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We find the universal structure and scaling of the Bose-Einstein condensation (BEC) statistics and
thermodynamics (Gibbs free energy, average energy, heat capacity) for a mesoscopic canonical-ensemble ideal
gas in a trap with an arbitrary number of atoms, any volume, and any temperature, including the whole critical
region. We identify a universal constraint-cutoff mechanism that makes BEC fluctuations strongly non-Gaussian
and is responsible for all unusual critical phenomena of the BEC phase transition in the ideal gas. The main result
is an analytical solution to the problem of critical phenomena. It is derived by, first, calculating analytically the
universal probability distribution of the noncondensate occupation, or a Landau function, and then using it for the
analytical calculation of the universal functions for the particular physical quantities via the exact formulas which
express the constraint-cutoff mechanism. We find asymptotics of that analytical solution as well as its simple
analytical approximations which describe the universal structure of the critical region in terms of the parabolic
cylinder or confluent hypergeometric functions. The obtained results for the order parameter, all higher-order
moments of BEC fluctuations, and thermodynamic quantities perfectly match the known asymptotics outside the
critical region for both low and high temperature limits. We suggest two- and three-level trap models of BEC
and find their exact solutions in terms of the cutoff negative binomial distribution (which tends to the cutoff
gamma distribution in the continuous limit) and the confluent hypergeometric distribution, respectively. Also,
we present an exactly solvable cutoff Gaussian model of BEC in a degenerate interacting gas. All these exact
solutions confirm the universality and constraint-cutoff origin of the strongly non-Gaussian BEC statistics. We
introduce a regular refinement scheme for the condensate statistics approximations on the basis of the infrared
universality of higher-order cumulants and the method of superposition and show how to model BEC statistics
in the actual traps. In particular, we find that the three-level trap model with matching the first four or five
cumulants is enough to yield remarkably accurate results for all interesting quantities in the whole critical region.
We derive an exact multinomial expansion for the noncondensate occupation probability distribution and find its
high-temperature asymptotics (Poisson distribution) and corrections to it. Finally, we demonstrate that the critical
exponents and a few known terms of the Taylor expansion of the universal functions, which were calculated
previously from fitting the finite-size simulations within the phenomenological renormalization-group theory, can
be easily obtained from the presented full analytical solutions for the mesoscopic BEC as certain approximations
in the close vicinity of the critical point.
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I. THE PROBLEM OF MESOSCOPIC BEC AND
UNIVERSAL STRUCTURE OF THE CRITICAL REGION

Statistical physics of Bose-Einstein condensation (BEC) in
mesoscopic, finite-size systems has attracted great interest in
recent years due to its intimate relation to the still missing
microscopic theory of BEC and other second-order phase
transitions as well as due to various modern experiments in
the traps which contain usually a finite number of atoms N ∼
102–107 (for a review, see [1,2] and references therein). One of
the most important problems is to find the universal, common
to mesoscopic systems of any size, features in the behavior
of an order parameter, its fluctuations, and thermodynamic
quantities as the functions of the number of atoms in the
trap and the temperature T in the critical region, T ∼ Tc

and N ∼ Nc, as well as outside the critical region. Finding
the microscopic theory of fluctuations in the mesoscopic
systems would yield a solution to the long-standing problem
of the microscopic theory of critical phenomena in the phase
transitions. In fact, the problem of finding the universal
functions of the statistical and thermodynamic quantities in
the critical region of BEC is not solved yet even for the
ideal Bose gas which should be more than any interacting

system amenable to analysis by rigorous analytical means.
This is especially amazing since the problem itself is more
than 80 years old, and since after the work done by Einstein,
Bose, Gibbs, and many others (in particular, see early work
on mesoscopic BEC [3–7]), BEC phase transition in an
ideal gas is considered to be a basic chapter of statistical
physics. It has been studied by many authors and included
literally in all textbooks on statistical physics, including the
ones by Feynman [8], Landau and Lifshitz [9], Abrikosov
et al. [10], Pathria [11], D. ter Haar [12], etc. A nice recent
paper [13] by Glaum, Kleinert, and Pelster clearly presents
a modern status of this problem, including the problem of
the structure of heat capacity near the λ point as well as the
first-quantized path-integral imaginary-time formalism, and,
in particular, it concludes that for the solution of this problem,
“analytical expression within the canonical ensemble could
not be found, so we must be content with the numerical
results.” All previous attempts to solve the problem either
gave a wrong answer, like the ones by Feynman [8] and by
D. ter Haar [12], failed to resolve the universal fine structure of
the critical region, like a standard grand-canonical-ensemble
approximation in the thermodynamic limit [9,11], or did not
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arrive at the explicit analytical formulas for the universal
functions in the whole critical region, like a phenomenological
renormalization-group approach [9,14–18]. In the present
paper, we obtain the exact simple analytical formulas for
the universal functions of the statistical and thermodynamic
quantities in the ideal gas in the whole critical region, including
the universal structure of heat capacity near the λ point.

The modern theory of second-order phase transitions is
based on the phenomenological renormalization-group ap-
proach and is focused on the calculation of the universal
features of phase transitions for macroscopic systems in the
thermodynamic limit, such as the critical exponents, which are
the same for all phase transitions within a given universality
class (see reviews [9,14–18] and references therein). However,
whenever it comes to the specific calculations of critical
exponents and universal functions for the particular models
or systems, it uses Monte Carlo or other simulations for
relatively small finite-size systems and fits that simulation data
to some finite-size scaling ansatz (for examples related to BEC,
see [18–25]). Typically, the ansatz involves only one or a few
first derivatives of the universal functions at the critical point.

Traditionally, in the whole statistical physics, most studies
were done for macroscopic systems in the thermodynamic
limit when both the volume V and the number of atoms
in the system tend to infinity [1,2,9–11,14–17,26,27]. An
opposite limit of a very few atoms in the trap (N = 1, 2, 3, . . .)
corresponds to a microscopic system studied by the methods
of standard quantum mechanics.

An intermediate case of a mesoscopic number of par-
ticles is the most difficult for it requires a solution that
explicitly depends on the number of particles. Besides,
for mesoscopic systems, the inapplicability of the standard
in statistical physics approaches, for example, the grand-
canonical-ensemble method and Beliaev-Popov diagram tech-
nique [10,26–28], becomes especially obvious, in particular
for the analysis of anomalous fluctuations in the critical region.
A simple example is given by a well-known grand-canonical
catastrophe of the BEC fluctuations [1,2,27]. In general,
despite its mathematical convenience, the grand-canonical-
ensemble approximation, which has been used starting from
very early works (see, e.g., [3–7]), is not appropriate for
describing the mesoscopic BEC phase transition either in
theory or in experiments [1,2,13,27,29,30]. To get the right
solution of the BEC phase transition problem, the most crucial
issue is the exact accounting of the particle-number constraint
n̂0 +∑k �=0 n̂�k = N = const as an operator equation which is
responsible for the very BEC phenomenon and is equivalent
to an infinite set of c-number constraints. It cannot be replaced
by just one condition for the mean values, N = n̄0 + n̄,
used in the grand-canonical-ensemble approach to specify
an extra parameter, namely, a chemical potential µ. Here n̂�k
is an occupation operator for the �k state of an atom in the
trap and n̂ =∑k �=0 n̂�k is the total occupation of the excited
states.

Thus, the problem is to find an explicit solution to a
statistical problem of BEC for a finite number of atoms in the
trap in a canonical ensemble. Some results in this direction
are known in the literature. However, a clear and full physical
picture of the statistics and dynamics of BEC in mesoscopic
systems has been absent not only in a general case of an

interacting gas, but even in the case of an ideal gas (for a
review, see, e.g., [2,13,25,27,29–36] and references therein).
In particular, one of the most interesting in the statistical
physics of BEC results, namely, a formula for the anomalously
large variance of the ground-state occupation, 〈(n̂0 − n̄0)2〉 ∝
N4/3(T/Tc)2, found both for an ideal gas [27,37–42] and for a
weakly interacting gas [43–46], is valid only far enough from
the critical point, where fluctuations of the order parameter
are already relatively small, 〈(n̂0 − n̄0)2〉 � n̄2

0. The same is
relevant also to a known result on the analytical formula for
all higher-order cumulants and moments of BEC fluctuations,
which demonstrates that BEC fluctuations are essentially
non-Gaussian even in the thermodynamic limit [44,45]. Also,
the probability distribution of the order parameter or the
logarithm of that distribution, i.e., a Landau function [47], for
the BEC in the ideal gas in the canonical ensemble has been
discussed in literature [2,29,30,32,33,35,36,44,45]; however,
its full analytical picture in the whole critical region has not
been found. Among fragments of that picture, we mention
here a leading cubic term in the exponent of its asymptotics in
the condensed phase correctly obtained in [29]. The universal
structure of mesoscopic BEC statistics in the ideal gas
was found only recently [48], although the renormalization-
group ansatz for the finite-size scaling variable both for the
interacting and ideal gases was used earlier [19–25,36]. As
a whole, despite the particular results, the problems of the
origin, dynamics of formation, behavior, and universal scaling
functions of the order parameter, moments of its fluctuations,
and thermodynamic quantities for the mesoscopic system
passing through the critical region remain open.

In the present paper, we set forth a full analytical so-
lution to this problem for the ideal gas. Namely, in the
first part of the paper, we introduce a general method for
the analysis of the second-order phase transitions based on
the universal constraint nonlinearity responsible for the phase
transition through a reduction of the many-body Hilbert space
(Sec. II). In Sec. III, we derive an exact multinomial expansion
for the noncondensate occupation probability distribution,
which is especially useful for the analysis of the subtle
nonuniversal finite-size effects. Then, in Sec. IV, we calculate
an unconstrained probability distribution of the number of
atoms in the condensate n0 that is complementary to the total
number of atoms in the excited states (noncondensate) n =
N − n0 and find analytical formulas for its universal structure
and asymptotics; we also elaborate on the grand-canonical-
ensemble approximation which implies a very simplified
exponential distribution. In Sec. V, we explain a remarkable
constraint-cutoff mechanism that makes BEC fluctuations
strongly non-Gaussian in the critical region and gives an origin
to the nonanalyticity and all unusual critical phenomena of
the BEC phase transition in the ideal gas. In particular, we
rigorously prove that the cutoff distribution is the exact solution
to a well-known recursion relation. Thus, in Secs. IV and V,
we find analytically the Landau function [29,47], that is, the
logarithm of the probability distribution of the order parameter,
which plays a part of an effective fluctuation Hamiltonian
and, due to an absence of interatomic interaction in the ideal
gas, is the actual Hamiltonian for the mesoscopic BEC in the
ideal gas in the canonical ensemble. On this basis, we find the
universal scaling and structure of the order parameter (Sec. VI)
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and all higher-order moments and cumulants (Sec. VII) of
the BEC statistics for any number of atoms trapped in a
box with any volume V = L3 and temperature. We prove
that our results perfectly match the known values of the
statistical moments in the low-temperature region (T � Tc),
where there is a well-developed condensate, [44,45] and their
known asymptotics in the high-temperature region (T � Tc),
where there is no condensate [1,11,27].

In the second part of the paper, we present the exactly
solvable ideal gas models which allow us to study statistics
of mesoscopic BEC in complete detail and to compare it with
the universal behavior predicted in [48] and in Secs. IV–VII.
First, we describe an exactly solvable Gaussian model that
allows us to demonstrate both its insufficiency for an accurate
description of BEC statistics as well as the universality
and constraint-cutoff origin of the strongly non-Gaussian
BEC statistics. Namely, we demonstrate that the constraint-
cutoff mechanism does yield the strongly non-Gaussian BEC
fluctuations, similar to the ones found for the ideal gas in
the box, even if one employs a pure Gaussian model for an
unconstrained probability distribution of the noncondensate
occupation that corresponds to an exactly solvable model of
BEC in a degenerate interacting gas (Sec. VIII). Then we
introduce the two-level (Sec. IX) and three-level (Sec. X) trap
models of BEC which can be used as the basic blocks in
the theory of BEC and are analogous to the very successful
two-level and three-level atom models in quantum optics.
Namely, we consider the two- and three-energy-level traps
with arbitrary degeneracy of the upper level(s) and find
their analytical solutions for the condensate statistics in a
mesoscopic ideal gas with arbitrary number of atoms and any
temperature, including a critical region. The solution of the
two-level trap model is a cutoff negative binomial distribution
that tends to a cutoff gamma distribution in the thermodynamic
limit. In particular, we demonstrate that a quasithermal ansatz,
suggested in [49], is a solution for some effective two-level
trap and, thus, we explain why and to what extent it gives
a good approximation for real traps. The solution of the
three-level trap model is given via a confluent hypergeometric
distribution. We compare the results of all these models against
BEC statistics in an actual box trap. In Sec. XI, we introduce
a regular refinement scheme for the condensate statistics
approximations based on the infrared universality [2,44,45]
of higher-order cumulants and the method of superposition.
Remarkably, we find that a superposition of the two-level trap
model with shifted average (Pirson distribution of type III)
and the Gaussian model (Sec. XI) yields the same universal
statistics in the critical region as the three-level trap model
with matching the first four cumulants (Sec. X). These two
models as well as the three-level trap model with the shifted
average are enough to yield remarkably accurate results for all
interesting quantities in the whole critical region. Finally, we
obtain the thermodynamic-limit asymptotics for these exact
solutions in terms of the parabolic cylinder and confluent
hypergeometric functions and, thus, find a remarkably simple
analytical solution to the problem of the universal structure of
the critical region.

In the third part of the paper, on the basis of the developed
analytical theory of BEC statistics, we find universal scaling,
structure, and asymptotics of the main thermodynamic quanti-

ties of the mesoscopic ideal gas in the canonical ensemble,
such as the Gibbs free energy (Sec. XII), average energy
(Sec. XIII), and heat capacity (Sec. XIV). Finally, in Sec. XV,
we demonstrate that the critical exponents and a few first terms
of the Taylor expansion for the universal functions, which were
calculated previously from fitting the finite-size simulations
within the phenomenological renormalization-group theory,
follow from the presented full analytical solutions of the
mesoscopic BEC as certain approximations in the vicinity of
the critical point. In Sec. XVI, we conclude with a general
discussion of the obtained results.

To present the universal scaling of the BEC statistics and
its constraint-cutoff origin as clear and visual as possible, we
consider here only the case of the ideal gas. An important
motivation for the publication of this work is that a more
involved problem of critical fluctuations in a weakly inter-
acting gas can be solved on the basis of the same method
and in terms of the same functions as we use here for
the ideal gas, since the constraint-cutoff origin of critical
behavior in the second-order phase transitions is universal.
In other words, a unique property and relative simplicity of
the mesoscopic ideal gas system, which demonstrates phase
transition even without interparticle interaction, allows us
to find the analytical solution and the universal constraint-
cutoff origin for the nonanalyticity and critical phenomena
in all other interacting systems demonstrating second-order
phase transition. Of course, in addition, one has to take
into account a deformation of the statistical distribution
due to a feedback of the order parameter on the quasiparticle
energy spectrum and interparticle correlations, that can be
done in a nonperturbative-in-fluctuations way using a theorem
on the nonpolynomial averages in statistical physics and an
appropriate diagram technique [50,51]. The solution for the
weakly interacting gas will be presented in a separate paper.

II. CONSTRAINT NONLINEARITY AND MANY-BODY
FOCK SPACE CUTOFF IN THE CANONICAL

ENSEMBLE

Let us consider an equilibrium ideal gas of N Bose atoms
trapped in a cubic box with the periodic boundary conditions
and discrete one-particle energies ε�k = h̄2k2/(2m), where m

is the mass of an atom and �k = 2π �q/L is a wave vector
with the components ki = 2πqi/L, qi = 0,±1,±2, . . .. This
mesoscopic system is described by a Hamiltonian H =∑∞

k=0 ε�kn̂�k . As we discussed in [50,51], the only reason for
the BEC of atoms on the ground state �k = 0 is conservation
of the total number of Bose particles in the trap, N = n̂0 + n̂.
Hence, the occupation operators n̂�k are not independent, and
the many-body Hilbert space is strongly constrained. A more
convenient equivalent formulation of the problem can be given
if one introduces a constraint nonlinearity in the dynamics and
statistics, even for the ideal, noninteracting gas, on the basis
of the particle-number constraint. In most previous studies, an
actual (e.g., canonical or microcanonical) quantum ensemble
was substituted by an artificial grand-canonical ensemble,
where only the mean number of particles is fixed by the
appropriate choice of the chemical potential µ and, therefore,
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most quantum effects in dynamics and statistics of BEC were
lost or misunderstood.

Following our general approach [2,44,45,50,51], we solve
for the constraint from the very beginning through the proper
reduction of the many-body Hilbert space. In the present case
of the ideal gas in the canonical ensemble, we have to consider
as independent only noncondensate Fock states |{n�k, �k �= 0}〉
which uniquely specify the ground-state Fock state |n0 =
N −∑k �=0 n�k〉. However, the remaining noncondensate Fock
space should be further cut off by the boundary

∑
k �=0 n�k � N .

The latter is equivalent to an introduction of a step function
θ (N − n̂), i.e., 1 if n � N or 0 if n > N , in all operator
equations and under all trace operations. That θ (N − n̂) factor
is the constraint nonlinearity that, being accepted, allows us to
formally consider the noncondensate many-body Fock space
as an unconstrained one. We adopt this point of view from now
on.

The BEC fluctuations are described by a “mirror” image
ρcond(n0) = ρn=N−n0 of the probability distribution of the total
number of excited (noncondensed) atoms n,

ρn = 1

2π

∫ π

−π

e−iun�(u)du, (1)

�(u) = Tr{eiunρ̂θ (N − n̂)} =
N∑

n=0

eiunρn, (2)

where �(u) is a characteristic function for the stochastic
variable n,

ρ̂ = e−H/T θ (N − n̂)/Z (3)

is an equilibrium density matrix,

Z = Tr{e−H/T θ (N − n̂)} (4)

is a partition function, and the temperature is measured in
energy units, so that the Boltzmann constant is set to be unity.
Thus, the exact solution for an actual probability distribution of
the total noncondensate occupation in the canonical ensemble

ρn = ρ(∞)
n θ (N − n)

/
N∑

n=0

ρ(∞)
n (5)

is merely a θ (N − n̂) cutoff of the unconstrained probability
distribution ρ(∞)

n for an infinite interval of the noncondensate
occupations n ∈ [0,∞), as shown in Fig. 1. In other words,
for an ideal Bose gas in the mesoscopic trap in the canonical
ensemble, the Landau function [29,47], − ln ρn, which is the
effective fluctuation Hamiltonian, has an infinite potential wall
at n = N due to the constraint nonlinearity.

The unconstrained probability distribution

ρ(∞)
n = 1

2π

∫ π

−π

e−iun�(∞)(u)du (6)

was analytically calculated in [44,45] for an arbitrary trap via
its characteristic function

�(∞)(u) =
∏
�k �=0

(eε�k/T − 1)/(eε�k/T − eiu), (7)

i.e., via all its moments and cumulants. Thus, only a straightfor-
ward calculation of the moments and cumulants of the cutoff
probability distribution, given in Eq. (5) and depicted as a

FIG. 1. Unconstrained probability distribution ρ(∞)
n of the non-

condensate occupation n (dashed line) and its constraint cutoffs (solid
lines) for a small number of atoms N ′ < Nc (OA′N ′ - there is no
condensate) and for a large number of atoms N > Nc (OAN - there
is condensate) for the trap with a given volume and temperature: the
trap-size parameter in Eq. (24) is Nv = 100.

curve OAN in Fig. 1, remains to performed in order to find the
actual BEC statistics in the mesoscopic system for all numbers
of atoms and temperatures, including a critical region.

The solution in Eq. (5) is amazingly simple, powerful, and
exact. It allows us to solve the problem of critical fluctuations
in the mesoscopic BEC in the ideal gas. The rest of the paper
is devoted to a detailed analysis of that solution.

The Taylor expansion of the characteristic function, �(u) =∑∞
m=0 αmum/m!, gives the initial moments αm. They are

related to the central moments µm = 〈(n − n̄)m〉 as well as
to the cumulants κm by the following explicit formulas [52]:

αr =
r∑

k=0

Ck
r µr−kn̄

k, µr =
r∑

k=0

(−1)kCk
r αr−kn̄

k, (8)

κr =
r∑

m=1

(m − 1)!

(−1)m−1

(r,m)∑
(r; a1, . . . , ar )′αa1

1 · · · αar

r ,

αm =
m∑

r=1

(m,r)∑
(m; a1, . . . , am)′κa1

1 · · · κam

m ,

(9)

where Ck
r = r!/[k!(r − k)!], (m; a1, . . . , am)′ = m!/[(1!)a1

a1!(2!)a2a2! . . . (m!)amam!] is a multinomial coefficient, and
the sum

∑(m,r) in Eq. (9) runs over the non-negative integers
a1, . . . , ar which satisfy the following two conditions: a1 +
2a2 + · · · + rar = r and a1 + · · · + ar = m. The cumulants
κm and the generating cumulants κ̃m are determined by
the Taylor expansion of the logarithm of the characteristic
function,

ln �(u) =
∞∑

m=1

κm

(iu)m

m!
=

∞∑
m=1

κ̃m

(eiu − 1)m

m!
. (10)

They are related by means of the Stirling numbers of the first
and second kinds [52],

κ̃m =
m∑

r=1

S(r)
m κr, κr =

r∑
m=1

σ (m)
r κ̃m, (11)

σ (m)
r = 1

m!

m∑
k=0

(−1)m−kCk
mkr ,

S(r)
m =

m−r∑
k=0

(−1)kCm−r+k
m−1+kC

m−r−k
2m−r σ

(k)
m−r+k,

(12)
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in particular, κ1 = κ̃1, κ2 = κ̃2 + κ̃1, κ3 = κ̃3 + 3κ̃2 + κ̃1, and
κ4 = κ̃4 + 6κ̃3 + 7κ̃2 + κ̃1. The generating cumulants of ρ(∞)

n

for the ideal gas in an arbitrary trap are known [44,45]

κ̃ (∞)
m = (m − 1)!

∑
�k �=0

(eε�k/T − 1)−m. (13)

We calculate the quantities which are the most important
and convenient for the analysis of the BEC statistics, namely,
the mean value n̄ (which is complementary to the BEC order
parameter n̄0 = N − n̄) as well as the central moments µm and
cumulants κm of the total noncondensate occupation. The point
is that the ground-state (condensate) occupation fluctuates
complementarily to a sum of many, to a large extent indepen-
dent occupations of the excited states in the noncondensate,
conditioned by the particle-number constraint. The first four
cumulants are related to the central moments as κ1 = n̄,
κ2 = µ2, κ3 = µ3, and κ4 = µ4 − 3µ2

2. The central moments
of the condensate fluctuations differ from the corresponding
central moments of the noncondensate fluctuations only by the
sign for the odd orders: 〈(n0 − n̄0)m〉 = (−1)m〈(n − n̄)m〉.

