0,

∂t φ̃0,R + 1

2
∂2
x φ̃0,I = 0,

(19)
−∂t φ̃0,I + 1

2
∂2
x φ̃0,R = 0,

∂t φ̃−1,R + 1

2
∂2
x φ̃−1,I = 0,

−∂t φ̃−1,I + 1

2
∂2
x φ̃−1,R = 0.

It is now evident that if we solve for φ̃0,R and φ̃−1,R from φ̃0,I

and φ̃−1,I, we finally arrive at the following three decoupled
equations:

∂2
t ñ − (1 + δ)µ∂2

x ñ + 1
4∂4

x ñ = 0, (20a)

∂2
t φ̃0,R + 1

4∂4
x φ̃0,R = 0, (20b)

∂2
t φ̃−1,R + 1

4∂4
x φ̃−1,R = 0. (20c)

These three decoupled equations directly give the following
three dispersion relations

ω2
1 = (1 + δ)µk2

1 + k4
1

4
, (21a)

ω2
2 = k4

2

4
, (21b)

ω2
3 = k4

3

4
, (21c)

where ω1, ω2, ω3 are the excitation frequencies, and k1, k2, and
k3 are the associated perturbation wave vectors. Apparently,
Eq. (21a) predicts a real frequency ω1 and hence modulational
stability for δ > −1.0 (in our studied case, δ = −4.66 × 10−3

for 87 Rb). Furthermore, Eqs. (21b) and (21c) indicate linear

FIG. 4. (Color online) Dynamical creation of multiple dark-
bright-dark vector solitons by applying a magnetic field profile
repeating that of Eq. (9) three times, with the associated three peaks
at x = 0, ±15. The other parameters are given by δ = 3.14 × 10−2

(corresponding to 23Na), β ′ = 10, and tf = 5. Panels (a) and (b)
depict the time evolution of the particle density for mF = ±1 and for
mF = 0.

stability for any value of δ. Hence, so long as the amplitude
of the created dark-bright-bright CVS is sufficiently small,
the CVS as a vector excitation can remain linearly stable for
δ > −1.0.

C. CVS chain and CVS pumping

A natural extension is to generate many CVSs at the
same time, by applying a magnetic field localized at different
regions. Our numerical simulations show that this is indeed
possible. Figure 4 shows the generation of a dark-bright-
dark CVS chain and their ensuing quasielastic collision
dynamics. The profile of the applied magnetic field repeats

FIG. 5. (Color online) Dynamical creation of multiple dark-
bright-bright vector solitons by applying a magnetic field profile
repeating that of Eq. (10) three times, with the associated three peaks
at x = 0, ±15. The other parameters are given by δ = −4.66 × 10−3

(corresponding to 87Rb), β ′ = 250, and tf = 2. Panels (a), (b), and (c)
depict the time evolution of the particle density for mF = 1, mF = 0,
and mF = −1.
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FIG. 6. (Color online) The pumping of dark-bright-dark vector
soliton pairs into a spin-1 BEC, by periodically turning on and off an
appropriate magnetic field profile. The pumping cycles start at t = 0,
45, 145 and the period of each control cycle is 5.0 in dimensionless
time units. The other parameters are δ = 3.14 × 10−2 (corresponding
to 23Na) and β ′ = 10. Panel (a) displays how the total mass of each
spin component accumulates during the pumping process. The other
panels depict the time evolution of the particle density for mF = ±1
(b) and mF = 0 (c).

that of Eq. (9) three times. Similarly, Fig. 5 depicts the
formation of a dark-bright-bright CVS chain, with the applied
magnetic field having three well-separated peaks described
by Eq. (10).

What will happen if we periodically turn on and then turn
off the magnetic field profile prescribed in Eqs. (9) and (10)?
Our numerical simulation results for such situations are shown
in Figs. 6 and 7, for the dark-bright-dark CVS and dark-bright-
bright CVS cases, respectively. In either case, it is seen that
the total mass of each CVS component, which is the sum of

FIG. 7. (Color online) The pumping of dark-bright-bright vector
soliton pairs into a spin-1 BEC, by periodically turning on and off
an appropriate magnetic field profile. The pumping cycles start at
t = 0, 48, 148 and the duration of each cycle is 2.0 in dimensionless
time units. The other parameters are given by δ = −4.66 × 10−3

(corresponding to 87Rb) and β ′ = 250. Panel (a) displays how the
total mass of each spin component accumulates during the pumping
process. The other panels depict the time evolution of the particle
density for mF = +1 (b), mF = 0 (c), and mF = −1 (d).

the soliton mass for all CVS pairs created, is increased in a
stepwise fashion. The sharp increase of the soliton mass occurs
when the applied magnetic field is turned on in a new cycle.
This clearly indicates a simple mechanism for a CVS pump.
Though in Figs. 6 and 7 we only showed the pumping of two
CVS pairs using two cycles, we checked that many more CVS
pairs can be created in this fashion. We have also checked
that we can even pump many CVS chains into the system by
periodically modulating the magnetic field associated with the
creation of a CVS chain.