III. MULTINOMIAL EXPANSION FOR THE
NONCONDENSATE OCCUPATION

PROBABILITY DISTRIBUTION

On the basis of the above formulated statistical constraint-
cutoff approach, let us start the analysis with a derivation of an
important general expansion for the noncondensate occupation
probability distribution that will be especially useful for the
analysis of finite-size effects in the small number of atoms
region where a discreteness of the noncondensate occupation
n is essential (in particular, see the end of Sec. IV and the end of
Sec. XIV). The definition in Eq. (2) means that the probability
ρn to find n excited atoms in the noncondensate is equal to
the nth coefficient in the Taylor series of the characteristic
function �̃(z) = �(u) viewed as a function of the complex
variable z = eiu, namely,

ρn = �̃(n)(z = 0)

n!
, �(u) = �̃(z) =

N∑
n=0

�̃(n)(z = 0)

n!
zn,

(14)

where �̃(n) = dn�̃/dzn. The same is true for the unconstrained
probability

ρ(∞)
n = 1

n!
�̃(∞)(n)(z = 0),

(15)

�(∞)(u) = �̃(∞)(z) =
∞∑

n=0

1

n!
�̃(∞)(n)(z = 0)zn.

The latter Taylor series for the unconstrained characteristic
function in Eq. (7) can be evaluated as

�̃(∞)(z) = exp

⎧⎨
⎩
∑
�k �=0

[
ln
(
1 − e− ε�k

T

)− ln
(
1 − ze− ε�k

T

)]⎫⎬⎭
= ρ

(∞)
n=0 exp

( ∞∑
n=1

Bn

n
zn

)
, Bn =

∑
�k �=0

e−nε�k/T .

(16)

Here the unconstrained probability to find zero atoms in the
noncondensate is equal to

ρ
(∞)
n=0 = exp

⎡
⎣∑

�k �=0

ln(1 − e−ε�k/T )

⎤
⎦→ exp

[
−ζ (5/2)Nv

ζ (3/2)

]
,

(17)

where we give also its thermodynamic-limit value at Nv → ∞.
Hence, Eqs. (15) and (16) yield

ρ(∞)
n = ρ

(∞)
n=0

n!

[
dn

dzn
exp

( ∞∑
n=1

Bn

n
zn

)]
z=0

. (18)

Finally, using a generating function [52]

1

m!

[ ∞∑
k=1

xk

k
tk

]m

=
∞∑

n=m

tn

n!

(m,n)∑
(n; a1, . . . , an)∗xa1

1 . . . xan

n

(19)

for the well-known multinomial coefficients

(n; a1, a2, . . . , an)∗ = n!/(1a1a1!2a2a2! . . . nanan!) (20)

in the Taylor expansion of the exponential function

exp

( ∞∑
n=1

Bnz
n/n

)
=

∞∑
m=0

1

m!

( ∞∑
n=1

Bnz
n/n

)m

in Eq. (18), we obtain a very powerful and exact multinomial
expansion for the unconstrained probability distribution of the
total noncondensate occupation

ρ(∞)
n = ρ

(∞)
n=0

n!

n∑
m=0

(m,n)∑
(n; a1, a2, . . . , an)∗Ba1

1 B
a2
2 · · ·Ban

n ,

(21)

where the sum
∑(m,n) runs over all non-negative integers

a1, . . . , an which satisfy the following two conditions: a1 +
a2 + · · · + an = m and a1 + 2a2 + · · · + nan = n. In particu-
lar, it immediately yields the unconstrained probability to find
one atom in the noncondensate

ρ
(∞)
n=1 = ρ

(∞)
n=0B1 → Nv

ζ (3/2)
exp

[
−ζ (5/2)Nv

ζ (3/2)

]
, (22)

where we again give also its thermodynamic-limit value.

IV. UNIVERSAL STRUCTURE OF THE UNCONSTRAINED
PROBABILITY DISTRIBUTION OF THE

NONCONDENSATE OCCUPATION

The best way to analyze BEC statistics in mesoscopic
systems is to study the central moments and cumulants of
the noncondensate occupation as functions of the number of
atoms in the trap, since these functions are more physically
instructive and more directly related to the intrinsic quantum
statistics in a finite system than less transparent temperature
dependences. The maximum number of noncondensed atoms
n̄(∞) = Nc is achieved in the limit of an infinite number of
atoms loaded in the trap, N → ∞, and is given by a discrete
sum [44,45]

Nc =
∑
�k �=0

(eε�k/T − 1)−1. (23)
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In the standard analysis in the thermodynamic limit, this sum
is approximated by a continuous integral that yields a little bit
larger number

Nv = ζ (3/2)

(
mT

2πh̄2

)3/2

V = N

(
T

Tc

)3/2

, (24)

where ζ is the zeta function of Riemann, ζ (3/2) ≈ 2.612. Let
us note also that a ratio of an energy scale for the box trap to
the temperature is determined by precisely the same trap-size
parameter Nv in Eq. (24); namely, for the energy of the first
excited state, one has

ε1/T = π [ζ (3/2)/Nv]2/3 . (25)

Hence, the sum in Eq. (23) over the energy spectrum of the
trap as well as all other similar sums, like the one in Eq. (30)
below, actually depend only on a single combination of the trap
parameters given by Eq. (24). Thus, the mesoscopic system of
the ideal gas atoms in the finite box is completely specified
by two parameters, Nv and N . It is convenient to study a
development of the BEC phase transition with an increase
of the number of atoms N assuming that the volume and
temperature of the mesoscopic system are fixed, that is, the
trap-size parameter Nv given by Eq. (24) is fixed. The critical
number of atoms loaded in the trap is equal to the close-to-
Nv number Nc given by Eq. (23). Hence, when we increase
the number of atoms from N < Nc to N > Nc the system
undergoes the same BEC phase transition phenomenon as the
one observed when we decrease the temperature around the
critical temperature Tc from T > Tc to T < Tc.

A. Critical region: Universality of critical BEC fluctuations

Following the approach formulated in Sec. II and Fig. 1,
we immediately find that the unconstrained probability dis-
tribution ρ(∞)

n analytically calculated in [44,45] for different
sizes and temperatures of the trap tends, with an increase of
the trap-size parameter Nv , to a universal function

ρ(univ)(x ′) = 1

2πi

∫ i∞

−i∞
epx�(univ)(ip)dp

≡ 1

2π

∫ ∞

−∞
e−iu′x ′

�(univ)(u′)du′,
(26)

�(univ)(u′) = exp

[ ∞∑
m=2

sm

m
(iu′)m

]
, (27)

if it is considered for the scaled stochastic variable centered to
have zero mean value,

x ′ = (n − Nc)ε1/T . (28)

The corresponding argument of the characteristic function in
Eq. (27) is related to the one in Eqs. (1), (7), and (10) via
the same but inverse factor, namely, u′ = uT/ε1. The result
in Eqs. (26) and (27) follows from the definitions in Eqs. (1)
and (10) in the thermodynamic limit Nc → ∞, σ (∞) → ∞
because κ̃

(∞)
1 = Nc and in the thermodynamic limit all higher-

order cumulants in Eq. (13) scale as the powers of the
dispersion, κ̃ (∞)

m → (m − 1)!(σ (∞)/s
1/2
2 )msm, since the main

contribution in Eq. (13) for m � 2 comes from the energies
much lower than temperature, ε�k � T , where (eε�k/T − 1)m ≈
(ε1/T )m�k2m, �k = 2π �q/L, and vector �q = {qj , j = x, y, z}
has integer components, qj = 0,±1,±2, . . . . Here the uni-
versal numbers

sm =
∑
�q �=0

1

q2m
(29)

are given by the generalized Einstein function (see [53] and
Fig. 10 in Sec. XI), and the dispersion of the BEC fluctuations
σ (∞) is independent of the number of atoms N quantity
calculated for the unconstrained probability distribution (N →
∞) in [44,45] as a function of the trap-size parameter Nv ,

σ (∞) ≡
√

κ
(∞)
2 =

⎡
⎣∑

�k �=0

1

(eε�k/T − 1)2
+ Nc

⎤
⎦

1/2

. (30)

In the thermodynamic limit, the last discrete sum can be
approximated as a continuous integral, and one has

σ (∞) ≈ s
1/2
2 N

2/3
v

π [ζ (3/2)]2/3 = s
1/2
2 T

ε1
, (31)

s2 =
∑
�q �=0

1

q4
≈ 16.533, s3 = 8.4019, s4 = 6.9458.

(32)

The dispersion of the BEC fluctuations [Eqs. (30) and (31)]
is anomalously large and scales as σ (∞) ∼ N

2/3
v , contrary to

a much smaller value ∼N
1/2
v , which one could naively expect

from a standard analysis based on the grand-canonical or
thermodynamic theory of fluctuations.

Thus, we find the exact analytical formula for the universal
unconstrained probability distribution ρ

(univ)
x ′ in Eq. (26) via its

Laplace transform, i.e., its characteristic function in Eq. (27).
It is presented in Fig. 2. In the analysis and figures that follow,
we use also a somewhat more physically transparent rescaled
stochastic variable

x = (n − Nc)/σ (∞) ≈ x ′/
√

s2, (33)

5 5 10 x

25

20

15

10

5

ln ρx
univ

FIG. 2. Logarithm of the universal unconstrained probability dis-
tribution ρ(univ)

x as a function of the scaled noncondensate occupation
x = (n − Nc)/σ (∞).
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which represents noncondensate fluctuations measured in the
units of dispersion and has the rescaled universal probability
distribution

ρ(univ)
x = √

s2ρ
(univ)
x ′ . (34)

Please note that in order to pin the critical point to zero x = 0
(or x ′ = 0), we have to measure the scaled variables x and
x ′ in Eqs. (33) and (28) relative to the exact mesoscopic
critical value Nc given by the discrete sum in Eq. (23) that
cannot be replaced here by its continuous approximation
Nv in Eq. (24). Otherwise, all universal functions for the
stochastic and thermodynamic quantities would acquire a
trap-size-dependent shift ηc = (Nv − Nc)/σ (∞) that does not
tend to zero, but instead slowly increases like ∼Nδ

v with
a power index δ ∼ 0.1. That shift is not addressed in the
usual grand-canonical-ensemble approximation in the ther-
modynamic limit, but it is important to resolve correctly the
universal structure of the critical region as is clearly seen from
an example of the heat capacity discussed below in Sec. XIV
and Figs. 14 and 15.

Below we derive also analytical approximations for the
universal probability distribution of the total noncondensate
occupation, the most accurate of which are given in terms of
Kummer’s confluent hypergeometric function

ρ(univ)
x ≈ e

g1
1 e

g2
2 Xg1+g2−1e−e2X

(g1 + g2)
M(g1, g1 + g2, (e2 − e1)X),

X = x + g1/e1 + g2/e2, (35)

e1 ≈ 4.303, e2 ≈ 29.573, g1 ≈ 8.504, g2 ≈ 473,

and in terms of the parabolic cylinder function

ρ(univ)
x ≈ cgec2/2−Y 2√

2π [1 − s2
3/(s2s4)]

D−g[2(c − Y )],

(36)

Y = x + s3
√

s2/s4

2
√

1 − s2
3/(s2s4)

, g = s4
3

s3
4

, c = s3

s4

√
s2 − s2

3

s4
.

They are derived by means of an exact analytical solution
[Eq. (125)] for a three-level-trap model with matching the first
five [Eq. (136)] or four [Eq. (129)] cumulants, respectively.
Amazingly, we obtain absolutely the same asymptotics (36)
from the exact analytical solution (146) for a completely
different model (151) that is a superposition of the two-level
trap model and the Gaussian model (see Secs. VII, IX, and XI).
The analytical results in Eqs. (35) and (36) are remarkably
accurate in the whole central part of the critical region
(namely, in the intervals −4 < x < 10 and −3 < x < 6,
respectively) not only near the critical point, and they allow
us to calculate analytically the universal functions for all
moments of BEC statistics, including the order parameter, and
other physical quantities (see Secs. VI, VII, and XII–XIV)
via the exact formulas which express the constraint-cutoff
mechanism described in Sec. V.

Note that the universal probability distribution ρ(univ)
x for

the box trap with periodic boundary conditions, according to
Eqs. (26) and (27), does not include any parameters and, in
a sense, is a pure mathematical special function. A similar
universal probability distribution of the total noncondensate

FIG. 3. Scaled unconstrained probability distribution of the
stochastic variable x = (n − Nc)/σ (∞) for different finite traps:
Nv = 102 (dotted line), Nv = 103 (dashed line), and Nv = 104 (solid
line). The Gaussian distribution exp(−x2/2)/

√
2π is depicted by a

dotted-dashed line.

occupation can be derived for any other trap, e.g., a box with
the Dirichlet boundary conditions, following exactly the same
scheme starting from the known unconstrained probability
distribution ρ(∞)

n for an arbitrary trap [44,45].
That remarkable universality is valid in the whole critical

region, |n − Nc|/σ (∞) � N
1/3
v , which tends to an infinite

interval of values x ∈ (−∞,∞) in the thermodynamic limit
Nv → ∞. It includes very large values |x| � 1 and is much
wider than a relatively narrow vicinity of the maximum of the
distribution, |n − Nc| � σ (∞), where a Gaussian approxima-
tion always works well. In particular, from Figs. 3 and 4 we see
that this is true for the right tail at least up to n − Nc ∼ 8σ (∞)

for Nv = 103 and up to n − Nc ∼ 10σ (∞) for Nv = 104 and
also for the left tail, of course, except close to the n ≈ 0
part, where the probability should become zero. Thus, the
actual mesoscopic probability distribution becomes very close
to the universal, thermodynamic-limit probability distribution
already starting from quite moderate values of the trap-size
parameter Nv ∼ 102–103. This result is more clearly shown
in Fig. 4, where a logarithmic scale allows us to see the
behaviors of the tails in greater detail. The universal probability
distribution has a very fat and long right tail (61) of the
large occupation values, n − Nc � σ (∞), whereas the left tail
(51) of small occupation values, Nc − n � σ (∞), is strongly
suppressed compared to the Gaussian distribution.

The most crucial point is that the universal probability
distribution does not collapse to a kind of δ function or a
pure Gaussian distribution but remains finite, smooth, and

FIG. 4. Logarithm of the scaled unconstrained probability dis-
tribution of the stochastic variable x = (n − Nc)/σ (∞) for different
finite traps: Nv = 102 (dotted line), Nv = 103 (dashed line), and
Nv = 104 (solid line). Logarithm of the Gaussian distribution,
−x2/2 − ln(2π )/2, is depicted by a dotted-dashed line.
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nontrivial in the thermodynamic limit, so that an intrinsic
critical structure of the BEC phase transition clearly reveals
itself in the already quite small mesoscopic systems with the
critical number of atoms Nc ∼ 102. We find that a Taylor series
for the logarithm of the universal probability distribution, i.e.,
the negative Landau function,

ln
[
ρ(univ)

x

] = a0 + a2(x − �x)2/2! + a3(x − �x)3/3!

+ a4(x − �x)4/4! + · · · , (37)

contains very essential third (a3 ≈ 0.26) and fourth (a4 ≈ −3)
order terms which provide the same or larger contributions at
the tails compared to that of the quadratic part (a2 ≈ −1.04).
There is also a relatively small but finite shift �x ≈ −0.12 of
the maximum of the probability distribution to the left of the
mean value x̄ = 0, i.e., n̄ = Nc, due to the above-discussed
asymmetric tails. The normalization coefficient is a0 ≈
− ln

√
2π + 0.013. Note that a pure Gaussian distribution has

only two nonzero coefficients, a(Gauss)
0 = − ln

√
2π ≈ −0.919

and a
(Gauss)
2 = −1, which are very close to their counterparts

in Eq. (37).
All exact numerical simulations for the BEC statistics in

the box trap with a finite number of atoms N presented
in this paper were obtained by direct calculation of the
characteristic function in Eq. (27) for the mesoscopic ideal gas
using the analytical formulas [44,45] and then the probability
distribution in Eq. (1) by means of a fast Fourier transform
(FFT) technique. Also, the standard simulation technique
based on the recursion relation [13,25,30,32,33,54–58] was
used. Both techniques yield the same results and allow us to
calculate the BEC statistics in mesoscopic systems up to a
relatively large critical number of atoms, Nc < 105.

The exact universal probability distribution in Eqs. (26),
(27), and (34) can be approximated very efficiently by exactly
taking into account the contributions gj/q

2m to sm in Eq. (29)
for the generating cumulants (13) from a few first energy
levels εj , j = 1, 2, 3, . . . , J , as well as by exactly taking
into account the remaining parts of a few first cumulants via
sums sm −∑J

j=1 gj/Q
2m
j ,m = 1, 2, . . . , m∗, and omitting

only contributions to the higher-order cumulants sm,m > m∗,
from all energy levels with high energies ε�k > εJ . Here a
degeneracy gj is equal to the number of atomic �k states
that have the same energy ε�k = εj ≡ ε1Q

2
j , where Q2

j =
q2

x + q2
y + q2

z is a dimensionless energy of the j th energy level,
Q2

j = 1, 2, 3, 4, 5, 6, 8, 9, 12, . . . ; g1 = 6, g2 = 12, g3 = 8,
g4 = 6, g5 = 24, g6 = 24, . . . . Thus, since

∑∞
m=1 (iy)m/m =

− ln(1 − iy), we can approximate the universal characteristic
function in Eq. (27) as follows

�(univ)(u′)

≈
⎡
⎣ J∏

j=1

(
1 − iu′

Q2
j

)−gj

⎤
⎦

× exp

[
−iu′

J∑
j=1

gj

Q2
j

+
m∗∑

m=2

⎛
⎝sm −

J∑
j=1

gj

Q2m
j

⎞
⎠ (iu′)m

m

]
,

(38)

where the numbers J and m∗ of the taken into account
energy levels and cumulants, respectively, specify an accuracy.
Straightforward numerical calculation of Eq. (38) and corre-
sponding Eq. (34) show that with increasing numbers J and
m∗ these approximations nicely converge to the exact universal
functions (27) and (34) in the proportionally increasing
intervals of values |u′| � u′∗(J,m∗) and |x| � x∗(J,m∗). The
main reason for that fact is that the residual parts of the
cumulants ∝ sm −∑J

j=1 gj/Q
2m
j become, after subtracting

contributions from the first J energy levels, very small with
increasing m and J .

In fact, already the approximation with J = 6 and m∗ =
14 is more than enough for all practical purposes, and can
be efficiently used to plot all statistical and thermodynamic
quantities by means of the standard MATHEMATICA or similar
elementary code packages, and works perfectly well in the
whole critical region, −6 < x < 15, including even a large
part of the asymptotics region |x| � 1.

For the simplest nontrivial approximation (J = 1,m∗ = 2)
in Eq. (38), we find

�(univ)(u′) ≈ e−6iu′

(1 − iu′)6
exp

[
− s2 − 6

2
(u′)2

]
, (39)

which takes into account all contributions from the first energy
level and the Gaussian part of the remaining contributions from
all higher energy levels. In this case, the integral in Eq. (26) can
be calculated analytically if we represent it as a convolution

ρ
(univ)
x ′ =

∫ ∞

0
f6(y)R(x ′ + 6 − y)dy, (40)

where

f6(y) = 1

2πi

∫ i∞

−i∞

epy

(1 + p)6
dp = y5

5!
e−y (41)

is a cutoff gamma distribution for the first energy level (see
Sec. IX) and

R(y) = 1

2πi

∫ i∞

−i∞
exp

(
py + s2 − 6

2
p2

)
dp

= exp{−y2/[2(s2 − 6)]}√
2π (s2 − 6)

(42)

is a Gaussian distribution. The integral in Eq. (40) yields the
simplest nontrivial approximation for the universal probability
distribution of the total noncondensate occupation

ρ(univ)
x = s

1/2
2 D−6(X′)√

2π (s2 − 6)−5/2
exp

[
−1

2

(x ′ + 6)2

s2 − 6
+ X′2

4

]
,

(43)

X′ =
√

s2 − 6

(
1 − x ′ + 6

s2 − 6

)
,

where D−g1 (X′) is a parabolic cylinder function [52] with an
index specified by the degeneracy of the first energy level
g1 = 6, x ′ = √

s2x, and s2 is given in Eq. (32). That simple
approximation works reasonably well in the central part of
the critical region, −1 < x < 5, and is essentially better than
the plain polynomial approximation in Eq. (37), which has a
narrow interval of validity even with four or six terms taken
into account.
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B. Asymptotics of the universal probability distribution
in the critical region

1. Noncondensed phase

The asymptotics of the universal probability distribution
(26) or (34) at the left tail of the critical region, x → −∞, i.e.,
in the noncondensed phase, is determined by a contribution
accumulated near a complex stationary point u′ = u′

s in the
inverse Laplace integral (26) or (34) and cannot be found
directly from any approximation (38) keeping only a finite
number of terms in it, since the stationary point tends to infinity,
|u′

s | → ∞, when x → −∞. Hence, we first have to find
explicitly the asymptotics of the logarithm of the characteristic
function

f (u′) ≡ ln �(univ)(u′) =
∞∑

m=2

sm

m
(iu′)m (44)

at |u′| → ∞. It can be done by calculating its first derivative
directly from Eq. (27) in the continuous approximation as
follows:

f ′(u′) = i

∞∑
m=2

sm(iu′)m−1 = −
∑
�q �=0

u′

q2(q2 − iu′)

∼ −
∫ ∞

0

4πu′dq

q2 − iu′ = −2π2
√

iu′. (45)

Another way to do this is to calculate the derivative of the
logarithm of the original characteristic function (7) in the
continuous approximation:

d ln �(∞)

du′ ∼ 2πi√
ε1/T

∫ ∞

0

√
ydy

ey−iu′ ε1
T − 1

=
iπ

3
2 Li 3

2

(
eiu′ ε1

T

)
√

ε1/T
.

(46)

Using an expansion of a well-known polylogarithm, or Bose
(88), function [59] for a pure imaginary argument y =
iu′ε1/T → 0 for any finite, even large u′,

Li 3
2
(ey) ∼ 2i

√
πy +

∞∑
m=0

ζ
(

3
2 − m

)
ym

m!
, (47)

we find at |u′| � 1, the asymptotics

d ln �(∞)

du′ ∼ −2π2
√

iu′ + iNvε1

T
+ iπ3/2

√
ε1/T

×
∞∑

m=1

ζ (3/2 − m)

m!

(
iu′ε1

T

)m

, (48)

the leading term of which is exactly the same as in Eq. (45).
Note that the zeroth-order (m = 0) term in Eq. (48), which
is responsible for the average noncondensate occupation
Nc → Nv , has been already exactly accounted for in the
universal distribution (26), or (34), via the mean value Nc. The
logarithm of the universal characteristic function in Eq. (44)
contains no zeroth-order term or any terms that are linear in u′,
which, besides, cannot be given correctly by the continuous
approximation, since already the linear term is proportional
to the discrete corrections to the variable x in Eq. (33) via
the exact critical number Nc, which is not universal as we
discussed in the beginning of Sec. IV. Thus, namely, the

asymptotics of the second derivative of the logarithm of the
universal characteristic function (44) is given correctly by
Eqs. (45) and (48) as

f ′′(u′) ≈ −π2
√

i/u′, (49)

which perfectly coincides numerically with the exact values
of f ′′(u′) for all |u′| > 1 starting already with |u′| ≈ 1.2.
The aforementioned zeroth-order and linear terms in the
asymptotics of f (u′) can be easily found by comparison with
the exact function in Eq. (44) at some finite point u′, for
example, using approximation (38), or by calculation of the
appropriate discrete sums. These terms are equal to f0 ≈ 3.3
and iu′f01 ≈ iu′2.2

√
s2, respectively.

Now we can find the asymptotics of the universal probabil-
ity distribution in Eq. (26) or (34) as follows:

ρ(univ)
x ≈

√
s2

2π

∫ ∞

−∞
e−iu′x ′+f0+if01u

′+f ′′(u′)du′

=
√

s2e
f0

2π
7
3 3− 2

3

Re
∫ ∞

0
eF (t)dt, (50)

F (t) = −i
(
t x̃ + t

3
2
)− t

3
2 ,

where x̃ = 32/3(
√

s2x − f01)/(2π4/3) < 0. The complex sta-
tionary point of the latter integral is determined by the equation
F ′(t = ts) = 0 and is equal to ts = 2ix̃2/9. Complex Gaus-
sian approximation of the function F (t) ≈ −2|x̃/3|3 − 9(t −
ts)2/(8|x̃|) in the stationary point vicinity, which provides
the major contribution to the inverse Laplace integral in
Eq. (50), allows us to calculate that integral explicitly and
yields the asymptotics of the left tail (−x � 1) of the universal
probability distribution as follows:

ρ(univ)
x ≈ s

3/4
2

2π5/2

√
x0 − x exp

[
f0 + s

3/2
2

12π4
(x − x0)3

]
, (51)

where x0 = f01/
√

s2 ≈ 2.2, f0 ≈ 3.3, and an accuracy is
excellent starting already from x < −3. That result is very
nontrivial and unusual for statistical physics. Indeed, the
unconstrained universal probability distribution in the critical
region at −x � 1, i.e., in the noncondensed phase, decays
with a cubic exponent, which is much faster than both a decay
with a linear exponent at the right tail [see Eq. (61) below] and
a standard Gaussian, quadratic exponential decay.

2. Condensed phase

The asymptotics of the universal probability distribution
(26), or (34), at the right tail of the critical region, x → +∞,
i.e., in the condensed phase, is completely different from that
at the left tail, since for positive values x ′ � 1, a frequency
of oscillations, i.e., an imaginary part of the derivative of the
exponent in the integrand of Eq. (26), always increases with
increasing |u′|, that is, there is no stationary point near an
integration path anymore, contrary to the case x ′ < 0 at the
left tail. Asymptotics at the right tail is determined mainly
by the first energy level contribution with a finite shift and
renormalization due to background of the higher energy levels.
It can be calculated explicitly as a residue of the integrand in
the integral (26) (along a counterclockwise contour closed
through −∞) at the pole p = p1 = −1 corresponding to the
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pole u′ = u1 = −iε1/T of the characteristic function (7) that
is related to the first energy level and has an order equal
to the first energy level degeneracy g1 = 6. Its contribution
is proportional to exp(−x ′) and in the asymptotics x ′ → ∞
becomes exponentially large compared to the contributions
from the poles pk = −εk/ε1 of all higher energy levels which
go as exp[−(εk/ε1)x ′], where the decay rate εk/ε1 = 2, 3, . . .

is larger than unity for all higher energy levels.
To implement this approach, we rewrite Eq. (26) in the

equivalent form, similar to Eq. (38), using a new integration
variable z = 1 + p,

ρ
(univ)
x ′ =

∫ i∞

−i∞

ep(x ′+g1)

(1 + p)g1
exp

( ∞∑
m=2

sm − g1

m
(−p)m

)
dp

2πi

= e−x ′−g1

2πi

∫ i∞

−i∞
ef1(z) dz

zg1
, (52)

where the exponent is determined by the sum over the cubic
lattice of all dimensionless wave vectors �q = {qx, qy, qz}
with integer components qx,y,z = 0,±1,±2, . . . of all atomic
states, excluding states on the ground and first excited energy
levels (|�q| �= 0, 1), as follows:

f1(z) = z(x ′ + g1) −
∑

{�q:|�q|>1}

[
ln

(
1 − 1

q2
+ z

q2

)
+ 1 − z

q2

]
.

(53)

The exact Taylor series of the latter function is given by a
simple formula

f1(z) = s ′
0 +

∞∑
j=1

xj

j
zj , (54)

where xj = (−1)j s ′
j for j � 2 and

x1 = x ′ + g1 − s ′′
0 , (55)

s ′
0 =

∑
{�q:|�q|>1}

[
ln

(
q2

q2 − 1

)
− 1

q2

]
≡

∞∑
m=2

sm − 6

m
≈ 6.45,

(56)

s ′′
0 =

∑
{�q:|�q|>1}

1

q2(q2 − 1)
≈ 14.7, (57)

s ′
j =

∑
{�q:|�q|>1}

1

(q2 − 1)j
, j = 2, 3, 4, . . . . (58)

The constants s ′
j tend to the degeneracy of the second

energy level g2 = 12 with increasing index j , namely, s ′
2 =

22.24, s ′
3 = 14.06, s ′

4 = 12.73, s ′
5 = 12.31, . . . . The required

residue at the pole z = 0 in Eq. (52) is obviously determined
by the coefficient c−1 of the Laurent expansion of the function
exp[f1(z)]/z6 =∑l clz

l , that is, by the coefficient

α5(x ′) = 1

5!

5∑
m=0

(5,m)∑
(5; a1, . . . , a5)∗xa1

1 · · · xa5
5 (59)

in the Taylor series of exp[f1(z)] =∑∞
n=0 αnz

n. The latter was
found by means of an expansion

exp

( ∞∑
k=1

xkz
k

k

)
=

∞∑
n=0

n∑
m=0

zn

n!

(n,m)∑
(n; a1, . . . , an)∗xa1

1 . . . xan

n ,

(60)

where we used a generating function (19) for the multinomial
coefficients [52] in Eq. (20).

Thus, we find the asymptotics of the universal uncon-
strained probability distribution of the total noncondensate
occupation [see Eqs. (26) and (34)] in the critical region
at x → ∞, i.e., in the condensed phase, in the following
analytical form:

ρ(univ)
x ≈ √

s2α5(x ′)e−x ′−6+s ′
0 , x ′ = √

s2x, (61)

α5(x ′) = x5
1

5!
+ s ′

2x
3
1

12
− s ′

3x
2
1

6
+
(

s ′2
2

2
+ s ′

4

)
x1

4
− s ′

2s
′
3

6
− s ′

5

5
,

(62)

where x1 and constants s ′
0, s ′′

0 , and s ′
j are defined in Eqs. (55)–

(58). Please note that both the leading exponent and the
pre-exponential polynomial in the asymptotics (61) are found
exactly. Numerically, that asymptotics works excellently for
all x > 3.

The most striking result of the analysis of the asymptotics
of the universal unconstrained probability distribution ρ(univ)

x is
its highly pronounced asymmetry, with an incredibly fast cubic
(51) exponential decay at the left tail (noncondensed phase)
and a very slow linear (61) one at the right tail (condensed
phase). Both decays are quite different from the standard
Gaussian, quadratic exponential decay in statistical physics.

C. Outside the critical region in the condensed phase:
Asymptotics in the region of a large number of atoms

Let us consider the condensed phase of the fully developed
condensate outside the critical region in the thermodynamic
limit at very low temperatures and very large numbers of
atoms in the trap, including region N − Nc � Nc. Here the
values of the noncondensate occupation n are so large that
the universal variable (33) is larger than any finite value,
that is, x ≡ {π [ζ (3/2)]2/3/

√
s2}(n − Nc)/N2/3

v ∼ Nδ
v → ∞,

where δ > 0, including the value δ = 1/3 when n − Nc ∼
Nv → ∞ and n − Nc > Nv . In that whole region, outside the
critical region, in addition to the universal dependence on x,
the probability distribution ρ(∞)

n acquires a nonuniversal extra
dependence on the trap-size parameter Nv and on n which is
irreducible to any x dependence. We can find the asymptotics
of the noncondensate occupation probability distribution ρ(∞)

n

starting from the exact result in Eqs. (6) and (7), namely,

ρ(∞)
n = 1

2π

∫ π

−π

e−iun�(∞)(u)du

= 1

2πi

∮
|z|=1

exp
[
−∑{�q:|�q|>1} ln

(
1 − z−1

eq2ε1/T −1

)]
dz

zn+1[1 − (z − 1)/(eε1/T − 1)]6
,

(63)

and proceeding in a manner similar to the derivation of
the asymptotics (61) from Eq. (22). Here we start with the
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variable z = eiu − 1. Changing it to a new variable s =
(eε1/T − z)/(eε1/T − 1), we can rewrite the integral in Eq. (63)
in an equivalent form

ρ(∞)
n = −e

ε1
T − 1

2πieb

∮
ef̃1(s)

sg1
ds, f̃1(s) = s̃ ′

0 +
∞∑

j=1

x̃j s
j

j
,

(64)

where g1 = 6 is the degeneracy of the first energy level,

x̃j = (−1)j s̃ ′
j + (n + 1)(1 − e−ε1/T )j , (65)

s̃ ′
j =

∑
{�q:|�q|>1}

[
(eε1/T − 1)/

(
eq2ε1/T − eε1/T

)]j
, (66)

s̃ ′
0 = −

∑
{�q:|�q|>1}

[
eε1/T − 1

eq2ε1/T − 1
+ ln

(
1 − eε1/T − 1

eq2ε1/T − 1

)]
,

(67)

b = ε1

T
(n + 1) −

∑
{�q:|�q|>1}

eε1/T − 1

eq2ε1/T − 1

≡ ε1

T
(n − Nc) + g1 + ε1

T
−
(
eε1/T − 1 − ε1

T

)
Nc.

(68)

Keeping and calculating the contribution only from the
residue at the pole s = 0 related to the first energy level,
similar to Eqs. (59), (60), (19), and (20), we find the required
asymptotics with the exact analytical formulas both for the
leading exponent and for its pre-exponential polynomial:

ρ(∞)
n ≈ (eε1/T − 1)α̃5(n) exp

[
−ε1

T
(n − Nc) − 6 + s̃ ′

0

− ε1

T
+
(
eε1/T − 1 − ε1

T

)
Nc

]
, (69)

α̃5(n) = x̃5
1

5!
+ x̃2x̃

3
1

12
+ x̃3x̃

2
1

6
+
(

x̃2
2

2
+ x̃4

)
x̃1

4

+ x̃3x̃2

6
+ x̃5

5
. (70)

It is remarkable that in the thermodynamic limit inside
the critical region, when we can neglect by all small terms
of the order of ε1/T ∼ N

−2/3
v → 0 and higher orders, this

result is obviously reduced to the universal asymptotics in
Eqs. (61) and (62), since x̃1 → x ′ + 6 − s ′′

0 , x̃j → xj for
j � 2, and s̃ ′

j → s ′
j , s̃ ′

0 → s ′
0, and b → x ′ + 6. Outside the

critical region, in particular, for relatively small mesoscopic
systems, the result in Eq. (69) describes deviations from the
universal behavior due to finite-size mesoscopic effects.

D. Outside the critical region in the noncondensed phase

1. Asymptotics in the region of a small number of atoms: Poisson
distribution and corrections

Outside the critical region, when a very small number of
atoms are loaded into the trap, Nc − N ∼ Nc, and, hence,
the temperature is very high compared to the critical BEC
temperature, T − Tc ∼ Tc or T − Tc > Tc, one has a very
dilute ideal gas without condensate, but with strongly pro-
nounced finite-size and discreteness effects. These effects are
important for the quantum statistics of the noncondensate
as well as condensate fluctuations in that small number of

atoms region, where the probability distribution ρ(∞)
n no longer

follows the universal asymptotics (51) of the left tail of the
critical region, but instead has a completely different, not
self-similar structure which is attached to the end point n = 0
of the probability distribution ρ(∞)

n . As we will see, for small
enough noncondensate occupation n � 3

√
Nv it tends to the

Poisson distribution.
To reveal that structure and its asymptotics, we use the

multinomial expansion, Eq. (21). First, let us consider the
more simple case of the thermodynamic limit when the sums
Bn for n � 1 in Eq. (16) are equal to

Bn = Nv/[n3/2ζ (3/2)], Nv � 1. (71)

Then, if we introduce new, generalized multinomial coeffi-
cients and their sums over all nonnegative integers a1, . . . , an

which satisfy two conditions, a1 + a2 + · · · + an = m and
a1 + 2a2 + · · · + nan = n, as

(n; a1, a2, . . . , an)∗x = n!

1a1xa1!2a2xa2! · · · nanxan!
, (72)

K (m)
n (x) =

(m,n)∑
(n; a1, a2, . . . , an)∗x, (73)

we find the thermodynamic limit of the unconstrained proba-
bility distribution (6) as follows:

ρ(∞)
n = ρ

(∞)
n=0

n!

n∑
m=0

K (m)
n (x = 5/2)Bm

1 , Nv � 1. (74)

Some necessary properties of the coefficients K (m)
n (x) for

n > 0 are

K
(0)
n+1(x) ≡ 0, K

(1)
1 (x) = K (n)

n (x) = 1,

K
(1)
2 (x) = 21−x, K (n−1)

n (x) = n!

(n − 2)!2x
,

(75)

K (n−2)
n (x) = n!

(n − 4)!2!2x
+ n!

(n − 3)!3x
,

K (n−3)
n (x) = n!

(n − 6)!3!23x
+ n!

(n − 5)!2x3x
+ n!

(n − 4)!22x
.

A general case of arbitrary finite trap-size parameter Nv

can be considered similarly. In particular, we can find exact
analytical formulas for the unconstrained as well as actual [via
the constraint-cutoff Eq. (5), if N is also small] probabilities
to have any small number of atoms n in the noncondensate
(for n and N up to a few tens). The first six of them are given
in Eqs. (17) and (22) for ρ

(∞)
n=0 and ρ

(∞)
n=1, and the rest are below:

ρ
(∞)
n=2 = ρ

(∞)
n=0

(
B2

2
+ B2

1

2

)
,

ρ
(∞)
n=3 = ρ

(∞)
n=0

(
B3

3
+ B2B1

2
+ B3

1

3!

)
,

(76)

ρ
(∞)
n=4 = ρ

(∞)
n=0

(
B4

4
+ B3B1

3
+ B2

2

8
+ B2B

2
1

4
+ B4

1

4!

)
,

ρ
(∞)
n=5 = ρ

(∞)
n=0

(
B5

5
+ B4B1

4
+ B3B2

6
+ B2

2B1

8

+ B3B
2
1

6
+ B2B

3
1

3!2
+ B5

1

5!

)
.
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Note that the probabilities ρ(∞)
n in Eqs. (76) are written in

the form that is valid for arbitrary trap-size parameter Nv ,
not only in the thermodynamic limit. Analysis of actual,
constraint-cutoff probabilities ρn for small n and N as
functions of the trap-size parameter Nv is straightforward. In
the thermodynamic limit, they become rational functions of
only the first of the sums Bj in Eq. (16), B1 → Nv/ζ (3/2).
Namely, they have a form ρn = Rn(B1)/QN (B1), where Rn

and QN are polynomials of orders n and N , respectively,
with definite numerical coefficients which are universal.
The explicit dependence of probabilities and, hence, of all
statistical and thermodynamic quantities on the trap-size
parameter constitutes a strong finite-size effect and cannot
be cast in a form of a universal function of some self-similar
version of the variable n, contrary to the universality in the
critical region [see Eqs. (26), (27), (28), (34), and (33)].
Here we skip that analysis and proceed to the analysis of the
asymptotics for small noncondensate occupations n � 3

√
Nv .

In the latter case, the leading term in the asymptotics of ρ(∞)
n

in Eq. (21) is the one with m = n, the next order term comes
from m = n − 1, and so on. Thus, we find the asymptotics

ρ(∞)
n = ρ

(∞)
n=0

Bn
1

n!

{
1 + n!B2

(n − 2)!2B2
1

+ n!

(n − 4)!B2
1

×
[

B2
2

8B2
1

+ B3

3(n − 3)B1

]
+ n!

(n − 6)!B3
1

[
B3

2

3!8B3
1

+ B2B3

6(n − 5)B2
1

+ B4

4(n − 4)(n − 5)B1

]
+ · · ·

}
,

n �
√

Nv. (77)

The leading term in the asymptotics (77) of the nonconden-
sate occupation statistics,

ρ(P )(∞)
n = ρ

(∞)
n=0B

n
1

/
n!, (78)

is the same function of n as a well-known Poisson distribution
e−B1Bn

1 /n!, but a normalization factor is essentially different,
because the unconstrained probability distribution ρ(∞)

n is not
Poissonian at n > 3

√
Nv . The next-to-leading terms in asymp-

totics (77) describe corrections to the Poisson distribution.
Thus, we come to the general conclusion that in a very dilute
ideal gas (N � 3

√
Nc, T � Tc) in the canonical ensemble, the

noncondensate occupation statistics is Poissonian and is not
exponential, as the grand-canonical-ensemble approximation
suggests (see the next subsection for details).

Now we apply the constrain-cutoff solution in Eq. (5) to the
result in Eq. (78). That yields the cutoff Poisson distribution

ρ(P )
n = (N + 1)e−B1Bn

1

(N + 1, B1)n!
, B1 =

∑
�k �=0

e−ε�k/T , (79)

where (N + 1, B1) is an incomplete gamma function [52],
as well as the mean value and moments of the actual noncon-
densate occupation statistics in the trap with a small number
of loaded atoms, N � 3

√
Nv . The cumulative distribution

function for the cutoff Poisson distribution (79) is deter-
mined by a complementary cumulative distribution function
Q(χ2|ν) = (N + 1, B1)/(N + 1) of the χ2 distribution
[52] with ν = 2(N + 1) degrees of freedom and χ2 = 2B1,

namely,

P (P )
n =

n∑
m=0

ρ(P )
m = (N + 1)(n + 1, B1)

(N + 1, B1)(n + 1)
. (80)

Its properties are well known. All initial moments are given
by the formula

〈nm〉(P ) = ∂m[eB1(N + 1, B1)]/∂(ln B1)m

eB1(N + 1, B1)
. (81)

In particular, the mean noncondensate occupation is equal to

〈n〉(P ) = B1 − BN+1
1 e−B1

(N + 1, B1)
, (82)

and the second cumulant (variance) κ
(P )
2 = 〈n2〉(P ) − (〈n〉(P ))2

is equal to

κ
(P )
2 = B1 + (B1 − N − 1)BN+1

1

eB1(N + 1, B1)
−
[

BN+1
1

eB1(N + 1, B1)

]2

.

(83)

In the thermodynamic limit, when Nv � 1 and B1 ≈
Nv/ζ (3/2), we find the mean noncondensate occupation to
be close to the number of atoms in the trap N and the variance
to be much less than unity:

〈n〉(P ) ≈ N

(
1 − 1

B1

)
, κ

(P )
2 ≈ N

B1

(
N − 1 − N

B1

)
.

(84)

Thus, the asymptotics of the actual probability distribution
ρn of the total noncondensate occupation in the small number
of atoms region, N � 3

√
Nv , is the cutoff Poisson distribution

(79) with a very steep slope rising to the sharp peak adjacent
to the cutoff point n = N, as is shown schematically by the
curve OA′N ′ in Fig. 1.

2. Grand-canonical-ensemble approximation:
Exponential distribution.

The limit of the small number of atoms N , namely,
Nc − N � σ (∞), corresponds to a high-temperature regime
of a classical gas without condensate and is well studied in the
grand-canonical-ensemble approximation [1,2,9–11,26,27].
In that approximation, the occupations of all states, both
in the condensate, n0, and in the noncondensate, n�k , are
treated as independent stochastic variables with the probability
distributions

ρn�k = exp[−n�k(ε�k − µ)/T ]

1 − exp[−(ε�k − µ)/T ]
, (85)

and the particle-number constraint is satisfied only on average,
N = n̄0 +∑k �=0 n̄�k . This is achieved by bringing in an extra
term −µn̂�k into the Hamiltonian H =∑∞

�k=0 (ε�k − µ)n̂�k and
by choosing the chemical potential µ to satisfy the mean
particle-number constraint

∑∞
k �=0 (e(ε�k−µ)/T − 1)−1 = N . The
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chemical potential is negative, µ < 0, and is directly related to
the ground-state (ε�k=0 = 0) occupation n̄0 = (e−µ/T − 1)−1.

The condensate occupation distribution in Eq. (85), ρn0 =
eµn0/T /(1 − eµ/T ), implies a pure exponential approximation,

ρn = e−µn/T eµN/T

1 − eµ/T
, n � N, Nc − N � σ (∞),

(86)

for the related cutoff probability distribution ρn, represented by
the curve OA′N ′ in Fig. 1. Although we know from the previous
discussions that the left tail of the unconstrained probability
distribution ρ(∞)

n in Figs. 1–4 is not purely exponential [in fact,
it is exponential with the cubic exponent (51) at the left wing of
the critical region and almost Poissonian (77) near the far left
end beyond the critical region], the grand-canonical-ensemble
approximation is reasonable, because the main contribution to
the condensate statistics comes in this case from a relatively
narrow (with a width of the order of a few dispersions)
region, adjacent to the left of the point A′ in Fig. 1. It is
instructive to check explicitly how well the pure exponential
grand-canonical-ensemble approximation (86) fits the actual
Poisson asymptotics (79) of the noncondensate occupation
distribution near the cutoff point n = N . Basically, only
the exponents matter for that comparison. For the Poisson
distribution, the exponential function near the cutoff point
n = N is exp [n(ln{Nv/[Nζ (3/2)]}) + 1], which corresponds
to the following effective scaled chemical potential α(P ) =
−µ/T = 1 + ln{Nv/[Nζ (3/2)]} in Eq. (85). In the grand-
canonical-ensemble method, the value of α is determined from
the self-consistency equation (see, e.g., [27,60])

N = Nvg3/2(α)/ζ (3/2) + n̄0, (87)

where the mean condensate occupation that far from the
critical region is infinitesimal, n̄0 ≈ 0, and the Bose function
or polylogarithm [59,61]

gm(α) ≡ Lim(e−α) = 1

(m)

∫ ∞

0

tm−1dt

et+α − 1
=

∞∑
j=1

e−αj

jm

(88)

can be approximated by its asymptotics e−α for α � 1. Hence,
the grand-canonical-ensemble method yields the exponent
α(GC) = −µ/T = ln{Nv/[Nζ (3/2)]} which, indeed, makes
only a relatively small difference with the Poisson value,
(α(P ) − α(GC)) � α(P ).