IV. CONCLUSION

In this work, we have shown how to dynamically create
complex and coherent vector excitations in spinor BECs by
applying spatially localized fields. We showed that differ-
ent types of CVSs, such as dark-bright-dark, dark-bright-
bright vector solitons, and even their soliton chains, can
be generated. Because many aspects of vector solitons in
spinor BECs remain to be explored, having an experimentally
feasible means for the generation of complex vector solitons
will pave the way for vector-soliton based applications of
BECs.

In demonstrating the generation of CVSs by applying a
localized magnetic field, the field profile we proposed is
based on considerations of a spinor BEC in the presence of
a static magnetic field. Specifically, using a small-amplitude
expansion similar to that in Ref. [19], we find the required field
profile to support different types of CVSs, and then propose
to use the field profile found to generate different types of
CVSs. This intuitive approach is shown to work well—it even
works for the generation of dark-bright-bright vector solitons,
which are not previously examined in the context of spinor
BECs. To confirm that such a new type of vector excitation
is indeed stable, we have also explicitly performed a linear
stability analysis for dark-bright-bright vector solitons.
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APPENDIX: ON THE PROFILE OF A LOCALIZED
MAGNETIC FIELD FOR CVS GENERATION

In this appendix we briefly outline how we reach a
reasonable spatial profile of B in Eq. (3), which is shown to lead
to successful dynamical creation of different kinds of complex
vector solitons. Without loss of generality, we consider here
Eq. (3) for δ > 0.

For the creation of a dark-bright-dark soliton, we start our
analysis by adopting the following ansatz:

ψ±1 =
√

n(x, t) exp[−iµt + iϕ(x, t)],
(A1)

ψ0 = φ0(x, t) exp(−iµt),

where φ0 is a complex function, for a spin-1 BEC in a static
magnetic field. Substituting (A1) into Eqs. (3), we obtain the
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following equations:

i

2
[∂tn + ∂x(n∂xϕ)] − n[∂tϕ − µ + 2n + (1 + δ)|φ0|2]

− n

[
1

2
(∂xϕ)2 − 1

2
√

n
∂2
x

√
n + δφ2

0e
−2iϕ

]

−B
√

nφ0e
−iϕ = 0, (A2a)

i∂tφ0 + 1

2
∂2
xφ0 − (2n − µ + |φ0|2)φ0 − 2δn(φ0 + φ∗

0e2iϕ)

− (B + B∗)
√

neiϕ = 0, (A2b)
i

2
[∂tn + ∂x(n∂xφ)] − n[∂tφ − µ + 2n + (1 + δ)|φ0|2]

− n

[
1

2
(∂xφ)2 − 1

2
√

n
∂2
x

√
n + δφ2

0e
−2iϕ

]

−B∗√nφ0e
−iϕ = 0, (A2c)

where B ≡ (Bx − iBy)/
√

2. Based on the consistency of
Eqs. (A2a) with Eq. (A2c), one sees that the above ansatz
requires B to be real. So we set By = 0.

To seek what profile of B can help form a stable dark-bright-
dark vector soliton, we consider an approximate solution to
the above Eq. (A2) by use of the following small-amplitude
expansion:

n = (µ/2) + δρ(x, t), ϕ = δ1/2α(x, t),

φ0 = δ3/4q(x, t), B = δλB̃(x, t), λ ∼ O(1), (A3)

q ≡ q1 cos(Kx − �t) + iq2 sin(Kx − �t).

Noting that |δ| is rather small for both 23Na and 87 Rb cases,
we find λ = 7/4 and an equation for B:

i∂T q + 1

2
∂2
Xq − 2ρq − µ(q + q∗) − B̃

√
2µ = 0, (A4)

where X = √
δ(x − √

µt) and T = δt . We next take advantage
of the following equations derived at other orders in δ in
Ref. [19] for field-free cases:

√
µ∂Xα = 2ρ,

− i
√

µ

4

(
2∂Xρ − √

µ∂2
Xα

) −
√

µ

2
(∂T α + |q|2) = 0,

�q1 − K2

2
q2 = 0, −K2

2
q1 + �q2 = 0,

−K∂Xq1 + √
µ∂Xq2 = 0, −√

µ∂Xq1 + K∂Xq2 = 0,

with q and ρ set as sech functions with appropriate phases. We
finally obtain from Eq. (A4) a (moving) spatial profile for B as
follows:

Bδ>0 =β
√

β ′
(

ν7/4

4µ3/4

)
sech(x

√
β ′ν) cos

[
x

(√
µ−

√
ν

2

)]
,

(A5)

where β = 2β ′ − 1 and ν = 16δµ/5. In obtaining Eq. (A5),
we have also chosen the values of some free parameters
of the order of unity. For realistic parameter values δ =
+3.14 × 10−2 (23Na) and µ = 2, we get ν = 0.20096. If
we further choose β ′ = 10 as in Fig. 2, we have β ′ν =
2.0096. For these parameters, the spatial profile of B is
essentially a localized hyperbolic secant function, but with
minor modifications arising from the cosine factor. As shown
in our numerical simulations, such a profile is seen to be
useful in the dynamical creation of dark-bright-dark solitons.
Similar reasoning for δ < 0 leads us to Eq. (10) as one sample
solution.
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