Obviously, the smaller the interval of the allowed noncon-
densate occupations [0, N], i.e., the smaller the number of
atoms in the trap, the better is the grand-canonical-ensemble
approximation in Eq. (86). Besides, all calculations, utilizing
the pure exponential distribution in Eq. (86), are elementary
[2,11].

The result is the explicit asymptotics for the average
condensate occupation and central moments and cumulants
of the total noncondensate occupation as well as for the
thermodynamic quantities, which are discussed below in
Secs. VI and VII and XII–XIV. The agreement with the
exact numerical simulations in the region of application of
this approximation, Nc − N � σ (∞), is very good. However,
of course, in the whole critical region, |Nc − N | � 2σ (∞), and

for the region of the well-developed BEC, N − Nc � 2σ (∞),
the grand-canonical-ensemble approximation fails.

V. UNIVERSAL CONSTRAINT-CUTOFF MECHANISM OF
STRONGLY NON-GAUSSIAN BEC FLUCTUATIONS

A. Cutoff distribution: Origin of nonanalyticity and strong
non-Gaussian effects in critical fluctuations

Let us apply now the remarkable universality and general
constraint-cutoff approach to the analysis of various effects of
the BEC in mesoscopic systems with a finite number of atoms
in the trap in the critical region as well as below and above the
critical region. To this end, we have to introduce a finite number
of atoms N ∼ Nc, N < Nc, and N > Nc, respectively, and to
perform a cutoff of the probability distribution ρ(∞)

n dictated
by the particle-number constraint as formulated in Eq. (5) in
Sec. II. An immediate result is that the actual cutoff probability
distribution (OAN or OA′N ′ in Fig. 1) is strongly asymmetric
and peculiar to all N < Nc and N ∼ Nc, including the critical
region. In terms of the Landau function [29,47], − ln ρn, this
result means that even without any interatomic interaction
in the gas, the constraint nonlinearity, which originates from
the many-body Fock space cutoff in the canonical ensemble,
produces the infinite potential wall at n = N in the effective
fluctuation Hamiltonian and makes it highly asymmetric.
We find that the outlined constraint-cutoff mechanism is
responsible for all unusual critical phenomena of the BEC
phase transition in the ideal gas and, in particular, makes the
BEC statistics strongly non-Gaussian. In the deeply condensed
region, N − Nc � σ (∞), the non-Gaussian behavior is less
pronounced but remains finite even in the thermodynamic limit
because of the above-discussed non-Gaussian asymmetric tails
found in [44,45].

B. Cutoff distribution as the exact solution to the recursion
relation: Rigorous proof

There is another way to prove that the exact solution for
the noncondensate occupation probability distribution is the
constraint-cutoff distribution (5). Namely, we can directly
prove that (5) is the solution to the well-known exact recursion
relation [13,25,30,32,33,54–58]

Zn(T ) = 1

n

n∑
p=1

Z1(T/p)Zn−p(T ) (89)

for the cumulative distribution function multiplied by a factor
that is independent of n, i.e.,

Zn(T ) =
n∑

m=0

ρ(∞)
m

/
ρ

(∞)
n=0. (90)

In the recursion relation (89), it is assumed that the lower-order
functions Zn(T ), n = −1, 0, 1, are

Z1(T/p) = 1 + Bp, Z0(T ) = 1, Z−1(T ) = 0, (91)

where Bp is defined in Eq. (16).
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We start the proof with the calculation of function (90) for
distribution (5) using Eq. (18) as follows:

Zn(T ) =
{

1

n!

dn

dzn
exp

(
n∑

i=1

Biz
i

i

)

+
n−1∑
m=0

1

m!

[
dm

dzm
exp

(
n−1∑
i=1

Biz
i/i

)]
eBnz

n/n

}
z=0

.

(92)

The second term in Eq. (92) is equal to Zn−1(T ), while the
first term is equal to

1

n!

⎡
⎣ d (n−1)

dz(n−1)

⎛
⎝ n∑

p=1

Bpzp−1

⎞
⎠ e

∑n
i=1 Biz

i/i

⎤
⎦

z=0

=
n∑

p=1

Bp

n(n − p)!

[
dn−p

dzn−p
e
∑∞

i=1 Biz
i/i

]
z=0

=
n∑

p=1

Bpρ(∞)
n

nρ
(∞)
n=0

,

(93)

where we used a well-known formula for the nth
derivative of a product of two functions, dn(fg)/dzn =∑n

m=0 Cm
n f (m)g(n−m), and Eq. (18).

Then, using definition (90) for the right side of Eq. (93) and
combining both terms in Eq. (92), we find that function (90)
for distribution (5) satisfies the recursive relation

Zn(T ) = Zn−1(T ) + 1

n

n∑
p=1

Bp[Zn−p(T ) − Zn−p−1(T )]

= Zn−1 +
n∑

p=1

1 + Bp

n
[Zn−p − Zn−p−1] − Zn−1

n
.

(94)

It can be rewritten in the form fn = fn−1, where fn =
nZn −∑n

p=1 (1 + Bp)Zn−p, which means that the quantity
fn is independent of the n constant. Moreover, the latter
constant is equal to zero, fn = 0, since for n = 1 one has
f1 = Z1 − (1 + B1)Z0 = 0 because of definition (91).

Thus, we find that the normalized cumulative distribution
function (90) for the constraint-cutoff distribution (5) satis-
fies the recursion relation nZn(T ) =∑n

p=1 (1 + Bp)Zn−p(T ),
which is precisely the same as the renowned recursion relation
(89). That completes the proof.

VI. UNIVERSAL SCALING AND STRUCTURE OF THE
BEC ORDER PARAMETER

In accord with the constraint-cutoff mechanism, depicted in
Fig. 1, the mean noncondensate occupation n̄ almost linearly
follows the cutoff value N of the number of atoms loaded
in the trap until its value n̄ saturates at the critical level Nc,
when N passes through the critical value Nc by an amount of
about 2σ (∞) (Fig. 5). The complementary mean condensate
occupation n̄0, i.e., the BEC order parameter, has a similar
but upside-down pattern that, with an increase of trap-size
parameter Nv , becomes a degenerate straight-line angle OCB,
which represents the BEC behavior before and after the phase
transition as it is approximated by the standard Landau mean-

FIG. 5. The mean occupations of the noncondensate, n̄/Nc, and
the condensate, n̄0/Nc, as the functions of the number of atoms,
N/Nc, loaded in the trap; all quantities are normalized by the critical
number of atoms Nc from Eq. (23): Nv = 102 (dotted line), Nv = 103

(dashed line), and Nv = 104 (solid line).

field theory in the thermodynamic limit. From this point of
view, a universal fine structure of the critical region in the
BEC phase transition is missing.

To unveil and resolve the universal scaling and structure of
the BEC order parameter near a critical point, we divide both
the function and the argument by the dispersion of the BEC
fluctuations σ (∞), Eq. (30), and calculate a scaled condensate
occupation n̄′

0 = n̄0/σ
(∞) as a function of a scaled deviation

from the critical point

η = (N − Nc)/σ (∞). (95)

We find that with an increase of the trap-size parameter Nv

the function n̄′
0(η) quickly converges to a universal regular

function

F0(η) = η −
∫ η

−∞
xρ(univ)

x dx

/∫ η

−∞
ρ(univ)

x dx, (96)

which describes the universal structure of the BEC order
parameter in the critical region in the thermodynamic limit
Nv → ∞, as shown in Figs. 6 and 7. The above explicit
formula for the universal function F0(η) immediately follows
from the formula for the exact, cutoff probability distribution
(5) (see Secs. II and V) and from the universal probability

B

C
A

3 2 1 1 2 3 η

0.5

1.0

1.5

2.0

2.5

3.0

F0

FIG. 6. Universal function F0(η), Eq. (96), of the scaled BEC
order parameter n̄′

0 = n̄0/σ
(∞) as a function of η = (N − Nc)/σ (∞)

in the critical region. The angle ACB represents the prediction of the
standard Landau mean-field theory.
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FIG. 7. The structure of the scaled BEC order parameter n̄′
0 =

n̄0/σ
(∞) as a function of η = (N − Nc)/σ (∞) in the critical region:

the solid line is the function n̄′
0(η) for the mesoscopic system with the

trap-size parameter Nv = 104; dashed line for Nv = 103; dotted line
for Nv = 102. The dashed-dotted line is the simple fit, Eq. (99), of
the universal function F0(η), Eq. (96). The long-dashed line represents
the result within the grand-canonical-ensemble approximation in
Eq. (86) for Nv = 102. Angle ACB represents the prediction of the
standard Landau mean-field theory.

distribution (26), or (34), analyzed in detail in Sec. IV. The
cumulative distribution function

P (univ)
η =

∫ η

−∞
ρ(univ)

x dx, (97)

which is required for proper normalization of the cutoff prob-
ability distribution and, hence, is present in the denominator
in Eq. (96), determines the universal Gibbs free energy and is
analyzed in Sec. XII (see Fig. 12).

The exact analytical result in Eq. (96) for the universal
structure of the BEC order parameter in the critical region
can be easily written in terms of the polynomial, exponential,
Kummer’s confluent hypergeometric, and parabolic cylinder
functions if we use the explicit formulas for ρ(univ)

x in Eqs. (35)
and (36) for the central part of the critical region and
in Eqs. (51) and (61) for the left (condensed) and right
(noncondensed) wings of the critical region to calculate an
explicit integral in Eq. (96). We skip these straightforward
expressions in order to not overload the paper with formulas.
The universal function of the BEC order parameter F0(η) is
depicted in Fig. 6 and is truly universal, since it contains no free
or any physical parameters of the system at all and involves
only pure mathematical numbers π and sm defined in Eq. (29).

The result (96) is very different from the prediction of the
Landau mean-field theory shown by the broken line ACB in
Fig. 7. We can immediately conclude that even for the small
mesoscopic systems with Nv ∼ 102 the difference between the
universal order-parameter and the mesoscopic order-parameter
functions is relatively small, |F0(η)σ (∞) − n̄0(η)| � n̄0(η).
This statement is true everywhere except at the very beginning
of the curve n̄0(η), where the system is not mesoscopic
anymore since there are only a few atoms in the trap N < 10.
Obviously, the number of atoms in the condensate should
become exactly zero, n̄0 = 0, at the end point N = 0, i.e., at

η0(Nv) = −Nc/σ
(∞) ∼ −N1/3

v , (98)

where there are no atoms in the trap, as is seen in Fig. 6 at η0 =
−5.1 for Nv = 102. At the critical point, where the number of
atoms in the trap is critical, N = Nc, we find that the order
parameter just reaches a level of fluctuations, n̄0 ≈ 0.77σ (∞).

We find an elementary fit for the universal function in
Eq. (96) that is good in the critical region at |η| < 5 with
an accuracy on the order of a few percent as shown in Fig. 7.
That fit involves only the elementary functions if we consider
an inverse function η = g0(y), where y = n̄0/(21/2σ (∞)) is a
scaled condensate occupation. Namely, the fit is

η = g0(y) ≈ 21/2

(
1 − e−5y/3

y3/2

)
y. (99)

A small difference between the universal and actual order-
parameter curves for the finite mesoscopic system with the
trap-size parameter Nv = 104 is even hardly seen in Fig. 7.

The standard Landau mean-field theory does not resolve
the smooth, regular universal structure in Figs. 5–7.

We stress again that the well-known grand-canonical-
ensemble approximation fails [2,11] in the whole critical
region, |Nc − N | � 2σ (∞), and in the region of the well-
developed BEC, N − Nc � 2σ (∞). It is valid only in the
limit of the small number of atoms, Nc − N � σ (∞), which
corresponds to a high-temperature regime of a classical gas
without condensate, as it was discussed in Sec. IV. The main
excuse for the grand-canonical-ensemble approximation is the
simplicity of all its calculations utilizing the pure exponential
distribution in Eq. (86). The result is the explicit asymptotics
for the average condensate occupation, n̄0, which is depicted
in Fig. 7 by the long-dashed lines for the mesoscopic system
with the trap-size parameter Nv = 102. An agreement with
the exact numerical simulations is very good only far from
the critical point, namely, in the region of application of this
approximation, Nc − N � σ (∞).

VII. UNIVERSAL SCALING AND STRUCTURE OF ALL
HIGHER-ORDER CUMULANTS AND MOMENTS

OF THE BEC FLUCTUATIONS

As a direct consequence of the universality of the non-
condensate occupation probability distribution formulated in
Sec. IV, we find that all higher-order moments and cumulants
of the BEC fluctuations also have universal scaling and a
smooth nontrivial structure. The analysis is similar to the one
developed in Sec. VI for the order parameter and is based on the
calculation of the scaled central moments µ′

m = µm/(σ (∞))m

and scaled cumulants κ ′
m = κm/(σ (∞))m as functions of the

scaled deviation from the critical point, η = (N − Nc)/σ (∞).
We find that with an increase of the trap-size parameter Nv the
functions µ′

m(η) and κ ′
m(η) quickly converge to the universal

functions

Mm(η) =
∫ η

−∞
(x − x̄)mρ(univ)

x dx

/∫ η

−∞
ρ(univ)

x dx, (100)

and

Cm(η) =
m∑

r=1

(r − 1)!

(−1)r−1

(m,r)∑
(m; a1, . . . , am)′α′a1

1 · · ·α′am

m ,

(101)

respectively, where we used Eqs. (8) and (9) and the universal
initial moments

α′
m =

∫ η

−∞
xmρ(univ)

x dx

/∫ η

−∞
ρ(univ)

x dx, x̄ = α′
1. (102)
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They describe the universal structure of the BEC critical
fluctuations in the thermodynamic limit, Nv → ∞, as shown
in Figs. 8 and 9 for the second, third, and fourth moments
and cumulants of the noncondensate occupation. The above
explicit formulas for these universal functions immediately
follow from the exact formulas in Eqs. (5) and (26), or
(34), similar to the derivation of Eq. (96). The functions
Mm(η) and Cm(η) do not involve any physical parameters
of the system and, therefore, are truly universal. They are
depicted separately in Fig. 8 (for m = 2, 3, 4), since these
thermodynamic-limit functions practically coincide with the
corresponding functions for the mesoscopic system with
the trap-size parameter Nv = 104. Corresponding central
moments and cumulants for the mesoscopic systems with
different finite values of the trap-size parameter are depicted
in Fig. 9. The universal behavior is clearly observed starting
from very small mesoscopic systems with a typical number of
atoms Nv ∼ 10–100.

An essential deviation from the universal curves takes place
only at the very beginning of each curve near the end point
(98), η0, where the number of atoms in the trap is zero and,
hence, all fluctuations µ′

m(η) and κ ′
m(η) should be exactly zero,

as is seen in Fig. 7 at η0 ≈ −5.1 for Nv = 102. In this limit,
the system loses its mesoscopic status and can be studied
quantum mechanically as a microscopic system of a few atoms
N = 1, 2, 3, . . . .

Qualitatively, the behavior of the moments and cumulants,
depicted in Figs. 8 and 9, can be immediately predicted on
the basis of the constraint-cutoff mechanism using Fig. 1. The
variance µ2 ≡ κ2 has to grow monotonically with increasing
N and to have a maximum derivative at N ≈ Nc because the
width of the cutoff probability distribution OAN increases
when the cutoff boundary AN moves to the right, and the
maximum width’s derivative is achieved at the center of the
critical region. That behavior, indeed, is found in the universal
function M2(η) and in our numerical simulations depicted in
Figs. 8(a) and 9(a), respectively.

The third central moment, or the third cumulant, µ3 ≡
κ3 = 〈(n − n̄)3〉, is the main characteristic of an asymmetry
of the probability distribution relative to the mean value n̄.
For small enough numbers of atoms in the trap N , when the
probability distribution has a strongly asymmetric “curved-
triangle” shape OA′N ′ in Fig. 1, the value of the asymmetry
µ3 is negative due to a large contribution from the left tail
and increases in magnitude with increasing N until some
maximum-in-magnitude negative value is reached. When the
number of atoms N enters the central part of the critical region,
the absolute value of the asymmetry |µ3| decreases and after
passing through the critical point N = Nc approaches zero,
since the shape of the cutoff probability distribution OAN
in Fig. 1 becomes more and more symmetric. Finally, the
asymmetry coefficient µ′

3 = µ3/(σ (∞))3 changes the sign and
tends to a finite positive value µ

′(∞)
3 = 0.41, 0.32, 0.29 for the

values Nv = 102, 103, 104, respectively, which is a character-
istic feature of the unconstrained probability distribution ρ(∞)

n

due to a large positive contribution of the fat and wide right
tail, discussed in Sec. IV and Figs. 3 and 4. The predicted
behavior of the asymmetry µ3 = κ3 is precisely revealed in
the universal function M3(η) = C3(η) and in the simulations
presented in Figs. 8(b) and 9(b), respectively.

a

3 2 1 1 2 3 4 η
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b

2 2 4 η
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c

2 2 4 6 η
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FIG. 8. Universal functions Mm(η), Eq. (100), and Cm(η),
Eq. (101), of the scaled central moments and cumulants (a) µ′

2 ≡
κ ′

2 = µ2/(σ (∞))2, (b) µ′
3 ≡ κ ′

3 = µ3/(σ (∞))3, (c) µ′
4 = µ4/(σ (∞))4,

and (d) κ ′
4 ≡ µ′

4 − 3(µ′
2)2 of the total noncondensate occupation in

the critical region as functions of η = (N − Nc)/σ (∞).

033615-16



ANALYTICAL THEORY OF MESOSCOPIC BOSE-EINSTEIN . . . PHYSICAL REVIEW A 81, 033615 (2010)

(a) (b)

(c) (d)

FIG. 9. Scaled central moments and cumulants (a) µ′
2 ≡ κ ′

2 =
µ2/(σ (∞))2, (b) µ′

3 ≡ κ ′
3 = µ3/(σ (∞))3, (c) µ′

4 = µ4/(σ (∞))4, and
(d) κ ′

4 ≡ µ′
4 − 3(µ′

2)2 of the total noncondensate occupation in the
critical region calculated as functions of η = (N − Nc)/σ (∞) for the
mesoscopic system with the trap-size parameter Nv = 102 (dotted
line), Nv = 103 (dashed line), and Nv = 104 (solid line). The long-
dashed line represents the result within the grand-canonical-ensemble
approximation in Eq. (86) for Nv = 102.

In a similar way, one can explain the behaviors depicted
in Figs. 8(c), 8(d), 9(c), and 9(d) of the fourth moment µ4

and the fourth cumulant, the excess κ4. The latter, in general,
characterizes a positive excess (if κ4 > 0) or a deficit (if
κ4 < 0) of the flatness of the “plateau” of the probability
distribution relative to the flatness of the plateau of the
Gaussian distribution. Again, one has to take into account
that the unconstrained probability distribution ρ(∞)

n , according
to Figs. 3 and 4, is more flat than the Gaussian distribution;
that is, it has a positive excess coefficient κ

′(∞)
4 ≈ 0.29, 0.22,

and 0.19 for the values Nv = 102, 103, and 104, respectively.
Again, as is shown in Fig. 8, the grand-canonical-ensemble

approximation is valid only in the limit of the small number
of atoms, Nc − N � σ (∞), that is, in the high-temperature
regime of a classical gas without condensate as discussed in
Secs. IV and VI.

The other limit, opposite to the high-temperature case,
is the limit when the number of atoms is large, N − Nc �
2σ (∞). It corresponds to a low-temperature regime of the
fully developed condensate. In this limit, the cutoff part
of the probability distribution in Fig. 1 contains only an
unimportant end piece of the right tail. Thus, the mean value
as well as all moments and cumulants of the noncondensate
occupation tend to the constants, which are precisely their
unconstrained values analytically calculated in [44,45]. In
particular, the limiting values of the scaled cumulants are
equal to κ ′(∞)

m = κ̃ (∞)
m /(σ (∞))m = (m − 1)!sm/s

m/2
2 so that the

asymmetry and excess coefficients tend to µ
′(∞)
3 = 2s3/s

3/2
2 ≈

0.25 and κ
′(∞)
4 = 6s4/s

2
2 ≈ 0.15, respectively. We find that this

is indeed true, as is clearly seen in Figs. 5–9.

It is a straightforward exercise to write down explicit
formulas for the universal functions F0(η),Mm(η), and Cm(η)
of the order parameter, central moments, and cumulants as
the simple integrals in Eqs. (96), (100), and (101) via the
universal unconstrained probability distribution ρ(univ)

x given
by the explicit analytical formulas in Eqs. (35) and (36) (the
central part of the critical region) and in Eqs. (51) and (61)
(asymptotics of the left and right wings of the critical region).
These formulas will be presented elsewhere.

VIII. EXACTLY SOLVABLE CUTOFF GAUSSIAN MODEL
OF BEC STATISTICS

In the critical region, the universal scaling and structure of
the BEC statistics found in Secs. IV–VII can be qualitatively
explained within a pure Gaussian model for the unconstrained
probability distribution of the total noncondensate occupation
n ∈ [0,∞),

ρ(∞)
n = exp

[
− (n − Nc)2

2σ 2

]/ ∞∑
m=0

exp

[
− (m − Nc)2

2σ 2

]
.

(103)

It is depicted in Figs. 3 and 4. That model corresponds to a
degenerate interacting gas of N trapped atoms with a very
degenerate interaction between the excited atoms in the non-
condensate and the ground-state (ε�k=0 = 0), condensed atoms,
described by the Hamiltonian H = (

∑
�k �=0 n̂�k − Nc)2T/(2σ 2)

and the equilibrium density matrix in Eq. (3).
The two parameters of the model, σ and Nc, correspond,

respectively, to the dispersion σ (∞) and the critical number of
atoms Nc used for the ideal gas in the box in the previous
sections. To compare the results for the Gaussian model with
the results for the ideal gas in the box, we assume, following
Eqs. (30) and (31), that σ = σ (∞) ≈ (s1/2

2 /π )[Nv/ζ (3/2)]2/3,
where Nv depends on Nc in accord with Eq. (23).

The mean value and all moments and cumulants of the
noncondensate occupation within the Gaussian model can be
calculated exactly. We find their universal structures in the
thermodynamic limit, Nc → ∞, in terms of the error function
erf(x) and the related special functions, since the probability
distribution of the scaled variable x = (n − Nc)/σ becomes a
standard continuous unrestricted Gaussian distribution

ρ(Gauss)(∞)
x = exp(−x2/2)√

2π
, x ∈ (−∞,∞), (104)

and a continuous approximation of the discrete sums by the
integrals is applied. For simplicity, we extend an allowable
interval of the variable x until −∞ since the negative
values n < 0, i.e., x < −Nc/σ , make an exponentially small
contribution in the only interesting, for us, case of relatively
large critical number of atoms Nc � σ . All cumulants of the
unconstrained Gaussian distribution ρ(∞)

x are zero, except the
variance κ

′(∞)
2 = µ

′(∞)
2 = 1, that is, κ ′(∞)

m = 0 for m �= 2.
However, the actual physical system of N atoms in the trap

is described by the constraint-cutoff probability distribution

ρ(Gauss)
x = exp(−x2/2)θ (η − x)∫ η

−∞ exp(−x2/2)dx
, η = N − Nc

σ
, (105)

033615-17



VITALY V. KOCHAROVSKY AND VLADIMIR V. KOCHAROVSKY PHYSICAL REVIEW A 81, 033615 (2010)

as discussed in Sec. II and Fig. 1. This actual distribution, in
the general case, is essentially non-Gaussian and, hence, all
cumulants are nonzero, κ ′(∞)

m �= 0 for m � 2. Nevertheless, to
find the mean value and all moments is easy, in particular,

x̄ = −
(

2

π

)1/2 exp(−η2/2)

1 + erf(η/21/2)
. (106)

Thus, the universal structure of the order parameter n̄0 = N −
n̄ in the Gaussian model is given by the analytical formula

n̄0

σ
= η +

(
2

π

)1/2 exp(−η2/2)

1 + erf(η/21/2)
. (107)

Following a tradition of the previous sections, we skip all
elementary derivations and proceed to the results.

In the whole critical region, the result for the universal
structure of the scaled order parameter n̄′

0(η) = n̄0/σ
(∞) in

the Gaussian model, given by the exact analytical solution in
Eq. (107), is very close to the universal structure of the order
parameter in the ideal gas in the box.

Comparison of the universal structures of the higher-order
moments and cumulants (the variance κ2, the asymmetry
κ3, and the excess κ4) of the Gaussian model with the
corresponding functions of the ideal gas in the box proves
that in the whole critical region they have qualitatively similar
structures, which are governed by the universal constraint-
cutoff mechanism, as explained in Secs. IV and VII. Of
course, the details of these structures, especially far from the
critical region, are different since the tails of the unconstrained
probability distribution ρ(∞)

n in the ideal gas are essentially
non-Gaussian and asymmetric. The latter fact is the reason
why all cumulants κm, except the variance κ2, vanish in the
deeply condensed region, N → ∞, in the Gaussian model and
remain finite, even in the thermodynamic limit, in the ideal gas
in the box.

A remarkable general conclusion is that in the whole
critical region, all cumulants are essentially nonzero (i.e., the
BEC statistics is essentially non-Gaussian) for the mesoscopic
systems of any size as well as for the macroscopic systems in
the thermodynamic limit, both for the pure Gaussian model
and for the ideal gas in the trap.

IX. EXACTLY SOLVABLE TWO-LEVEL TRAP
MODEL OF BEC

Let us consider the BEC of N atoms in a trap with
just two energy levels, the ground level ε0 = 0 and one
excited level ε > 0, but allow the excited level to contain
an arbitrary number g � 1 of degenerate states. Our idea
behind this model is to isolate and study a contribution of
a subset of closely spaced one-particle energy levels in the
trap to the BEC phenomenon. It is similar to modeling an
inhomogeneously broadened optical transition in quantum
optics by homogeneously broadened two-level atoms.

A. Exact discrete statistics: Cutoff negative binomial
distribution

We can easily find the unconstrained probability distribu-
tion and characteristic function of the total noncondensate

occupation as a superposition of g identical random variables,

ρ(2)(∞)
n = (g − 1 + n)!

n!(g − 1)!
(1 − q)gqn,

(108)

�(2)(∞)(u) =
(

1 − q

1 − zq

)g

, z = eiu, q = e−ε/T .

It is a well-known negative binomial distribution [52] which
has the following generating cumulants κ̃ (2)(∞)

m = g[q/(1 −
q)]m(m − 1)!. Its cumulative probability distribution

P
(2)(∞)
N =

N∑
n=0

ρ(2)(∞)
n ≡ 〈θ (N − n)〉(2)(∞) = I1−q(g,N + 1)

(109)

is given by the incomplete β function and yields, via Eq. (5), the
explicit formulas for the cutoff negative binomial distribution
as well as its characteristic function and cumulants:

ρ(2)
n = (n + g)(1 − q)gqn

(g)(n + 1)I1−q(g,N + 1)
, (110)

�(2) =
(

1 − q

1 − zq

)g
I1−zq (g,N + 1)

I1−q(g,N + 1)
, (111)

κ̃
(2)
m+1

qm+1
= dm

dqm

κ̃
(2)
1

q
, κ̃

(2)
1 = gq

1 − q
− Q, (112)

κ
(2)
2 = gq

(1 − q)2
+
[

g − 1

1 − q
− N − g − Q

]
Q, (113)

Q = (1 − q)g−1qN+1

B(g,N + 1)I1−q (g,N + 1)
, (114)

where κ̃
(2)
1 ≡ n̄ is a mean number of noncondensed atoms,

B(a, b) = (a)(b)/(a + b) is the beta function, (a) is
the gamma function.

B. Continuous approximation: Cutoff gamma distribution

The most interesting is the case when the energy difference
between levels in the trap is less than the temperature,
ε � T . The latter implies that 1 − q � 1 and Nc ≡ κ̃

(2)(∞)
1 =

gq/(1 − q) � g, that is, the critical number of atoms Nc for
distribution (108) is much larger than the number of levels g.
In that case, in the whole interesting for BEC region n � g,
N � g, we can neglect by the discreteness of the random
variable n and replace the discrete distribution (108) with a
continuous gamma distribution

ρ()(∞)
n = ε [ε(n + g − 1)/T ]g−1

T (g) exp [ε(n + g − 1)/T ]
, (115)

�()(∞) ≡
∫ ∞

1−g

eitnρ()(∞)
n dn = e−i(g−1)t

(
1 − itT

ε

)−g

,

(116)

for which the mean value 〈n〉()(∞) = gT /ε − g + 1 and all
cumulants of orders m � 2, κ ()(∞)

m = g[T/ε]m(m − 1)!, are
equal to the corresponding generating cumulants of distribu-
tion (108). We derive Eq. (115) from Eq. (108) using the
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Stirling formula n! ≈ √
2πnn+1/2e−n and an approximation√

(n + g − 1)/n ≈ 1. The cumulative distribution function of
distribution (115)

P ()(∞)
η ≡ 〈θ (N − n)〉()(∞) = γ (g, (N + g − 1)ε/T )/(g)

(117)

[see Eq. (95)] is given by the incomplete gamma function
γ (a, x) = ∫ x

0 ta−1e−t dt and yields the explicit formulas for the
probability density function of the cutoff gamma distribution
and all its initial moments (m = 1, 2, . . .)

ρ()
n = εE

g−1
n e−En

T γ (g,EN )
, En = ε(n + g − 1)

T
, (118)

〈(n + g − 1)m〉() =
(

T

ε

)m
γ (g + m,EN )

γ (g,EN )
. (119)

The cutoff gamma distribution (118) approximates the
discrete distribution (110) so well that any differences between
the two distributions as well as between their cumulants cannot
be even seen in the whole critical region. (Of course, the
properly renormalized function ρ()(∞)

n

∫∞
0 ρ(∞)

n dn ≈ qρ()(∞)
n

should be compared against ρ(∞)
n , not the function ρ()(∞)

n

itself.)

C. Two-level trap model with shifted average:
Pirson distribution of the III type

The two-level trap model can be nicely generalized by an
overall shift of the variable n. Thus, instead of the gamma
distribution (115) we arrive at a model described by the Pirson
distribution of the III type

ρ(Ps)(∞)
n = ε [ε(n − �n)/T ]g−1

T (g) exp [ε(n − �n)/T ]
, n ∈ [�n,∞),

(120)

where we have one more free parameter �n to model an
actual trap. Cumulants, moments, characteristic function, and
all corresponding cutoff quantities for model (120) are the
same as for the gamma distribution with only one modification,
namely, a plain shift of the variable n and its mean value n̄ by
the amount �n + g − 1.

D. Modeling BEC in an actual trap

BEC statistics in an actual trap is essentially the constraint-
cutoff statistics of a sum of the populations of all excited states
with an inhomogeneously broadened spectrum of energies ε�k
ranging from the first level ε1 through all levels up to the
energies ∼T . We can describe it analytically by using the exact
solution for the two-level trap as a building block. In fact, we
need just to find the unconstrained distribution of the total
noncondensate occupation, that is, the sum of the independent
random occupations of the excited states, and then to cut it off
as explained in Sec. II. There are different ways to implement
this program.

First of all, we can model the whole energy spectrum
of a trap ε�k by means of just one effective energy level
ε with the degeneracy g and choose the two parameters
ε and g in Eq. (108) to ensure we match the first two
cumulants of the model with their corresponding values in

the actual trap, κ
(∞)
1 ≡ κ̃

(∞)
1 = Nc and κ

(∞)
2 ≡ κ̃

(∞)
2 + κ̃

(∞)
1 =

σ (∞)2. According to the negative binomial distribution (108),
we find g = N2

c /(σ (∞)2 − Nc) and q = 1 − Nc/σ
(∞)2, that

is, ε/T = g/Nc if ε � T . The result is given by the cutoff
negative binomial distribution (110) and exactly coincides
with the well-known quasithermal ansatz which we suggested
in [49]. Thus, the quasithermal ansatz is not only a good guess
anymore, but a rigorously justified effective two-level trap
model of BEC statistics.

This fact explains why the quasithermal ansatz was so
successful and close to the BEC statistics in the actual
mesoscopic traps for the low-order moments and, at the same
time, reveals its main drawback. Namely, in the thermody-
namic limit, Nv → ∞, for the box trap, one has g ≈ cN

2/3
v

and ε/T ≈ c/N
1/3
v � ε1/T = π [ζ (3/2)/Nv]2/3, where c =

π2[ζ (3/2)]4/3/s2 ≈ 2.15. So, all higher-order cumulants in
Eq. (13) κ̃m ≈ (m − 1)!6(eε1/T − 1)−m, m � 3, which are
dominated in the box trap by the most long-wavelength six-fold
degenerate first excited state with the energy ε1 and wave
number k1 = 2π/L, are modeled incorrectly. That means that
the quasithermal ansatz does not describe the long-ranged
correlations and anomalies in the BEC statistics [2] in the
deep condensed regime (N � Nc) and, in particular, predicts
vanishing non-Gaussian coefficients

κ̃ (∞)
m

/
κ̃

(∞)m/2
2 = (m − 1)!/gm/2−1 ∝ N−(m+2)/3

v → 0.

The distribution (108) for the effective two-level trap tends
to the pure Gaussian distribution (103) with increasing trap
parameter Nv and does not coincide with the one for the
actual box trap. In the actual box trap, all non-Gaussian
coefficients remain nonzero and do not depend on Nv in
the thermodynamic limit: κ̃ (∞)

m /κ̃
(∞)m/2
2 = (m − 1)!/6m/2−1.

Thus, the above-formulated choice for the parameters of the
effective two-level trap model and, hence, the quasithermal
ansatz [49] fail to give correct higher-order cumulants in
the condensed phase outside the critical region. However, in
the critical region, which is the most interesting for us, this
effective two-level trap model yields all cumulants and all
universal, strongly non-Gaussian functions of the constraint-
cutoff BEC statistics [48] qualitatively right, namely, similar
to the cutoff Gaussian model (105).

To describe correctly all higher-order cumulants, one has
to take into account exactly a dominant contribution from the
lowest energy level. For the box trap, it could be done by setting
ε = ε1 and g = g1 = 6 in the two-level trap model since the
lowest level is six-fold degenerate. However, that model would
not give the correct values for the most important lower-order
cumulants κ1, κ2, and κ3 which have large contributions from
the higher energy levels. Introduction of the additional shift �n

in the model (120) would not help much, except for correcting
the mean value.

Nevertheless, the modeling of the actual trap with the
two-level trap solution can be essentially improved if we use
another choice of the free parameters of the model (120).
Namely, let us match exactly the first three cumulants for the
unconstrained noncondensate occupation,

Nc = �n + gT /ε, κ
(∞)
2 = g(T/ε)2, κ

(∞)
3 = 2g(T/ε)3,

(121)
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and leave whatever mismatch remains for all other higher-order
cumulants. Solution of Eq. (121) for the model parameters is
straightforward:

�n = Nc − 2σ (∞)4

κ
(∞)
3

,
ε

T
= 2σ (∞)2

κ
(∞)
3

, g = 4σ (∞)6

κ
(∞)2
3

,

(122)

where κ
(∞)
3 = κ̃

(∞)
3 + 3σ (∞)2 − 2Nc. Thus, for the scaled

noncondensate occupation x = (n − Nc)/σ (∞) the Pirson dis-
tribution of the III type yields

ρ(Ps)(∞)
x = gg/2

(g)
(x + √

g)g−1e−(x+√
g)

√
g (123)

for x ∈ [−√
g,∞) and ρ(Ps)(∞)

x = 0 for x < −√
g. The univer-

sal unconstrained probability distribution ρ(Ps)(univ)
x is given by

the same formula (123) if one uses the thermodynamic-limit
value of the effective degeneracy of the excited energy level
in the two-level trap model (122), that is, g = s3

2/s
2
3 ≈ 64. It

is immediate to find also corresponding to it the cumulative
distribution function [see Eq. (117)]

P (Ps)(univ)
η =

∫ η

−√
g

ρ(Ps)(univ)
x dx = γ (g, (η + √

g)
√

g)

(g)
.

(124)

The result in Eq. (123) is quite remarkable in two respects.
First of all, it is extremely simple for it involves only
elementary functions. Second, it works reasonably well in
the most nontrivial, central part of the critical region (for
−2 < x < 4) and exactly matches the asymmetry cumulant
κ

(∞)
3 .

X. EXACTLY SOLVABLE THREE-LEVEL TRAP MODEL
OF BEC: CONFLUENT HYPERGEOMETRIC

DISTRIBUTION

A natural way to get a more accurate approximation is to
adopt a three-level trap model where the total noncondensate
occupation is a sum of occupations of two excited levels: ε1 and
ε2 with degeneracies g1 and g2, respectively, so that n = n1 +
n2. The unconstrained distribution ρ(3)(∞)

n for that three-level
trap model is just a probability distribution of a superposition
of two independent stochastic variables of the two-level trap
models. Hence, in the continuous approximation, we have to
calculate the following convolution

ρ(3)(∞)
n =

∫ n+g1−1

1−g2

ρ
()(∞)(1)
n−k ρ

()(∞)(2)
k dk

of two continuous gamma distributions of the two-level trap
models in Eq. (115) with the parameters g1, ε1 and g2, ε2,
respectively. As a result, we find

ρ(3)(∞)
n =

(
ε1
T

)g1
(

ε2
T

)g2 (n + g1 + g2 − 2)g1+g2−1

(g1 + g2) exp [ε2(n + g1 + g2 − 2)/T ]

×M

(
g1, g1 + g2, (n + g1 + g2 − 2)

ε2 − ε1

T

)
,

(125)

where

M(a, b, z) = (b)

(b − a)(a)

∫ 1

0
ezt ta−1(1 − t)b−a−1dt

(126)

is Kummer’s confluent hypergeometric function [52,59].
Let us discuss now how to choose model parameters. One

possibility is to make the first level responsible for the long-
range BEC correlations (higher-order cumulants) by choosing
parameters ε1 = T π [ζ (3/2)/Nv]2/3 and g1 = 6 to be equal to
their actual values for the first level in the actual box trap, while
using the second level with parameters ε2 and g2 to take care of
the correct mean value and variance of the total noncondensate
occupation:

g2T/ε2 + g1T/ε1 = Nc + g1 + g2 − 2,
(127)

g2(T/ε2)2 + g1(T/ε1)2 = σ (∞)2.

The parameters g2 and ε2 can be easily found from Eq. (127)
by plugging in the quantity

√
g2T/ε2 =

√
σ (∞)2 − g1(T/ε1)2

from the second equation into the first equation, which
becomes an elementary cubic algebraic equation for

√
g2.

Then, for the chosen g2, the energy of the second level is equal
to ε2 = T

√
g2/
√

σ (∞)2 − g1(T/ε1)2. Note that the real-valued
solution exists for the trap-size parameter Nv larger than about
2000. The result in Eq. (125) for that choice of parameters is
reasonably good in the central part (−2 < x < 4) of the critical
region. However, there are some deviations because with
that choice of parameters ε1, g1, ε2, g2 we do match exactly
the first two and all high-order cumulants, but match only
approximately the third, fourth, and other intermediate-order
cumulants of the unconstrained probability distribution ρ(∞)

n .
That mismatch is on the order of 20% for the third and
fourth cumulants and, which is very important, it rapidly
decreases for the higher-order cumulants with increasing
cumulant order m.

Another amazingly accurate and, in fact, sufficient for all
practical purposes choice for the four parameters ε1, g1, ε2, g2

is to match exactly the first four cumulants to their box
trap values at N = ∞ [see Secs. II and III, in particular,
Eq. (13)],

g2T/ε2 + g1T/ε1 = Nc + g1 + g2 − 2,

g2(T/ε2)j + g1(T/ε1)j = κ
(∞)
j /(j − 1)!, j = 2, 3, 4,

(128)

and, hence, match only approximately all higher-orders cumu-
lants. Remarkably, in this case, the result for the three-level
trap model in Eq. (125) is so perfect that it cannot be discerned
from the exact numerical curves for the actual box trap in
Figs. 7 and 9, so that we do not even need to plot separate
curves for this result. Let us stress that we match the values
of the first four cumulants only at one point N = ∞ and then
the solution in Eq. (125) with the chosen values of the four
parameters g1, ε1, g2, ε2 yields, with amazing accuracy, the
whole functions for these four as well as all other cumulants,
moments, and probability distributions for all values of the
number of atoms in the central part of the critical region
−3 < x < 6.
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We skip here an elementary analysis of the system of
algebraic equations (128), which anyway are very easy to
solve numerically. Let us note only two points. First, among
the different solutions of Eqs. (128), it is necessary to use
the one which satisfies the conditions of applicability of the
continuous gamma distribution (115). Second, the real-valued
solutions of Eqs. (128) exist only for a large enough trap size,
namely, for Nv � 9283. To avoid complex-valued solutions
for smaller values of the trap-size parameter Nv < 9283, one
should use the shifted gamma distribution for each excited
energy level, i.e., the Pirson distribution of type III, as will be
discussed at the end of this Sec. X, or one should not insist on
the exact matching of the fourth cumulant, that is, simply omit
the last equation in the system of equations (128).

It is straightforward to analyze the asymptotics of the tails
and other properties of the exact solution in Eq. (125) by means
of the known asymptotics and properties of Kummer’s con-
fluent hypergeometric function. We skip that straightforward
analysis.

Instead, we focus on the thermodynamic limit of the proba-
bility distribution, given by Eqs. (125) and (128), in the critical
region. The solution to that problem is not trivial and requires
a special asymptotics of Kummer’s confluent hypergeometric
function M(g1, g1 + g2, x) when x ∼ g2 → ∞ and x/g2 → 1
that corresponds to the following thermodynamic limit of the
three-level trap model parameters:

g1 → s4
3

s3
4

≈ 14.871,
ε1

T
→ s3π

s4

[
ζ (3/2)

Nv

]2/3

≈ 7.208

N
2/3
v

,

g2 → π2 [ζ (3/2)]4/3

s2 − s2
3/s4

≈ 5.577N2/3
v ,

ε2

T
→ g2

Nv

≈ 5.577

N
1/3
v

,

(129)

and that, according to [52,59], was not yet found by standard
methods. In the Appendix, we find that asymptotics explicitly
in terms of a parabolic cylinder function:

M(g1, g1 + g2, x) ∼ (g1 + g2)e
(g2−x)2

4x

(g2)xg1/2
D−g1

(
g2 − x√

x

)
,

(130)

where x ∼ g2 → ∞, x/g2 → 1, and g1 = const �= ∞.
In Eq. (129), we use the values sm given by the gener-

alized Einstein function from Eq. (29) (see Fig. 10). The
thermodynamic-limit value of the energy of the first excited
level in the three-level trap model (129) is only by a numerical
factor s3/s4 ≈ 1.21 higher than the energy of the first level in
the actual box trap in Eq. (25), but the degeneracy of the first
excited level in the three-level model g1 ≈ 15 is essentially
larger than the degeneracy 6 of the first level in the actual
box trap. The energy and degeneracy of the second excited
level are much larger than their values for the second excited
level in the box trap by the factors ∼N

1/3
v and ∼N

2/3
v → ∞,

respectively, since in that three-level trap model the second
excited level takes the main part of the responsibility for the
correct values of the mean occupation and the variance which,
contrary to the higher-order cumulants, are mostly determined
by the contributions from a large number of higher energy
levels in the box trap with the energies up to the order of

0 2 4 6 8 10 12 14 m

5

10

15

sm

FIG. 10. Sum sm, Eq. (29), as a function of the order m which
determines the related generating cumulant κ̃ (∞)

m , Eq. (13).

the temperature for the case of the mean occupation [44,45].
Note that to keep notations simple, we do not introduce new
notations for the two excited levels in the three-level model,
since they are used only in Sec. X and there should not be any
confusion with the box trap levels.

Finally, when we use the parameters in Eq. (129) together
with the nontrivial asymptotics of Kummer’s confluent hyper-
geometric function in Eq. (130) (see Appendix) in the exact
solution (125), we arrive at the remarkably simple analytical
approximation in Eq. (36) for the universal unconstrained
probability distribution.

We can further improve all these modeling results for the
three-level trap model if we introduce an additional parameter
�n in the solution (125) that shifts the probability distribution
as a whole along the n axis, n → n − �n.

Again, there are two possible parameter choices. The first
variant is

ε1

T
= πζ

(
3
2

) 2
3

N
2/3
v

, g1 = 6,

g1T

ε1
+ g2T

ε2
= Nc + g1 + g2 − 2 − �n,

g1

(
T

ε1

)j

+ g2

(
T

ε2

)j

= κ
(∞)
j

(j − 1)!
, j = 2, 3, (131)

which allows us to match exactly the asymmetry cumulant κ (∞)
3

in addition to the mean value and variance. To solve Eq. (131)
for the parameters of the model is simple. In particular, we
find

ε2

T
= 2

σ (∞)2 − g1(T/ε1)2

κ
(∞)
3 − 2g1(T/ε1)2

, g2 = 4
[σ (∞)2 − g1(T/ε1)2]3[
κ

(∞)
3 − 2g1(T/ε1)2

]2 .

(132)

In the thermodynamic limit, it yields an approximation for the
universal probability distribution ρ(univ)

x as the solution shifted
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by �n in Eq. (125) with the parameters

ε1

T
= π

[
ζ (3/2)

Nv

]2/3

, g1 = 6,

ε2

T
= (s2 − 6)ε1

s3T
, g2 = (s2 − 6)3

s2
3

≈ 16.56. (133)

Numerically the three-level trap model with parameters in
Eqs. (131) or (133) is certainly more accurate than the two-
level trap models. However, due to about 50% mismatch in the
fourth cumulant κ

(∞)
4 , it is too asymmetric and essentially less

accurate than the three-level trap models (128) and (129).
Finally, we obtain the most accurate model with the second

choice of parameters, which ensures the exact match of the first
five cumulants to their box trap values at N = ∞ as follows:

g1
T

ε1
+ g2

T

ε2
= Nc + g1 + g2 − 2 − �n,

g1

(
T

ε1

)j

+ g2

(
T

ε2

)j

= κ
(∞)
j

(j − 1)!
, j = 2, 3, 4, 5.

(134)

The solution for the probability distribution is the same
solution (125) but shifted by the amount �n, namely,

ρ(3)(∞)
x =

(
ε1σ

(∞)

T

)g1
(

ε2σ
(∞)

T

)g2
Xg1+g2−1

(g1 + g2) exp[ε2σ (∞)X/T ]

×M

(
g1, g1 + g2,

ε2 − ε1

T/σ (∞)
X

)
, (135)

X = x + g1T

ε1σ (∞)
+ g2T

ε2σ (∞)
.

The solution of the nonlinear system of algebraic equations
(134) for the parameters of the model can be reduced to the
cubic algebraic equation for, e.g., ε2, and done explicitly. We
skip these details and present the result only for the universal
probability distribution in the thermodynamic limit:

ρ(3)(univ)
x = ρ(3)(∞)

x , ε1 = 1.0584ε
(0)
1 , ε2 = 7.2732ε

(0)
1 ,

g1 = 8.5038, g2 = 473.01, ε
(0)
1 = T π [ζ (3/2)/Nv]2/3.

(136)

It works perfectly in the whole central part of the critical
region and, in fact, cannot be discerned from the exact curve in
Fig. 2. Even very sensitive quantities, strongly subject to small
discrepancies in approximation of ρ(univ)

x and its derivatives,
such as specific heat, can be calculated by means of the
confluent hypergeometric approximation (136), which is also
repeated in Eq. (35); it is amazingly accurate in the whole
central part of the critical region, namely, with accuracy better
than a few percent in the interval −4 < η < 10.

The analytical solution in terms of Kummer’s confluent
hypergeometric function (35), or (136), has a wider range of
validity, −4 < x < 10, covers more than 10 orders in ρ(univ)

x ,
and is more accurate, but also is more complicated than the
solution (36) in terms of the parabolic cylinder function,
which is valid in still a very wide interval −3 < x < 6,
which covers more than 6 orders in ρ(univ)

x and includes all
of the most interesting for critical phenomena central part of
the critical region. Both of these solutions overlap well with the

asymptotics (51) and (61) at the wings of the critical region;
thus, both of them yield an analytical solution to the problem
of universality of critical fluctuations, Gibbs free energy, heat
capacity, and other thermodynamic quantities in the BEC
phase transition of the ideal gas, as described in Sections VI,
VII, XII–XVI.

XI. REGULAR SCHEME FOR REFINEMENT OF
CONDENSATE STATISTICS APPROXIMATION

The exactly solvable two- and three-level trap models of
BEC presented in Secs. IX and X are very useful, since
they are physically feasible models and as such automatically
include many important physical properties, first of all, the
anomalously large higher-order cumulants and the long-range
correlations associated with them. However, they have only
a limited number of free parameters to model actual, e.g.,
box-trap, mesoscopic systems. It would be very useful to
have a regular scheme for further improvement of these
or other approximations of the BEC statistics. Here we
present such a refinement scheme based on the following two
ideas.

A. Infrared universality of higher-order cumulants
and method of superposition

The first idea exploits an observation that in the most
interesting mesoscopic systems with the energies of the
lowest levels much smaller than temperature, ε�k � T , all
higher-order cumulants of BEC fluctuations are dominated
by a contribution from a few of the longest wavelength modes
in the infrared limit of the energy spectrum and almost do not
depend on details of all higher parts of the energy spectrum.
In other words, all higher-order cumulants are universal for
mesoscopic systems with the same infrared limit of the energy
spectrum [2]. We used already that infrared universality of the
higher-order cumulants in deriving the approximation for the
universal characteristic function of noncondensate fluctuations
in the thermodynamic limit in Eq. (38). The essence of the
infrared universality is in the fast convergence of the sums sm

in Eq. (29), which determine the generating cumulants κ̃ (∞)
m in

Eq. (13) in the thermodynamic limit, to the value g1 = 6, which
is equal to the contribution from the lowest six-fold degenerate
energy level ε1, with increasing order m, i.e., sm → 6, as shown
in Fig. 10. That makes all higher-order generating cumulants
κ̃ (∞)

m inversely proportional to the mth power of the energy of
the first excited level, κ̃ (∞)

m ∝ (T/ε1)m, and independent of the
energies of all higher levels.

In the general case of a finite-size, mesoscopic system,
i.e., without thermodynamic-limit assumption, we can derive,
similar to Eq. (38), an approximation for the characteristic
function of the unconstrained probability distribution ρ(∞)

n of
the noncondensate occupation

�(∞)(u) ≈ exp

[
m∗∑

m=1

κ̃ ′
m(eiu − 1)m

m!

]
J∏

j=1

(
eεj /T − 1

eεj /T − eiu

)gj

,

(137)
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where

κ̃ ′
m = κ̃m − (m − 1)!

J∑
j=1

gj/(eεj /T − 1)m (138)

is the residual generating cumulant, and now we keep the full
function eε�k/T − 1 instead of ε�k/T when using Eq. (13) for
generating cumulants. The essence of approximations (137)
and (38) is that by exactly accounting for a few (J ) lowest
levels, we practically reduce very close to zero the coefficients
in front of (eiu − 1)m, i.e., the residual generating cumulants,
for high orders m so that keeping only a finite number of
terms m∗ in the sum allows us to calculate the unconstrained
probability distribution ρ(∞)

x in a finite, wide enough interval
x ∈ (−X1, X2) of values of the variable x = (n − Nc)/σ (∞)

with a range of validity (−X1, X2) expanding with increas-
ing parameters m∗ and J . This approach works perfectly
for numerical calculations of ρ(∞)

x and all other statistical
and thermodynamic quantities. However, analytically, that
approximation for ρ(∞)

x can be calculated only for two- or
three-level trap models (J = 1 or 2) and only for m∗ = 1 or
2. Besides, not any function, especially one so arbitrarily cut,
is a characteristic function for some well-defined real-valued
positive probability distribution (see the theorems of Bochner,
Khinchin, Mathias, and Polya in probability theory).

These considerations lead us to the second idea, namely, to
model the residual (after subtraction of fluctuations due to J

lowest levels) fluctuations of the noncondensate occupation,
i.e., residual generating cumulants κ̃ ′

m in Eq. (138), by some
well-defined auxiliary stochastic variable that could and
usually does have all its generating cumulants not equal to
zero, but may be chosen to minimize discrepancy in the
lowest-order cumulants which become the most important
after taking care of the higher-order cumulants via exact
account of the fluctuations due to the first J energy levels.
The auxiliary stochastic variable should not be necessarily
the noncondensate occupation in some physically feasible
model of the trap or system, but it could be an abstract
one just mimicking the residual background fluctuations the
detailed physical origin of which is not important due to
the above-discussed infrared universality of long-range BEC
correlations. That method of superposition is based on the well-
known general property of a superposition of the independent
stochastic variables, namely, that any cumulant (or generating
cumulant) of order m of the superposition is equal to the sum
of the cumulants (or generating cumulants) of the same order
m of the superposed independent stochastic variables.

We consider below only two simple examples of that regular
refinement scheme, namely, for the Poisson and Gaussian
background fluctuations. It would be very interesting to find
analytical solutions for more complicated examples, especially
for the three-level trap model combined with Gaussian back-
ground fluctuations.

B. Superposition of two-level trap and Poisson fluctuations

As a first example of that approach, let us consider a
superposition of the two-level trap model (108) and the Poisson
distribution

ρ(P )(∞)
n = e−κκn/n!, n ∈ [0,∞), (139)

for which all cumulants, including the mean value and
variance, are equal to the only parameter of the model κ ,
i.e., κm = κ, m = 1, 2, . . . , since its characteristic function
is �(P )(∞) = exp[κ(eiu − 1)]. The Poisson distribution is the
asymptotics of the probability distribution ρ(∞)

n for the actual
box trap in the region of a small number of atoms, Eq. (78);
however, here this is not a main point for that general
model. The unconstrained probability distribution for that
superposition can be calculated explicitly,

ρ(2P )(∞)
n =

n∑
m=0

ρ
(P )(∞)
n−m ρ(2)(∞)

m

= (1 − q)gκn+ge−κ

n!qg
U

(
g, n + g + 1,

κ

q

)
, (140)

in terms of the confluent hypergeometric function [52,59]

U (a, b, z) = 1

(a)

∫ ∞

0
e−zt ta−1(1 + t)b−a−1dt. (141)

The cumulative probability distribution for superposition (140)
is

P
(2P )(∞)
N =

N∑
n=0

ρ(2P )(∞)
n = I1−q(g,N + 1) −

(
1 − q

q

)g

× 1

N !

∫ κ

0
tN+ge−tU

(
g,N + g + 1,

t

q

)
dt.

(142)

According to Eq. (5), the actual cutoff probability distribution
for that superposition model is

ρ(2P )
n = (1 − q)gκn+ge−κ

P
(2P )(∞)
N n!qg

U

(
g, n + g + 1,

κ

q

)
,

n ∈ [0, N ]. (143)

It is straightforward also to generalize that model by an
additional shift of the variable n and its mean value by the
amount �n + g − 1 as was done for the Pirson distribution of
type III in Eq. (120).

Then, we can choose the four parameters of this model
�n, κ, g, and q to match the cumulants of the model, e.g., the
first four cumulants, to their values in the actual box trap. As
a result, we get an explicit expression for ρ(2P )(∞)

n in Eq. (140)
that analytically approximates the actual unconstrained prob-
ability distribution ρ(∞)

n , and, therefore, we can immediately
calculate all statistical and thermodynamic quantities using
the formulas which express the constraint-cutoff mechanism
of Sec. II. Numerically model (140) works very well in the
central part of the critical region (−3 < η < 6); however, it
does not give the asymptotics at |η| → ∞ correctly. We skip
the details of that modeling since it is similar to the analysis
of another superposition model that will be discussed in more
detail in the next subsection.

C. Superposition of two-level trap and Gaussian fluctuations

Let us consider a superposition of the two-level trap
model (120) with arbitrary shift of the mean value
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x ′
0 = (�n − Nc)/σ (∞), i.e., a Pirson distribution of type III,

ρ
(Ps)(∞)
x ′ = (σ (∞)ε/T )g

(g)
(x ′ − x ′

0)g−1 exp
[σ(∞)ε

T
(x ′

0 − x ′)
]

(144)

for x ′ ∈ [x ′
0,∞) and ρ

(Ps)(∞)
x ′ = 0 for x ′ < x ′

0, and the Gaussian
model with arbitrary mean value x ′′

0 and variance κ ′′
2 /(σ (∞))2,

ρ
(G)(∞)
x ′′ = σ (∞)√

2πκ ′′
2

exp

[
− (x ′′ − x ′′

0 )2

2κ ′′
2 /σ (∞)2

]
, x ′′ ∈ (−∞,∞),

(145)

which we write, for simplicity’s sake, directly in the continuous
approximation for the variable (33). The cumulants of the
noncondensate occupation n for that superposition of two
stochastic variables, κm = κ ′

m + κ ′′
m,m = 1, 2, . . . , are

equal to the sum of the two-level trap cumulants, κ ′
1 =

Nc + gT /ε + x ′
0σ

(∞) for m = 1 and κ ′
m = g(T/ε)m(m − 1)!

for m � 2, and the Gaussian cumulants, κ ′′
1 = Nc + x ′′

0 σ (∞)

for m = 1, κ ′′
2 for m = 2, and κ ′′

m = 0 for m � 3.
The probability distribution of the scaled noncondensate

occupation x = (n − Nc)/σ (∞) for this superposition can be
calculated exactly. The result is

ρ(PsG)(∞)
x =

∫ ∞

x ′
0

ρ
(Ps)(∞)
x ′ ρ

(G)(∞)
x−x ′−Nc/σ (∞)dx ′

= (ε/T )gD−g

( ε
√

κ ′′
2

T
− y
)

√
2πκ ′′

2

× exp

⎡
⎣ε2κ ′′

2

2T 2
− 1

4

(
ε
√

κ ′′
2

T
+ y

)2
⎤
⎦ , (146)

where y = (x − x ′
0 − x ′′

0 )/
√

κ ′′
2 and D−g is the parabolic

cylinder function. As expected, the mean value parameters x ′
0

and x ′′
0 always come in a sum and provide only one parameter

to match the actual mean value of noncondensate occupation
in the trap,

κ ′
1 + κ ′′

1 = Nc ⇒ x ′
0 + x ′′

0 = −(Nc + gT /ε)/σ (∞). (147)

We consider here two possible variants for the choice of
the other three parameters of the model, g, ε/T , and κ ′′

2 .
The first variant is to choose the two-level trap submodel to
give precisely the fluctuations due to the six-fold degenerate
first energy level (and, therefore, exactly take care of all
higher-order cumulants and long-range BEC correlations) and
to use the Gaussian variance κ ′′

2 to match the total second-order
cumulant with its actual value κ

(∞)
2 ≡ σ (∞)2 in the box trap:

ε = ε1, g = g1 = 6, κ ′′
2 = σ (∞)2 − 6(T/ε1)2. (148)

In the thermodynamic limit, the result in Eqs. (146)–(148)
for ρ(∞)

x coincides with the approximation ρ(univ)
x in Eq. (43).

It works reasonably well in the central part of the critical
region, −1 < x < 5, although it does not take into account all
asymmetry κ3 and excess κ4 and, hence, is not as good as the
three-level trap model in Eq. (36). However, that drawback can
be amazingly cured if we implement the second choice for the
model parameters.

The second variant for the choice of parameters is to match
the first four cumulants exactly,

κ
(∞)
2 = κ ′′

2 + g(T/ε)2, κ
(∞)
3 = 2g(T/ε)3,

κ
(∞)
4 = 6g(T/ε)4, (149)

and leave some mismatch for the higher-order cumulants,
whatever it is. The formulas for the cumulants κ (∞)

m for the
box trap are given in Sec. II via the generating cumulants κ̃ (∞)

m

in Eq. (13). In the result, we have the following values for the
model parameters:

ε

T
= 3κ

(∞)
3

κ
(∞)
4

, g = 27κ
(∞)4
3

2κ
(∞)3
4

, κ ′′
2 = σ (∞)2 − 3κ

(∞)
3

2κ
(∞)
4

.

(150)

In the thermodynamic limit, we find

x ′
0 + x ′′

0 = − s3
3√

s2s
2
4

,
ε

T
= s3

s4

ε1

T
,

g = s4
3

s3
4

≈ 14.8711, κ ′′
2 = σ (∞)2

(
1 − s2

3

s2s4

)
,

(151)

where the constants sm are given in Eq. (29) and in Fig. 10.
Amazingly, the result in Eqs. (146) and (151) yields precisely
the same universal unconstrained probability distribution
ρ(univ)

x as the one found via asymptotics of Kummer’s confluent
hypergeometric function in the three-level trap model in
Eqs. (125), (129), and (130), that is, the excellent approxi-
mation (36) in terms of the parabolic cylinder function in the
wide interval −3 < x < 6.

XII. UNIVERSAL STRUCTURE OF THE GIBBS FREE
ENERGY IN THE CRITICAL REGION

The analytical theory of BEC statistics presented above
and, in particular, the knowledge of the constraint-cutoff
mechanism of the origin of nonanalyticity in critical fluctu-
ations [see Eq. (5)] as well as the explicit analytical formulas
for the universal probability distribution ρ(univ)

x of the total
noncondensate occupation in Eqs. (26), (34)–(36), (51), and
(61) allow us to find and resolve the universal fine structure
of the thermodynamic quantities in the whole critical region
around the λ point. Let us start with the Gibbs free energy [9]

F = −T ln Z, (152)

which is determined by the partition function Z, Eq. (4),
of the ideal gas of N atoms in the trap at temperature T in
the canonical ensemble. The Gibbs free energy is the basic,
generating function for the thermodynamics in the canonical
ensemble of particles since its derivatives determine the main
thermodynamic quantities. In particular, the average energy
Ē, entropy S, and heat capacity CV are given by its first and
second derivatives as follows:

Ē = − ∂ ln Z

∂(1/T )
= F + T S, S = −∂F

∂T
, CV =

(
∂Ē

∂T

)
V

.

(153)
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The partition function can be represented as a product Z =
Z(∞)〈θ (N − n̂)〉(∞) of the unconstrained partition function

Z(∞) = Tr

⎡
⎣exp

⎛
⎝− 1

T

∑
�k �=0

ε�kn̂�k

⎞
⎠
⎤
⎦ =

∏
�k �=0

1

1 − e− ε�k
T

= 1

ρ
(∞)
n=0

(154)

and the average of the cutoff constraint θ (N − n̂) over the
unconstrained Hilbert space (see Secs. II and V) which is pre-
cisely the cumulative distribution function P

(∞)
N =∑N

n=0 ρ(∞)
n

of the unconstrained probability distribution ρ(∞)
n of the total

noncondensate occupation,

P
(∞)
N ≡ 〈θ (N − n̂)〉(∞) = Tr[θ (N − n̂)e− H

T ]/Z(∞). (155)

Thus, the Gibbs free energy is the sum

F = F (∞) − T ln 〈θ (N − n̂)〉(∞) (156)

of the Gibbs free energy of a system of the unconstrained
noncondensate excitations

F (∞) = −T ln Z(∞) = T
∑
�k �=0

ln(1 − e−ε�k/T ) (157)

and the contribution from the constraint nonlinearity (see
Sec. V). The first term is rather trivial, since it describes a
deeply condensed regime at very low temperature T and very
large number of atoms in the trap N , compared to their critical
values Tc and Nc, when there exists a “reservoir” of condensate
atoms that makes the occupations of all noncondensate
(excited) states practically independent stochastic variables.
That first term is a constant that does not depend on the number
of atoms in the trap and in the thermodynamic limit (Nv → ∞)
yields the following expressions for the average energy Ē(∞)

and the entropy S(∞)

F (∞) = −T ln Z(∞) = −2

3
Ē(∞) = −ζ (5/2)

ζ (3/2)
NvT , (158)

S(∞) = Ē(∞) − F (∞)

T
= 5

3

Ē(∞)

T
, (159)

which are well known in statistical physics [9].
The second, constraint nonlinearity term in Eq. (156) is

responsible for all critical phenomena and peculiarities of the
thermodynamic quantities in the phase transition from the
condensed phase to the high temperature, or small number
of atoms, noncondensed phase. The latter regime is usually
described by the grand-canonical-ensemble approximation,
Eq. (85), via the pure exponential distribution of the non-
condensate occupation, Eq. (86).

Thus, to resolve the fine universal structure of the Gibbs
free energy in the critical region, it is necessary to exclude
the trivial content (158), which is by a factor of an order of
Nv → ∞ larger than the second term, and introduce the critical
function for the Gibbs free energy per unit temperature as a
deviation of the Gibbs free energy per unit temperature from
its critical-point value:

FF = F

T
−
(

F

T

)
η=0

= ln P
(∞)
N=Nc

− ln P
(∞)
N . (160)

3 2 1 1 2 3 η

2

4

6

FF
univ

FIG. 11. Universal function F
(univ)
F , Eq. (161), of the Gibbs free

energy per unit temperature as a function of η = (N − Nc)/σ (∞) in
the critical region.

With increasing trap-size parameter Nv , that critical func-
tion quickly converges to the following universal function of
the Gibbs free energy per unit temperature:

F
(univ)
F (η) = − ln P (univ)

η + ln P
(univ)
η=0 , (161)

which is precisely the absolute value of the logarithm of the
universal cumulative distribution function, Eq. (97), for the
universal probability distribution ρ(univ)

x of the noncondensate
occupation [see Eqs. (34) and (26)] considered relative to its
value at the critical point as a function of the universal variable
η = (N − Nc)/σ (∞), Eq. (95). It is depicted in Fig. 11. The
important fact of the universality of F

(univ)
F (η) immediately

follows from a similar property of the unconstrained probabil-
ity distribution ρ(∞)

n (see Sec. IV and Figs. 2–4). Analytical
formulas for the Gibbs-free-energy universal function obvi-
ously follow from the obtained in Sec. IV analytical formulas
for ρ(univ)

x , Eqs. (26), (34)–(36), (51), and (61), if one uses
Eqs. (161) and (97).

In particular, the universal cumulative distribution function
in the central part of the critical region |η| < 5 is correctly ap-
proximated via Kummer’s confluent hypergeometric function,
Eq. (35),

P (univ)
η ≈ e

g1
1 e

g2
2

(g1 + g2)

∫ η

−∞
Xg1+g2−1e−e2XM(g1, g1

+ g2, (e2 − e1)X)dx, X = x + g1/e1 + g2/e2,

e1 ≈ 4.303, e2 ≈ 29.573, g1 ≈ 8.504, g2 ≈ 473,

(162)

or via the parabolic cylinder function, Eq. (36),

P (univ)
η ≈

∫ η

−∞

cgec2/2−Y 2√
2π [(1 − s2

3/(s2s4)]
D−g[2(c − Y )]dx,

Y = x + s3
√

s2/s4

2
√

1 − s2
3/(s2s4)

, g = s4
3

s3
4

, c = s3

s4

√
s2 − s2

3

s4
.

(163)
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The asymptotics at the noncondensed, left wing of the critical
region follows from Eq. (51),

P (univ)
η ≈ ef0

√
3

erfc

[
s

3/4
2

2
√

3π2
(x0 − η)3/2

]

≈ 2π3/2

s
3/4
2 (x0 − η)3/2

exp

[
f0 + s

3/2
2

12π4
(η − x0)3

]

×
{

1 +
∞∑

m=1

(−1)m(2m)!

2mm!

[
6π4

s
3/2
2 (η − x0)2

]m}
,

−η � 1. (164)

The asymptotics at the condensed, right wing of the criti-
cal region, η � 1, follows from the formula P (univ)

η = 1 −∫∞
η

ρ(univ)
x dx and Eqs. (55)–(58) and (61):

P (univ)
η ≈ 1 − es ′

0−s ′′
0

[
(6, η1)

5!
+ s ′

2

12
(4, η1) − s ′

3

6
(3, η1)

+
(

s ′2
2

2
+ s ′

4

)
(2, η1)

4
−
(

s ′
2s

′
3

6
+ s ′

5

5

)
e−η1

]
,

(165)

where η1 = √
s2η + 6 − s ′

0 and (n, y) = ∫∞
y

xn−1e−xdx is
the incomplete gamma function. We can use its asymp-
totics [52], (n, y) ∼ yn−1e−y[1 + (n − 1)/y + (n − 1)n/

y2 + · · ·], to simplify the asymptotics (165) as follows

P (univ)
η ≈ 1 − e−η1

[
η5

1

5!
+ η4

1

4!
+ 1

4

(
1 + s ′

2

3

)
η3

1

+ 1

2

(
7

2
+ s ′

2

2
− s ′

3

3

)
η2

1

+
(

14 + s ′
2

2
− s ′

3

3
+ s ′2

2

8
+ s ′

4

4

)
η1

+ 126 + 5

2
s ′

2 − s ′
3 + s ′2

2

8
+ s ′

4

4
− s ′

2s
′
3

6
− s ′

5

5

]
.

(166)

The accuracy of all these approximations (162)–(166) is
excellent even at the borders of their validity |η| ∼ 3, so
they have quite good overlapping and, hence, cover the whole
critical region, i.e., all infinite interval of the universal variable
η ∈ (−∞,∞). The exact universal cumulative distribution
function P (univ)

η is plotted in Fig. 12.

XIII. UNIVERSAL STRUCTURE OF THE AVERAGE
ENERGY IN THE CRITICAL REGION

The average energy of the ideal Bose gas in the canonical
ensemble Ē =∑�k �=0 ε�kn̄�k can be represented as a sum of
the average energy of the system of the unconstrained
noncondensate excitations

Ē(∞) =
∑
�k �=0

ε�k/(eε�k/T − 1) = ε1

T

∑
�q �=0

q2

eq2ε1/T − 1
(167)

3 2 1 1 2 3 η

0.2

0.4

0.6

0.8

1.0

Pη
univ

FIG. 12. Universal cumulative distribution function P (univ)
η ,

Eq. (97), as a function of η = (N − Nc)/σ (∞) in the critical region.

and the contribution from the constrained nonlinearity,

Ē = Ē(∞) + T 2 ∂

∂T
ln 〈θ (N − n̂)〉(∞) , (168)

which follows from Eq. (153) and the similar representation
of the Gibbs free energy in Eq. (156). Using the relation

∂Nv/∂T = (3/2)Nv/T (169)

for the trap-size parameter, Eq. (24), we can rewrite Eq. (168)
in the equivalent form

Ē

T
= Ē(∞)

T
+ 3

2
Nv

∂

∂Nv

ln 〈θ (N − n̂)〉(∞) . (170)

The second, constraint nonlinearity term is responsible
for the fine structure of the average energy in the critical
region. However, in the thermodynamic limit (Nv → ∞), it
is only on the order of N

1/3
v , which is much less than the

trivial, N -independent first term which has a much larger
thermodynamic-limit value, i.e.,

Ē(∞)

T
= 3ζ (5/2)

2ζ (3/2)
Nv, Nv → ∞. (171)

Therefore, for the purpose of the analysis of the universal
structure of the average energy in the critical region, we should
choose the infinitely large constant Ē(∞)/T to be a reference
level and introduce a critical function by scaling the average
energy per unit temperature to the zeroth order in Nv function
as follows:

FE = 1√
σ (∞)

(
Ē

T
− Ē(∞)

T

)
= 3Nv

2
√

σ (∞)

∂ ln P
(∞)
N

∂Nv

. (172)

In the thermodynamic limit (Nv → ∞), we have
∂/∂Nv ≈ −(1/σ (∞))∂/∂η and, using an obvious relation
∂(ln P (∞)

η )/∂η = ρ(∞)
η /P (∞)

η , we find that the critical function
FE in Eq. (172) converges, with increasing trap-size parameter
Nv , to the following universal function of the scaled average
energy per unit temperature:

F
(univ)
E (η) = −3π3/2ζ (3/2)ρ(univ)

η

2s
3/4
2 P

(univ)
η

, (173)
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C B

FE
univ

A

6 4 2 2 η

15

10

5

FIG. 13. Universal function F
(univ)
E (η), Eq. (173), of the scaled

average energy per unit temperature as a function of η = (N −
Nc)/σ (∞) in the critical region. The inverse parabola AC continued
by the horizontal line CB represents the prediction of the standard
Landau mean-field theory.

which is again explicitly given by the analytical formulas for
the universal probability distribution in Eqs. (26), (34)–(36),
(51), and (61), and Eqs. (97), (162)–(165). It is plotted in
Fig. 13. In the deeply condensed region η → ∞, i.e., N −
Nc � σ (∞), it tends to zero which corresponds to the constant
energy per unit temperature given in Eq. (171). That saturation
of the average energy at the level (171) is well known in BEC
thermodynamics [9,11,27] and originates from the fact that all
extra atoms loaded into the trap in excess of the critical number
of atoms Nc ≈ Nv go into the condensate, i.e., into the ground
level with zero energy, and, therefore, do not contribute to the
average energy of the system.

The inverse-parabola asymptotics of the universal
function

F
(univ)
E (η) ≈ −3ζ (3/2)s3/4

2

8π5/2
η2, η → −∞, (174)

in the opposite limit of very high temperature and very
small number of atoms in the trap, which follows from the
asymptotics of ρ(univ)

η given in Eq. (51), also exactly matches
the known from the grand-canonical-ensemble approximation
asymptotics of the average energy [9,11,27,60]

Ē ≈ 3ζ
(

5
2

)
2ζ
(

3
2

)T Nc − T
√

σ (∞)
3ζ
(

3
2

)
s

3/4
2

8π5/2
η2, η → −∞.

(175)

Thus, similar to the BEC order parameter in Eq. (96),
the average energy also has the universal fine structure
in the critical region. This smooth structure was not resolved by
the standard mean-field theory that predicted only asymptotics
AC and BC in Fig. 13 in the grand-canonical-ensemble
approximation.

Finally, we stress again that the obtained universal functions
of the Gibbs free energy (161) and the average energy
(173) contain no physical parameters and, hence, are pure
mathematical, truly universal functions.

XIV. HEAT CAPACITY OF A MESOSCOPIC IDEAL GAS
IN THE CANONICAL ENSEMBLE

The specific heat, that is, the heat capacity per particle,
is the most often addressed thermodynamic quantity in the
theoretical studies of BEC phase transition, for it is directly
measured in experiments and has a subtle structure near the
critical point resembling the Greek letter λ (hence the name λ

point for the critical point). That structure originates due to the
contribution of the second derivative of the Gibbs free energy
to the specific heat, which is defined via a derivative of the
average energy as per Eq. (153). The λ-point structure of the
specific heat of the ideal gas can be described by a universal
function that surprisingly has not yet been analytically found
despite many studies since the original works by Bose and
Einstein in 1924. Here we present an explicit analytical
solution to that long-standing problem.

A. Grand-canonical-ensemble approximation
in the thermodynamic limit

First, we briefly summarize the related results of the
standard in statistical physics mean-field theory in the grand-
canonical-ensemble approximation following textbooks [9,11]
and a very useful paper [60]. Similar to that of a classical gas,
for very high temperatures, T � Tc, or small numbers of atoms
in the trap, N � Nc, the specific heat is a constant equal to
3/2, i.e., CV = (3/2)N . In the condensed region, when T < Tc

or N > Nc, the heat capacity is an N -independent constant

CV c = ∂

∂T

∑
�k �=0

ε�k
eε�k/T − 1

≡
(ε1

T

)2∑
�q �=0

q4eq2ε1/T

(eq2ε1/T − 1)2
,

(176)

that tends in the thermodynamic limit to a value

CV c → 15ζ (5/2)

4ζ (3/2)
Nc, N > Nc, Nv → ∞, (177)

which is determined by the critical number of atoms Nc.
The latter tends to the trap-size parameter Nv in accord with
Eqs. (23) and (24). The thermodynamic-limit value of the
specific heat at the critical point

CV c

Nc

= 15ζ (5/2)

4ζ (3/2)
≈ 1.92567 > 3/2 (178)

is larger than the classical gas specific heat 3/2 and, hence,
with a decrease of the number of atoms in the trap, the specific
heat should decrease from 1.92567 to 1.5. With an increase in
the number of atoms above the critical value at N > Nc, the
specific heat also decreases, namely, it is inversely proportional
to N as per Eq. (176). Thus, the standard grand-canonical-
ensemble approximation predicts the λ-point structure of the
specific heat as follows [60]:

CV

N
≈
[

(15/4)ζ (5/2)

ζ (3/2)

]
Nc

N
, N > Nc,

CV

N
≈ 2c1 − c2 + (c1 − c2)

N

Nc

+
(

2c2 − 4c1

3

)
N2

N2
c

, (179)

N < Nc, c1 = (9/4)ζ (5/2)

ζ (3/2)
, c2 = (3/8)[ζ (3/2)]2

π
.
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However, that result does not resolve the fine universal
structure of the λ-point, reducing it, instead, to only a
discontinuity with a jump [9/(8π )][ζ (3/2)]2σ (∞)/Nv in its
first derivative with respect to η = (N − Nc)/σ (∞) at the
critical point η = 0. In the critical region, the prediction
of the grand-canonical-ensemble approximation (179) in the
thermodynamic limit is reduced to

CV

N
≈ 15ζ (5/2)

4ζ (3/2)

(
1 − ησ (∞)

Nv

)
, η > 0,

CV

N
≈ 15ζ (5/2)

4ζ (3/2)
+
[

9[ζ (3/2)]2

8π
− 15ζ (5/2)

4ζ (3/2)

]
ησ (∞)

Nv

,

η < 0, (180)

but, in fact, gives correctly only the slopes of the asymptotics
and the maximum value in the main order of magnitude ∼N0

v .
It does not predict correctly the shifts of the asymptotics along
the axis η and the shift of the maximum value as well as the
whole fine structure in the vicinity of the λ point, which are
all quantities of the next order of magnitude ∼N

−1/3
v .

B. Universal λ-point structure

In accord with Eqs. (153), (169), and (170), the heat
capacity is equal to

CV = CV c + 15Nv

4

∂ ln P
(∞)
N

∂Nv

+ 9N2
v

4

∂2 ln P
(∞)
N

∂N2
v

, (181)

where the standard heat capacity in the condensed regime
CV c is a constant given in Eq. (176). The result in Eq. (181)
means that the subtle λ-point structure of the heat capacity
is all due to the constraint nonlinearity contribution coming
via the first and second derivatives of the logarithm of the
cumulative distribution function P

(∞)
N , Eq. (155), with respect

to the trap-size parameter Nv .
Let us now calculate the heat capacity in the thermodynamic

limit in the critical region where the function P
(∞)
N and the

unconstrained probability distribution ρ
(∞)
N are the universal

functions of the only universal variable η = (N − Nc)/σ (∞)

as discussed in Secs. IV–VII, XII, and XIII. Hence, we can
evaluate the derivatives in Eq. (181) via the derivatives with
respect to the universal variable η and the relations

∂η

∂Nv

= − 1

σ (∞)
− 2(η − ηc)

3Nv

,

(182)
∂2η

∂N2
v

= 4

3Nv

[
1

σ (∞)
+ 5(η − ηc)

6Nv

]
,

where ηc = (Nv − Nc)/σ (∞) � N
1/3
v is a very slowly (com-

pared to N
1/3
v ) growing function of Nv that describes how

close is the exact critical number of atoms Nc in Eq. (23) to its
continuous-limit approximation Nv in Eq. (24). The result is

CV = CV c − 3Nv∂ ln P (∞)
η

4σ (∞)∂η

+
(

3Nv

2σ (∞)
+ η − ηc

)2 ∂2 ln P (∞)
η

∂η2
, (183)

where obviously

∂ ln P (∞)
η

∂η
= ρ(∞)

η

P
(∞)
η

,
∂2 ln P (∞)

η

∂η2
= ∂ρ(∞)

η /∂η

P
(∞)
η

−
(

ρ(∞)
η

P
(∞)
η

)2

.

(184)

In Eq. (183), the first term CV c has the highest order of
magnitude ∼Nv . Next to it is the term (9/4)(Nv/σ

(∞))2 which
is of order of N

2/3
v . All other terms are infinitesimally small

and do not contribute to the universal function of the specific
heat. Thus, the final formula for the heat capacity in the critical
region is

CV = CV c +
(

3Nv

2σ (∞)

)2 ∂2 ln P (∞)
η

∂η2
, (185)

where CV c is given by the discrete sum in Eq. (176).
To resolve the fine universal structure of the λ point, we

have to scale (“magnify”) properly a deviation of the specific
heat from its value at the critical point. This can be achieved
by means of the following critical function:

FC =
√

σ (∞)

(
CV

N
− CV (N = Nc)

Nc

)
, (186)

where CV is given by Eq. (181). With increasing trap-size
parameter Nv , that critical function quickly converges to the
following universal function of the scaled specific heat:

F
(univ)
C (η) = 9ζ (3/2)

4s
3/4
2 π− 3

2

∂2 ln P (univ)
η

∂η2
− c0 − 15ζ

(
5
2

)
s

3/4
2 η

4π
3
2
[
ζ
(

3
2

)]2 ,

(187)

where the value of the constant

c0 = 9π3/2ζ (3/2)

4s
3/4
2

[
∂2 ln P (univ)

η

∂η2

]
η=0

≈ −2.79 (188)

is determined by the exact function ρ(univ)
η , Eq. (26). The

universal function F
(univ)
C (η) is again explicitly given by the

analytical formulas for the universal probability distribution
in Eqs. (26), (34)–(36), (51), and (61), and Eqs. (97) and
(162)–(165) via Eq. (184). It is plotted in Fig. 14 and has, as
it should, a familiar λ shape. The value of the specific heat
at the critical point η = 0 differs from the standard value in
Eq. (178) by corrections of order 1/

√
σ (∞) ∼ N

−1/3
v � 1,

CV (N = Nc)

Nc

= CV c

Nc

+ c0√
σ (∞)

. (189)

The most remarkable consequence of the existence of the
universal functions for all statistical and thermodynamic quan-
tities in the critical region, including the one for the specific
heat in Eq. (187) and all others discussed in the previous
sections, is their dependence on only one universal variable
η = (N − Nc)/σ (∞), which means definite self-similarity of
all curves for a given statistical or thermodynamic quantity
as a function of any given physical variable at fixed values
of other parameters of the system. For example, we can
immediately find and plot the dependence of the specific heat
on temperature t = T/Tc in the critical region at any particular
values of the number of atoms in the trap N and volume V
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4 2 2 4 η
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FC
univ

FIG. 14. Universal function F
(univ)
C (η), Eq. (187), of the scaled

specific heat as a function of η = (N − Nc)/σ (∞) in the critical region.
The slopes of its linear asymptotics on both wings of the critical region
match the ones predicted by the standard grand-canonical-ensemble
approximation.

as the function F
(univ)
C (η(t))/

√
σ (∞)(t), where the self-similar

variable η(t) = [N − Nc(t)]/σ (∞)(t) depends on temperature
via the dependences of the critical number Nc(t), Eq. (23), and
the dispersion σ (∞)(t), Eq. (30), on the reduced temperature
t = T/Tc. It is especially simple if one does not need to take
into account the relatively small finite-size effects of deviation
of the values of the exact discrete sums for the critical number
Nc in Eq. (23) and for the dispersion σ (∞) in Eq. (30) from their
continuous approximations in Eqs. (24) and (31), respectively.
Then we have the simple self-similarity

Nv(t) = Nt3/2, σ (∞)(t) = s
1/2
2 N2/3

π [ζ (3/2)]2/3
t,

(190)
η(t) = π [ζ (3/2)]2/3s

−1/2
2 N1/3(1 − t3/2)/t,

where we assume that Nv � 1 and |t − 1| � 1. It fully
specifies the temperature dependence of the specific heat
near its maximum (i.e., near the λ point) as the function
F

(univ)
C (η(t))/

√
σ (∞)(t) for any particular values of the number

of atoms in the trap N as is shown in Fig. 15 for N = 104.
That shape of the specific heat near the λ point is the
same as the one numerically calculated in [13] from the
exact recursion relation. It is worth noting that for such still
not very large number of atoms, there is noticeable shift
of the critical point of order −ηc = (Nv − Nc)/σ (∞). That
finite-size effect is well known from numerical calculations
(see nice graphs in [13]) and can be easily taken into account
via the accurate value of Nc in the self-similar variable
η(t). For example, in the case of N = Nv = 104 we have
Nc ≈ 8663 and σ (∞) ≈ 300, so that −ηc ∼ 4 and the critical
temperature shift is �tc ∼ 0.1. That same self-similarity can
be used to find and plot temperature dependences of all other
statistical and thermodynamic quantities in the critical region
at particular values of the number of atoms N and volume V

from their universal functions, e.g., temperature dependence
of the BEC order parameter on the basis of its universal
function in Eq. (96). The self-similarity, even in the continuous
approximation (190), was not discovered in the large amount of

CV CV T Tc N

t
0.90 0.95 1.05 1.10

0.15

0.10

0.05

FIG. 15. Deviation of the specific heat from its critical value,
[CV − CV (T = Tc)]/N , as a function of reduced temperature t =
T/Tc. The graph is plotted by means of the scaled universal function
F

(univ)
C (η(t))/

√
σ (∞)(t) in Eq. (187) and self-similar substitution (190)

for the mesoscopic system with N = 104 atoms in the trap.

papers devoted to the numerical studies of various dependences
of the statistical and thermodynamic quantities at numerous
possible combinations of the parameters in the finite-size
systems (see, e.g., [2,13,27,45,49,62,63]).

C. Asymptotics at the wings of the critical region

The only nontrivial term in the universal function of the
specific heat in Eq. (187) at the wings of the critical region is the
second derivative ∂2 ln P (univ)

η /∂η2, which can be immediately
found in accord with Eq. (184) from the asymptotics of ρ(univ)

η

in Eqs. (51) and (61) and of P (univ)
η in Eqs. (164) and (165).

In the noncondensed, high-temperature or small number
of atoms regime, i.e., at the left wing of the critical region,
−η � 1, we find

∂2 ln P (∞)
η

∂η2
≈

√
3s

9/4
2

8π13/2
(η − x0)5/2

[
1 − 2π4

s
3/2
2 (η − x0)3

]
B

− 3s
3/2
2

4π5
(x0 − η)B2, −η � 1, (191)

B = exp

[
s

3/2
2

12π4
(η − x0)3

]/
erfc

[
s

3/4
2

2
√

3π2
(x0 − η)3/2

]
.

The leading term of that asymptotics yields the asymptotics
of the universal function of the specific heat at −η � 1 as a
linear function of η = (N − Nc)/σ (∞),

F
(univ)
C (η) ≈ s

3/4
2

π3/2ζ
(

3
2

)
[

9
[
ζ
(

3
2

)]2
8π

− 15ζ
(

5
2

)
4ζ
(

3
2

)
]

η − c0.

(192)

In the condensed regime, i.e., at the right wing of the critical
region, η � 1, the second derivative

∂2 ln P (∞)
η

∂η2
≈
[
∂ ln α5(

√
s2η)

∂η
− √

s2

]
ρ(univ)

η , (193)

where functions ρ(univ)
η and α5(s1/2

2 η) are given in Eqs. (61)
and (62), respectively, is exponentially small. Hence, the
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asymptotics is determined by the last two terms in Eq. (187)
and again is a linear function but with a different slope,

F
(univ)
C (η) ≈ − s

3/4
2 15ζ (5/2)

4π3/2[ζ (3/2)]2
η − c0, η � 1. (194)

For both asymptotics, the slopes are shown in Fig. 14 and
are exactly the same as the ones given by the standard grand-
canonical-ensemble approximation in Eq. (180). The results
(192) and (194) predict also the exact positions of these linear
asymptotic lines relative to the critical point η = 0 in the η

scale. These positions were not given correctly by the standard
grand-canonical-ensemble approximation [9,11].

D. Strong finite-size and discreteness effects in the asymptotics
of the specific heat in the small-number-of-atoms regime

Outside the critical region, in the small-N regime (Nc −
N ∼ Nc), there is no universality anymore, as discussed in
the last subsection of Sec. IV, and we must return to the
general formula for the heat capacity in Eq. (181). The most
interesting is the region adjacent to the end point n = 0 [i.e.,
the end point η0 in Eq. (98), see Fig. 7], where the finite-size
and discreteness effects are especially pronounced. We can
use in that region the asymptotics (77) of the unconstrained
probability distribution ρ(∞)

n , valid for n � 3
√

Nv , to calculate
explicitly the corresponding asymptotics of the heat capacity.

To simplify the analysis, let us use only its leading term, that
is, the Poisson distribution (78). Straightforward calculation of
Eq. (181) yields

CV ≈ 15

4
B1 − (15B1 + 9N )BN

1 e−B1

4(N + 1, B1)
, (195)

which gives asymptotics of the specific heat in the thermody-
namic limit, Nv � 1, as follows:

CV

N
≈ 3

2
+ 9ζ (3/2)(N − 2/3)

4Nv

≈ 3

2
+ 9ζ (3/2)

4

(
Tc

T

)3/2

,

(196)

when 1 � N � 3
√

Nv . This is the ultimate law with which
the specific heat tends to its classical value 3/2 in the dilute
high-temperature ideal gas with decreasing number of atoms
in the trap (N → 1) or with increasing temperature (T/Tc →
∞). Like the universal asymptotics (192) at the left wing of the
critical region, the asymptotics (196) is also a linear function
of N/Nv , but its slope 9ζ (3/2)/4 = 5.878 differs from the
slope 9[ζ (3/2)]2/(8π ) − 15ζ (5/2)/[4ζ (3/2)] = 0.518 given
by Eq. (192) at the wing of the critical region.

The specific heat for the trap with only a few atoms,
N = 1–5, demonstrates a strong discreteness effect and can
be easily found from explicit formulas (17), (22), and (76),
and Eq. (181). Further details will be presented elsewhere.

XV. CRITICAL EXPONENTS AND FINITE-SIZE SCALING
FUNCTIONS NEAR THE CRITICAL POINT:

COMPARISON WITH RENORMALIZATION-GROUP
THEORY

The modern theory of the second-order phase transitions
is based on the phenomenological renormalization-group
approach and is focused on the calculation of the universal

features of phase transitions, such as the critical exponents,
which are the same for all phase transitions within a given
universality class (see reviews [9,14–18] and references
therein). The analytical microscopic theory of second-order
phase transitions in mesoscopic systems yields the full
quantum-statistical description of critical fluctuations phe-
nomena and allows us to find both universal quantities (critical
exponents) and nonuniversal quantities (in particular, scaling
functions and metric amplitudes) which were introduced in the
renormalization-group theory for a close vicinity of the critical
point. In this section, we compare the universal scaling given
by the analytical microscopic theory against the finite-size
scaling given by the phenomenological renormalization-group
theory for the mesoscopic ideal gas in the canonical ensemble
and present the explicit results for the scaling functions and
critical exponents.

Let us consider the BEC phase transition in the ideal gas
trapped in the three-dimensional box. It is known [11,14,15,64,
65] that this transition belongs to the universality class of the
Gaussian complex-field model (spherical model) and, hence,
the correlation-length exponent ν is equal to the condensate-
fraction exponent v, ν = v = 1, and the specific-heat exponent
is α = −1. The BEC phase transition in the weakly interacting
Bose gas belongs to the three-dimensional XY , or O(2),
universality class [15,17,19,20,25], which has different critical
exponents (ν ≈ 0.6717 and α ≈ −0.015, see [18,23,24] for
the most recent numerical and experimental data) and will
be discussed elsewhere. The specific-heat and correlation-
length exponents are related via the hyperscaling relation
α = 2 − dν and the condensate-fraction (superfluid-stiffness)
and correlation-length exponents are related via the Josephson
scaling relation v = (d − 2)ν, so that the condensate-fraction
and specific-heat exponents are also directly related, v =
(d − 2)(2 − α)/d. Here d is the dimensionality that is equal to
3 in the case of the box.

The renormalization-group theory analyzes the finite-size
scaling in the close vicinity of the critical point T = Tc on
the basis of a power-law ansatz for a critical (“singular”)
part of a physical quantity as a function of the reduced
temperature �t = (T − Tc)/Tc and the size of the system
L = V 1/3. In the present case of the BEC phase transition,
for any physical quantity, it is convenient to introduce its
properly normalized value, say y(�t,L), which is finite in
the thermodynamic (bulk) limit, y(0,∞) = y(c) at L → ∞,
at the critical point T = Tc, i.e., at N = Nc. In this case, the
renormalization-group ansatz can be cast into the following
form [18–20,66]:

y(�t,L,N ) = y(c) + |�t |ζy gy

[
L

ξ (�t)

]
,

ξ (�t) = ξ0|�t |−ν, (197)

where ζy and gy are the critical exponent of the physical
quantity y and its universal scaling function, respectively, and
ξ (�t) = ξ (�t,L = ∞) is the correlation length ξ (�t,L) =
|�t |−νfξ (L/ξ (�t)) for the infinite size system L = ∞.

As examples of the physical quantity y, let us consider
the condensate fraction n̄0/N and specific heat cV = CV /N .
It was found in the previous sections that such quantities
are actually described by the universal functions of the
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self-similar variable η = (N − Nc)/σ (∞) in Eq. (95) rather
than the renormalization-group scaling variable L/ξ (�t).
However, it is easy to see that these two variables are in fact
proportional to each other in the close vicinity of the critical
point for large enough systems (to the first order),

η ≈ − 3Nv

2σ (∞)
�t = −3π [ζ (3/2)]2/3

2
√

s2
N1/3

v �t ∝ �tL,

(198)

since �t ≡ T/Tc − 1 = (Nv/N)2/3 − 1, Nc ≈ Nv ∝ L3 in
accord with Eq. (24), and σ (∞) ∝ L�σ in accord with Eq. (30)
in the large-size limit L → ∞, where the scaling dimension
�σ of the unconstrained dispersion σ (∞) depends on the trap
and is equal to 2 for the box and to 3/2 for the harmonic
trap [2,44,45]. Hence, the exact universal structure of any
physical quantity y in the critical region, which is described
by the appropriate (found in the previous sections) universal
function of the true universal, self-similar variable η and can
be written in the form

y(T ,L,N) = y(c) + (σ (∞))−ζy/(ν�σ )fy(η), (199)

is reduced to the renormalization-group ansatz in Eq. (197)
in the close vicinity of the critical point for large enough
systems with the correlation-length critical exponent ν = 1
if one identifies the product of the function gy(L/ξ (�t)) and
the pre-factor ∝ (�tL1/ν)ζy in Eq. (197) with the universal
function fy(η) in Eq. (199). Thus, just the knowledge of the
true universal, self-similar variable in Eq. (95), without any
specific information on the universal functions, is enough to
calculate the correlation-length exponent.

For the condensate fraction y = n̄0/N , the thermodynamic-
limit value at the critical temperature is zero, y(c) ≡ n̄0(T =
Tc)/N → 0, and the analytical microscopic theory in Eq. (96)
yields the universal scaling in the form of Eq. (199),

n̄0(T ,L,N)/N = (σ (∞))−v/(ν�σ )fn0 (η), (200)

with the explicit formula for the condensate universal function
as a regular function of η and the critical exponent v = 1
derived from Eq. (30). It is exactly the same value of the critical
exponent that can be directly obtained via the Josephson
scaling relation v = (d − 2)ν from the correlation-length
critical exponent ν = 1 derived from Eq. (198). The phe-
nomenological renormalization-group theory uses the scaling
ansatz in Eq. (197), i.e.,

n̄0(�t,L,N )/N = |�t |v gn0 (L/ξ (�t)), (201)

which is different from that in Eq. (200).
For the specific heat y = CV /N ≡ cV , the thermodynamic-

limit value at the critical temperature, y(c) = CV c/Nc in
Eq. (178), is not zero, and the analytical microscopic theory in
Eqs. (186) and (187) yields the universal scaling

cV (T ,L,N) = CV c/Nc + (σ (∞))α/(ν�σ )fCV (η), (202)

with the explicit formula for the specific-heat universal
function in Eq. (187) and the critical exponent α = −1. As it
should be, the critical exponent value is exactly the same as the

value derived from the hyperscaling relation α = 2 − dν. The
renormalization-group theory uses a different scaling ansatz
in Eq. (197), namely,

cV (t, L,N) = CV c/Nc + |�t |−αgCV (L/ξ (t)). (203)

In a similar way, it is straightforward to derive the universal
functions and critical exponents for the Gibbs free energy and
average energy, as well as higher moments and cumulants
of BEC fluctuations from the analytical universal functions
obtained in the present paper. Note also that the critical
exponents for the Gibbs free energy per particle and average
energy per particle are obviously equal to 2 − α and 1 − α,
respectively, since the average energy and heat capacity are
determined by the first and second derivatives of the Gibbs
free energy with respect to temperature, respectively.

For the above-discussed and other physical quantities,
the phenomenological renormalization-group theory does not
give any explicit formulas for the universal functions, which,
instead, are usually discussed on the basis of numerical, first
of all Monte Carlo, simulations and some numerical fits for
the few first terms in their Taylor series including corrections
from some irrelevant scaling field (see, e.g., [15,19–22,25]
and references therein). However, as we found in the previous
sections, the universal functions are highly nontrivial functions
even in the case of the ideal gas; and the true universal, self-
similar variable η given in Eq. (95) is different from the usually
assumed one, �tL1/ν . Besides, such direct simulations of the
finite-size versions of the universal functions for relatively
small systems are greatly subject to finite-size effects, which
are difficult to separate from the universal part of the functions
without knowing the universal constraint-cutoff mechanism
that basically controls the critical phenomena in the second-
order phase transitions, as described in Sec. V. All these
reasons prevented the renormalization-group approach from
finding the full fine structure of the universal functions in the
critical region. The analytical solution to this nontrivial prob-
lem, obtained in the present paper, becomes possible only by
first calculating analytically the universal unconstrained prob-
ability distribution of the noncondensate occupation in Eq. (26)
and then using it for the analytical calculation of the universal
functions of the particular physical quantities via the exact
formulas which express the constraint-cutoff mechanism.

Thus, the analytical microscopic theory of the second-order
phase transitions in mesoscopic systems yields the explicit
formulas for the true universal, self-similar variable in Eq. (95)
and the universal functions such as the ones given in Eqs. (96),
(100), (101), (161), (173), and (187). They describe a nontrivial
structure of the whole critical region in all details, not just
the linear terms in the very vicinity of the critical point
which were usually discussed and numerically fitted in the
renormalization-group analysis. The analytical microscopic
and renormalization-group theories coincide only in the first
order near the critical point, where the true universal variable
η is reduced to the finite-size scaling variable L/ξ (�t) ∝ �tL

via Eq. (198). It is worth noting that a deviation of any
physical quantity, scaled with a positive critical exponent,
ζy > 0, from its bulk critical value y(c) in general is not zero,
as one could naively expect from the renormalization-group
ansatz |�t |ζy gy(L/ξ (�t)) at �t = 0. This is the case, for
instance, for the condensate fraction (critical exponent v = 1)
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and for the specific heat capacity (critical exponent α = −1).
Indeed, according to Eq. (199), the critical exponent actually
determines not the power of the reduced temperature in front
of the universal function, but rather the power of scaling of the
deviation of the physical quantity from its bulk critical value
in terms of the dispersion σ (∞) of BEC fluctuations which
can scale with anomalous dimension in the large-size limit,
σ (∞) ∝ L�σ . The dispersion σ (∞) depends on the temperature
and size of the trap, as well as on its shape and boundary
conditions, and in the present case of the ideal gas in the box
scales as σ (∞) ∝ N

2/3
v ∝ L2.

XVI. CONCLUSIONS AND DISCUSSIONS

We conclude that the probability distribution of the con-
densate occupation, the order parameter, and all moments and
cumulants of the BEC statistics as well as the thermodynamic
quantities in the canonical ideal gas for any finite-size
mesoscopic system of atoms in the trap can be scaled to
the appropriate regular nontrivial critical functions which
resolve the structure of the BEC phase transition in the
critical region and converge fast to the corresponding universal
functions in the thermodynamic limit with increasing size of
the mesoscopic system (see also [48]). We find exact analytical
formulas for these universal functions in the whole critical
region and their amazingly simple explicit approximations via
the confluent hypergeometric and parabolic cylinder functions
in the central part of the critical region. The universal scaling
and structure of the BEC statistics originate from the constraint
cutoff of the noncondensate occupation probability distribu-
tion and are controlled by the anomalously large dispersion
of the condensate fluctuations. That dispersion determines the
main scale of the evolution of the noncondensate probability
distribution when the number of atoms in the trap is changing
around the critical value.

We identify the constraint-cutoff mechanism as the uni-
versal reason for the strongly non-Gaussian properties of
BEC fluctuations in the critical region as well as for the
nonanalyticity and all other unusual critical properties of
the BEC phase transition in the ideal gas. In terms of the
Landau function [29,47], i.e., the logarithm of the probability
distribution of the order parameter, all these critical features
originate from the constraint nonlinearity θ (N − n̂), i.e.,
due to the many-body Fock space cutoff in the canonical
ensemble (Sec. II), which is responsible for the infinite
potential wall in the effective fluctuation Hamiltonian and
makes the Hamiltonian strongly asymmetric and nonana-
lytical even in the ideal gas, i.e., without any interparticle
interaction.

The obtained explicit formulas for the solution to the prob-
lem of critical behavior of the statistical and thermodynamic
quantities in the BEC phase transition for the mesoscopic ideal
gas in the trap allows one to study analytically all dependences
and asymptotics without being content with ad hoc numerical
simulations and being forced to keep and present a vast number
of particular graphs for numerous particular combinations
of different parameters of the finite-size systems. This huge
graphical database accumulated in the numerous previous
works on mesoscopic ideal gas systems can be completely
understood and classified in terms of self-similar, universal

functions, given by the above-derived explicit formulas,
and finite-size corrections to them. At the same time, the
obtained analytical formulas allow one to plot any statistical
or thermodynamic quantity for the mesoscopic ideal gas in
the trap as a function of any parameter, e.g., temperature,
number of atoms or volume, in a few minutes using a personal
computer and standard code packages, such as MATHEMATICA.
The finite-size corrections are also described by the formulas
for the constraint-cutoff mechanism and can be taken care
of via an accurate, beyond the continuous approximation,
calculation of related discrete sums, such as the sums for the
critical number of atoms Nc in Eq. (23), dispersion σ (∞) in
Eq. (30), Gibbs free energy F (∞) in Eq. (157), average energy
Ē(∞) in Eq. (167), and heat capacity CV c in Eq. (176).

The main idea that makes it possible for us to solve
analytically the problem of critical fluctuations in the ideal
gas is to calculate first the universal probability distribution
of the noncondensate occupation and then to use it for
the analytical calculation of the universal functions for the
particular physical quantities via the exact formulas which
express the constraint-cutoff mechanism. The point is that this
constraint is directly related, through Noether’s theorem, to the
symmetry to be broken in the second-order phase transition
and, hence, is the main reason for the phase transition and
critical phenomena themselves. The nonanalyticity imposed
by the constraint cutoff is so important, cannot be taken into
account perturbatively, and makes the universal functions of
physical quantities in the critical region so nontrivial that it is
very difficult to find them directly, without explicit knowledge
of the constraint-cutoff mechanism. It is worth stressing that
the constraint-cutoff solution for the probability distribution
in Eq. (5) satisfies exactly the well-known recursion relation,
as is proven in Sec. V, and is the exact, rigorous solution
for the BEC statistics in the ideal gas in the canonical
ensemble. It is not an approximation or a model. We prove
the exposed remarkable universality of the mesoscopic BEC
statistics and thermodynamics also by the exact numerical
simulations for a wide range of numbers of atoms in the trap,
N < 105.

A similar universality is valid for the ideal gas in any trap
and for other than periodic boundary conditions. The particular
shapes of the universal functions depend on a trap energy
spectrum. The standard mean-field theory does not resolve the
structure of the BEC phase transition at all. The described
universality provides an amazingly complete and clear picture
of the BEC statistics and thermodynamics in mesoscopic
systems that makes basically unneeded numerous numerical
graphs for the particular values of the parameters to which
the analysis of the finite-size, mesoscopic BEC statistics, and
thermodynamics was reduced in most previous papers. All
previous attempts did not result in the full analytical solution to
the problem in the whole critical region. Only some fragments
were discussed in the literature. In particular, the coefficient
s

3/2
2 /(12π4) in front of the cubic term in the exponent of the

asymptotics (51) was correctly obtained in [29]. The finite-size
corrections to the universal functions are relatively pronounced
only for very small traps and numbers of atoms (N,Nv < 102)
and quickly disappear with increase of the system size as
discussed in Secs. IV, VI–X, and XIV. We find analytical
formulas for the universal functions of the Gibbs free energy,
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average energy, and specific heat in the whole critical region as
well as their asymptotics which match the known asymptotics
far from the critical point. Hence, we solve the problem of
resolving the universal structure of specific heat of the ideal
gas near the λ point.

Thus, we conclude that the long-standing problem of
finding the universal structure of the critical region for the
ideal Bose gas has a full analytical solution.

We find the generic two- and three-level trap models of
BEC and their exact analytical solutions which allow us
to analyze all details of the mesoscopic BEC statistics. As
an example, we presented the detailed analysis of the BEC
statistics in the box trap. The two- and three-level trap models
provide the basic blocks which, together with the property
of the infrared universality of the higher-order cumulants,
allow us to formulate a regular scheme for the refinement of
the condensate statistics approximations in any actual traps,
including correct description of all higher-order moments.
Note that higher-order moments are not given accurately
by the quasithermal ansatz [49] since it is reduced to the
cutoff Gaussian statistics in the bulk limit. We consider two
examples of that regular refinement scheme, namely, Poisson
and Gaussian background fluctuations. It would be very
interesting to find analytical solutions for more complicated
examples, especially for the three-level trap model combined
with Gaussian background fluctuations.

Among the most important results of the paper are
remarkably accurate analytical solutions that we find using
a three-level trap model with matching the first five or
four cumulants in Eqs. (135), (136) and in Eqs. (125),
(128), respectively. Their thermodynamic limit yields very
important analytical approximations (35) and (36) for the
universal unconstrained probability distribution ρ(univ)

x of the
total noncondensate occupation for the whole central part of
the critical region in terms of the confluent hypergeometric
function and the parabolic cylinder function, respectively. It is
amazing that precisely the same analytical formula (36) results
also from a completely different model of superposition of
two-level trap and Gaussian background fluctuations solved in
Sec. XI. Another very important remark is that the universal
constraint-cutoff mechanism dominates the origin of the strong
non-Gaussian effects in the BEC fluctuations so much that it
correctly predicts the qualitative behavior of all, including
higher-order, moments in the critical region even on the basis
of the simplest two-level trap model (quasithermal ansatz) or
cutoff Gaussian model.

An interesting conclusion from the analysis of the higher,
non-Gaussian cumulants κm (first of all, asymmetry, m = 3,
and excess, m = 4) summarized in Sec. VII is that they have
much stronger dependence on the proximity to the critical
point than the mean value (order parameter) and dispersion
of its fluctuations. Hence, measurements of non-Gaussian
features of the order-parameter statistics and related quantities
for mesoscopic systems near the critical point are important
sources of information on the interactions and many-body
processes. A possible experiment on such measurements of
the non-Gaussian statistics near the QCD critical point was
discussed recently for the phase transition in the quark-gluon
plasma produced in the process of collisions of the relativistic
heavy ions in accelerators [67].

It is worth emphasizing the important fact that the
above-described universal functions of the order parameter,
of all moments and cumulants, and of all thermodynamic
quantities remain regular and nontrivial in the bulk limit.
Thus, a simulation of these functions for the relatively small
mesoscopic systems with a finite number of atoms constitutes
a very effective tool for the studies of BEC phase transition
in macroscopic systems in the thermodynamic limit. In fact,
the information on universal functions is extracted usually by
fitting the simulations (such as Monte Carlo simulations) or
experimental data on the finite-size systems (for BEC-related
examples, see [15,18–25]) to a renormalization-group, finite-
size scaling ansatz that typically includes only two or a few
first terms of the universal function’s Taylor expansion in the
close vicinity of the critical point. That procedure has certain
problems in providing the form of the universal functions
relatively far from the critical point, i.e., in the whole critical
region, and with high enough accuracy. In this respect, the
analytical formulas for the true scaling, self-similar variable
in Eq. (95), or Eq. (33), and universal functions are crucially
important. As discussed in Sec. XV, the analytical microscopic
theory of the BEC and other second-order phase transitions in
mesoscopic systems goes beyond the known renormalization-
group theory and yields results for both the universal (critical
indices) and nonuniversal (universal functions and metric
amplitudes) quantities.

The constraint-cutoff mechanism discussed in the present
paper is also generic for other second-order phase transitions
and, in particular, works in any interacting gas. The exactly
solvable Gaussian model of BEC in a degenerate interacting
gas, Eq. (103), is a particular example, which also eluci-
dates how the unconstrained Gaussian statistical distribution
ρn ∼ exp[−H (n)/T ] with vanishing higher-order cumulants
(κ (∞)

m = 0 for all m �= 2) results, via the constraint-cutoff
mechanism, in the strongly non-Gaussian BEC fluctuations.
In a general case of the interacting gas, the shapes of the
universal functions for the moments and cumulants of the BEC
fluctuations and the thermodynamic quantities, in addition,
depend on a deformation of the statistical distribution due
to a feedback of the order parameter on the quasiparticle
energy spectrum and correlations. These effects can be taken
into account in a quite general, nonperturbative-in-fluctuations
way using a theorem on nonpolynomial averages in statistical
physics and appropriate diagram technique [50,51]. Thus, the
above-formulated analytical theory of the critical phenomena
and universal functions in mesoscopic BEC statistics and
thermodynamics can be directly generalized to the case of a
weakly interacting gas. An appropriate analysis is outside the
scope of this paper and will be published in a separate paper.
Presented in this paper is a full analytical theory of critical
fluctuations in statistics and thermodynamics of mesoscopic
BEC phase transition in the ideal Bose gas, which sets a
reference level of completeness and detail that a theory of
critical fluctuations in the interacting systems may try to attain.
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APPENDIX: DERIVATION OF THE ASYMPTOTICS OF
KUMMER’S CONFLUENT HYPERGEOMETRIC

FUNCTION

To derive the asymptotics (130) we use a binomial theorem
(1 − t)g1−1 =∑g1−1

j=0 C
j

g1−1(−t)j in the integral representation
(126) to represent Kummer’s confluent hypergeometric func-
tion as a sum of incomplete  functions:

M(g1, g1 + g2, x)

= ex(g1 + g2)

(g1)(g2)

g1−1∑
j=0

(−1)jCj

g1−1G(g2 + j, x),

(A1)
G(g2 + j, x) = γ (g2 + j, x)

xg2+j
.

Now let us use a Taylor series

G(g2 + j, x) =
∞∑

k=0

jk

k!

∂kG(g2, x)

∂gk
2

(A2)

and take into account that for each term of Eq. (A2) with
k = 0, 1, . . . , g1 − 2 the sum over j in Eq. (A1) is equal
to zero. Then we find that the first nonzero term in Eq. (A2),
k = g1 − 1, makes a leading contribution to M(g1, g1 + g2, x)
in Eq. (A1), and we neglect all higher-order terms, k > g1 − 1,
in Eq. (A2). In this way, we find from Eq. (A1) the following

result

M(g1, g1 + g2, x) ≈ ex(g1 + g2)

(g1)(g2)
(−1)g1−1 ∂g1−1G(g2, x)

∂g
g1−1
2

.

(A3)

The next step is to use, first, the asymptotics of the
incomplete  function in terms of a complementary error
function [52],

γ (g2, x) ≈ 1

2
(g2)erfc

(
− y√

2

)
, y = x − g2√

x
, (A4)

and, second, an obvious asymptotics

(g2)x−g2 ≈
√

2π/g2 exp(−x + y2/2), (A5)

both of which are valid at x ∼ g2 → ∞, to find the following
asymptotics

γ (g2, x)

xg2
≈
√

π

2

e−x

√
x

exp

(
y2

2

)
erfc

(
− y√

2

)
. (A6)

Then we can calculate the derivative in Eq. (A3),
∂g1−1[γ (g2, x)/xg2 ]/∂g

g1−1
2 , by means of a well-known for-

mula [52]

dk
[
ez2

erfc(z)
]

dzk
= (−1)k2(k+1)/2k!ez2/2D−k−1(z

√
2),

(A7)

which completes the derivation of the asymptotics of
Kummer’s confluent hypergeometric function (130) via the
parabolic cylinder function D−g1 [(g2 − x)/

√
x].
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